summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorErich Eckner <git@eckner.net>2015-07-30 18:50:29 +0200
committerErich Eckner <git@eckner.net>2015-07-30 18:50:29 +0200
commit0484afec8922e5ac455b98bcd5516d53443a475c (patch)
tree3118cf007075357f28a7a7ef0429f16c0e628009
parentefb7499d2a7e6cb0e384431ae773371606851a77 (diff)
downloadPlasmapropagation-0484afec8922e5ac455b98bcd5516d53443a475c.tar.xz
Runge-Kutta 10 und 12 eingefuegt, Algorithmus fuer RK14 ist da, aber noch nicht implementiert
-rw-r--r--Physikunit.pas823
-rw-r--r--Plasmapropagation.lpi6
-rw-r--r--Plasmapropagation.lps133
-rw-r--r--input.plap5
-rw-r--r--linearkombination.inc186
-rw-r--r--rk108.txt187
-rw-r--r--rk1210.txt364
-rw-r--r--rk1412.txt681
8 files changed, 2168 insertions, 217 deletions
diff --git a/Physikunit.pas b/Physikunit.pas
index da9d56e..6f9f60c 100644
--- a/Physikunit.pas
+++ b/Physikunit.pas
@@ -15,7 +15,7 @@ uses
Classes, SysUtils, Math, protokollunit, matheunit, mystringlistunit, lowlevelunit, baseUnix;
type
- tZeitverfahren = (zfEulerVorwaerts,zfRungeKuttaDreiAchtel,zfRungeKuttaVier);
+ tZeitverfahren = (zfEulerVorwaerts,zfRungeKuttaDreiAchtel,zfRungeKuttaVier,zfRungeKuttaZehn,zfRungeKuttaZwoelf,zfRungeKuttaVierzehn);
tVerteilungsfunktion = function(x: extended): extended;
tEMFeldInhalt = (
efA,efAX,efAY,efAZ,
@@ -87,6 +87,18 @@ type
procedure liKo(in1,in2,in3: tWertePunkt; fak2,fak3: extended); overload;
procedure liKo(in1,in2,in3,in4: tWertePunkt; fak2,fak3,fak4: extended); overload;
procedure liKo(in1,in2,in3,in4,in5: tWertePunkt; fak2,fak3,fak4,fak5: extended); overload;
+ procedure liKo(in1,in2,in3,in4,in5,in6: tWertePunkt; fak2,fak3,fak4,fak5,fak6: extended); overload;
+ procedure liKo(in1,in2,in3,in4,in5,in6,in7: tWertePunkt; fak2,fak3,fak4,fak5,fak6,fak7: extended); overload;
+ procedure liKo(in1,in2,in3,in4,in5,in6,in7,in8: tWertePunkt; fak2,fak3,fak4,fak5,fak6,fak7,fak8: extended); overload;
+ procedure liKo(in1,in2,in3,in4,in5,in6,in7,in8,in9: tWertePunkt; fak2,fak3,fak4,fak5,fak6,fak7,fak8,fak9: extended); overload;
+ procedure liKo(in1,in2,in3,in4,in5,in6,in7,in8,in9,in10: tWertePunkt; fak2,fak3,fak4,fak5,fak6,fak7,fak8,fak9,fak10: extended); overload;
+ procedure liKo(in1,in2,in3,in4,in5,in6,in7,in8,in9,in10,in11: tWertePunkt; fak2,fak3,fak4,fak5,fak6,fak7,fak8,fak9,fak10,fak11: extended); overload;
+ procedure liKo(in1,in2,in3,in4,in5,in6,in7,in8,in9,in10,in11,in12: tWertePunkt; fak2,fak3,fak4,fak5,fak6,fak7,fak8,fak9,fak10,fak11,fak12: extended); overload;
+ procedure liKo(in1,in2,in3,in4,in5,in6,in7,in8,in9,in10,in11,in12,in13,in14: tWertePunkt; fak2,fak3,fak4,fak5,fak6,fak7,fak8,fak9,fak10,fak11,fak12,fak13,fak14: extended); overload;
+ procedure liKo(in1,in2,in3,in4,in5,in6,in7,in8,in9,in10,in11,in12,in13,in14,in15: tWertePunkt; fak2,fak3,fak4,fak5,fak6,fak7,fak8,fak9,fak10,fak11,fak12,fak13,fak14,fak15: extended); overload;
+ procedure liKo(in1,in2,in3,in4,in5,in6,in7,in8,in9,in10,in11,in12,in13,in14,in15,in16: tWertePunkt; fak2,fak3,fak4,fak5,fak6,fak7,fak8,fak9,fak10,fak11,fak12,fak13,fak14,fak15,fak16: extended); overload;
+ procedure liKo(in1,in2,in3,in4,in5,in6,in7,in8,in9,in10,in11,in12,in13,in14,in15,in16,in17,in18,in19,in20,in21,in22: tWertePunkt; fak2,fak3,fak4,fak5,fak6,fak7,fak8,fak9,fak10,fak11,fak12,fak13,fak14,fak15,fak16,fak17,fak18,fak19,fak20,fak21,fak22: extended); overload;
+ procedure liKo(in1,in2,in3,in4,in5,in6,in7,in8,in9,in10,in11,in12,in13,in14,in15,in16,in17,in18,in19,in20,in21,in22,in23: tWertePunkt; fak2,fak3,fak4,fak5,fak6,fak7,fak8,fak9,fak10,fak11,fak12,fak13,fak14,fak15,fak16,fak17,fak18,fak19,fak20,fak21,fak22,fak23: extended); overload;
function maxDT: extended;
end;
@@ -109,6 +121,18 @@ type
procedure liKo(in1,in2,in3: tFelder; fak2,fak3: extended); overload;
procedure liKo(in1,in2,in3,in4: tFelder; fak2,fak3,fak4: extended); overload;
procedure liKo(in1,in2,in3,in4,in5: tFelder; fak2,fak3,fak4,fak5: extended); overload;
+ procedure liKo(in1,in2,in3,in4,in5,in6: tFelder; fak2,fak3,fak4,fak5,fak6: extended); overload;
+ procedure liKo(in1,in2,in3,in4,in5,in6,in7: tFelder; fak2,fak3,fak4,fak5,fak6,fak7: extended); overload;
+ procedure liKo(in1,in2,in3,in4,in5,in6,in7,in8: tFelder; fak2,fak3,fak4,fak5,fak6,fak7,fak8: extended); overload;
+ procedure liKo(in1,in2,in3,in4,in5,in6,in7,in8,in9: tFelder; fak2,fak3,fak4,fak5,fak6,fak7,fak8,fak9: extended); overload;
+ procedure liKo(in1,in2,in3,in4,in5,in6,in7,in8,in9,in10: tFelder; fak2,fak3,fak4,fak5,fak6,fak7,fak8,fak9,fak10: extended); overload;
+ procedure liKo(in1,in2,in3,in4,in5,in6,in7,in8,in9,in10,in11: tFelder; fak2,fak3,fak4,fak5,fak6,fak7,fak8,fak9,fak10,fak11: extended); overload;
+ procedure liKo(in1,in2,in3,in4,in5,in6,in7,in8,in9,in10,in11,in12: tFelder; fak2,fak3,fak4,fak5,fak6,fak7,fak8,fak9,fak10,fak11,fak12: extended); overload;
+ procedure liKo(in1,in2,in3,in4,in5,in6,in7,in8,in9,in10,in11,in12,in13,in14: tFelder; fak2,fak3,fak4,fak5,fak6,fak7,fak8,fak9,fak10,fak11,fak12,fak13,fak14: extended); overload;
+ procedure liKo(in1,in2,in3,in4,in5,in6,in7,in8,in9,in10,in11,in12,in13,in14,in15: tFelder; fak2,fak3,fak4,fak5,fak6,fak7,fak8,fak9,fak10,fak11,fak12,fak13,fak14,fak15: extended); overload;
+ procedure liKo(in1,in2,in3,in4,in5,in6,in7,in8,in9,in10,in11,in12,in13,in14,in15,in16: tFelder; fak2,fak3,fak4,fak5,fak6,fak7,fak8,fak9,fak10,fak11,fak12,fak13,fak14,fak15,fak16: extended); overload;
+ procedure liKo(in1,in2,in3,in4,in5,in6,in7,in8,in9,in10,in11,in12,in13,in14,in15,in16,in17,in18,in19,in20,in21,in22: tFelder; fak2,fak3,fak4,fak5,fak6,fak7,fak8,fak9,fak10,fak11,fak12,fak13,fak14,fak15,fak16,fak17,fak18,fak19,fak20,fak21,fak22: extended); overload;
+ procedure liKo(in1,in2,in3,in4,in5,in6,in7,in8,in9,in10,in11,in12,in13,in14,in15,in16,in17,in18,in19,in20,in21,in22,in23: tFelder; fak2,fak3,fak4,fak5,fak6,fak7,fak8,fak9,fak10,fak11,fak12,fak13,fak14,fak15,fak16,fak17,fak18,fak19,fak20,fak21,fak22,fak23: extended); overload;
function maxDT: extended;
end;
@@ -572,126 +596,6 @@ begin
emWerte[efAZ,true]:=emWerte[efDAZDT,false];// + emWerte[efDAZDT,true]*dT;
end;
-procedure tWertePunkt.liKo(in1,in2: tWertePunkt; fak2: extended); // Werte werden auf (in1 + fak2*in2') gesetzt
-var
- emF: tEMFeldInhalt;
- maF: tMaterieFeldInhalt;
- i: longint;
-begin
-(* tEMFeldInhalt = (
- efA,efAX,efAY,efAZ,
- efDAXDT,efDAYDT,efDAZDT,
- efDPhiDX
- ); *)
- for emF:=efAX to efDPhiDX do // alles außer efA, welchen Ableitung ja nicht berechnet wurde
- emWerte[emF,false]:= in1.emWerte[emF,false] + fak2 * in2.emWerte[emF,true];
-
-(* tMaterieFeldInhalt = (
- mfN,mfDPsiDX,
- mfP,mfPX,mfPY,mfPZ,
- mfGamma,mfIGamma
- ); *)
- for i:=0 to length(matWerte)-1 do // siehe oben
- for maF:=mfN to mfDPsiDX do
- matWerte[i,maF,false]:= in1.matWerte[i,maF,false] + fak2 * in2.matWerte[i,maF,true];
-end;
-
-procedure tWertePunkt.liKo(in1,in2,in3: tWertePunkt; fak2,fak3: extended); // Werte werden auf (in1 + \sum_i faki * ini') gesetzt
-var
- emF: tEMFeldInhalt;
- maF: tMaterieFeldInhalt;
- i: longint;
-begin
-(* tEMFeldInhalt = (
- efA,efAX,efAY,efAZ,
- efDAXDT,efDAYDT,efDAZDT,
- efDPhiDX
- ); *)
- for emF:=efAX to efDPhiDX do // alles außer efA, welchen Ableitung ja nicht berechnet wurde
- emWerte[emF,false]:=
- in1.emWerte[emF,false]
- + fak2 * in2.emWerte[emF,true]
- + fak3 * in3.emWerte[emF,true];
-
-(* tMaterieFeldInhalt = (
- mfN,mfDPsiDX,
- mfP,mfPX,mfPY,mfPZ,
- mfGamma,mfIGamma
- ); *)
- for i:=0 to length(matWerte)-1 do // siehe oben
- for maF:=mfN to mfDPsiDX do
- matWerte[i,maF,false]:=
- in1.matWerte[i,maF,false]
- + fak2 * in2.matWerte[i,maF,true]
- + fak3 * in3.matWerte[i,maF,true];
-end;
-
-procedure tWertePunkt.liKo(in1,in2,in3,in4: tWertePunkt; fak2,fak3,fak4: extended); // Werte werden auf (in1 + \sum_i faki * ini') gesetzt
-var
- emF: tEMFeldInhalt;
- maF: tMaterieFeldInhalt;
- i: longint;
-begin
-(* tEMFeldInhalt = (
- efA,efAX,efAY,efAZ,
- efDAXDT,efDAYDT,efDAZDT,
- efDPhiDX
- ); *)
- for emF:=efAX to efDPhiDX do // alles außer efA, welchen Ableitung ja nicht berechnet wurde
- emWerte[emF,false]:=
- in1.emWerte[emF,false]
- + fak2 * in2.emWerte[emF,true]
- + fak3 * in3.emWerte[emF,true]
- + fak4 * in4.emWerte[emF,true];
-
-(* tMaterieFeldInhalt = (
- mfN,mfDPsiDX,
- mfP,mfPX,mfPY,mfPZ,
- mfGamma,mfIGamma
- ); *)
- for i:=0 to length(matWerte)-1 do // siehe oben
- for maF:=mfN to mfDPsiDX do
- matWerte[i,maF,false]:=
- in1.matWerte[i,maF,false]
- + fak2 * in2.matWerte[i,maF,true]
- + fak3 * in3.matWerte[i,maF,true]
- + fak4 * in4.matWerte[i,maF,true];
-end;
-
-procedure tWertePunkt.liKo(in1,in2,in3,in4,in5: tWertePunkt; fak2,fak3,fak4,fak5: extended); // Werte werden auf (in1 + \sum_i faki * ini') gesetzt
-var
- emF: tEMFeldInhalt;
- maF: tMaterieFeldInhalt;
- i: longint;
-begin
-(* tEMFeldInhalt = (
- efA,efAX,efAY,efAZ,
- efDAXDT,efDAYDT,efDAZDT,
- efDPhiDX
- ); *)
- for emF:=efAX to efDPhiDX do // alles außer efA, welchen Ableitung ja nicht berechnet wurde
- emWerte[emF,false]:=
- in1.emWerte[emF,false]
- + fak2 * in2.emWerte[emF,true]
- + fak3 * in3.emWerte[emF,true]
- + fak4 * in4.emWerte[emF,true]
- + fak5 * in5.emWerte[emF,true];
-
-(* tMaterieFeldInhalt = (
- mfN,mfDPsiDX,
- mfP,mfPX,mfPY,mfPZ,
- mfGamma,mfIGamma
- ); *)
- for i:=0 to length(matWerte)-1 do // siehe oben
- for maF:=mfN to mfDPsiDX do
- matWerte[i,maF,false]:=
- in1.matWerte[i,maF,false]
- + fak2 * in2.matWerte[i,maF,true]
- + fak3 * in3.matWerte[i,maF,true]
- + fak4 * in4.matWerte[i,maF,true]
- + fak5 * in5.matWerte[i,maF,true];
-end;
-
function tWertePunkt.maxDT: extended;
var
i: longint;
@@ -703,6 +607,41 @@ begin
result:=min(result,-matWerte[i,mfN,false]/matWerte[i,mfN,true]);
end;
+
+{ linearkombinationsspezifische Methoden von tWertePunkt und tFelder }
+
+{$INCLUDE linearkombination.inc}
+{$DEFINE lkA3}
+{$INCLUDE linearkombination.inc}
+{$DEFINE lkA4}
+{$INCLUDE linearkombination.inc}
+{$DEFINE lkA5}
+{$INCLUDE linearkombination.inc}
+{$DEFINE lkA6}
+{$INCLUDE linearkombination.inc}
+{$DEFINE lkA7}
+{$INCLUDE linearkombination.inc}
+{$DEFINE lkA8}
+{$INCLUDE linearkombination.inc}
+{$DEFINE lkA9}
+{$INCLUDE linearkombination.inc}
+{$DEFINE lkA10}
+{$INCLUDE linearkombination.inc}
+{$DEFINE lkA11}
+{$INCLUDE linearkombination.inc}
+{$DEFINE lkA12}
+{$INCLUDE linearkombination.inc}
+{$DEFINE lkA14}
+{$INCLUDE linearkombination.inc}
+{$DEFINE lkA15}
+{$INCLUDE linearkombination.inc}
+{$DEFINE lkA16}
+{$INCLUDE linearkombination.inc}
+{$DEFINE lkA22}
+{$INCLUDE linearkombination.inc}
+{$DEFINE lkA23}
+{$INCLUDE linearkombination.inc}
+
{ tFelder }
constructor tFelder.create(groesse: longint; teilchen: array of tTeilchenSpezies; lichter: tMyStringList; parent: tGitter);
@@ -802,38 +741,6 @@ begin
inhalt[i].berechneAbleitungen(dX,iDX);
end;
-procedure tFelder.liKo(in1,in2: tFelder; fak2: extended); // Werte werden auf (in1 + fak2*in2') gesetzt
-var
- i: longint;
-begin
- for i:=0 to length(inhalt)-1 do
- inhalt[i].liKo(in1.inhalt[i],in2.inhalt[i],fak2);
-end;
-
-procedure tFelder.liKo(in1,in2,in3: tFelder; fak2,fak3: extended); // Werte werden auf (in1 + \sum_i faki * ini') gesetzt
-var
- i: longint;
-begin
- for i:=0 to length(inhalt)-1 do
- inhalt[i].liKo(in1.inhalt[i],in2.inhalt[i],in3.inhalt[i],fak2,fak3);
-end;
-
-procedure tFelder.liKo(in1,in2,in3,in4: tFelder; fak2,fak3,fak4: extended); // Werte werden auf (in1 + \sum_i faki * ini') gesetzt
-var
- i: longint;
-begin
- for i:=0 to length(inhalt)-1 do
- inhalt[i].liKo(in1.inhalt[i],in2.inhalt[i],in3.inhalt[i],in4.inhalt[i],fak2,fak3,fak4);
-end;
-
-procedure tFelder.liKo(in1,in2,in3,in4,in5: tFelder; fak2,fak3,fak4,fak5: extended); // Werte werden auf (in1 + \sum_i faki * ini') gesetzt
-var
- i: longint;
-begin
- for i:=0 to length(inhalt)-1 do
- inhalt[i].liKo(in1.inhalt[i],in2.inhalt[i],in3.inhalt[i],in4.inhalt[i],in5.inhalt[i],fak2,fak3,fak4,fak5);
-end;
-
function tFelder.maxDT: extended;
var
i: longint;
@@ -866,6 +773,12 @@ begin
Setlength(Felders,2);
zfRungeKuttaDreiAchtel,zfRungeKuttaVier:
Setlength(Felders,5);
+ zfRungeKuttaZehn:
+ Setlength(Felders,18);
+ zfRungeKuttaZwoelf:
+ Setlength(Felders,26);
+ zfRungeKuttaVierzehn:
+ Setlength(Felders,36);
end{of Case};
xl:=dX/2;
@@ -1026,6 +939,592 @@ begin
dT/6
); // y(t+dt) = y(t) + (y' + 2(ya' + yb') + yc') dt/6
end;
+ zfRungeKuttaZehn: begin // Quelle: http://sce.uhcl.edu/rungekutta/rk108.txt
+ felders[2].liKo(felders[aktuelleFelder],felders[aktuelleFelder],dT*0.1);
+ felders[2].berechneAbleitungen(dT/2,dX,iDT,iDX,pDNMax);
+
+ if pruefeMaxDT(2,mDT,dT) then
+ continue;
+
+ felders[3].liKo(felders[aktuelleFelder],felders[aktuelleFelder],felders[2],
+ -0.915176561375291440520015019275342154318951387664369720564660 * dT,
+ 1.45453440217827322805250021715664459117622483736537873607016 * dT);
+ felders[3].berechneAbleitungen(dT/2,dX,iDT,iDX,pDNMax);
+
+ if pruefeMaxDT(3,mDT,dT) then
+ continue;
+
+ felders[4].liKo(felders[aktuelleFelder],felders[aktuelleFelder],felders[3],
+ 0.202259190301118170324681949205488413821477543637878380814562 * dT,
+ 0.606777570903354510974045847616465241464432630913635142443687 * dT);
+ felders[4].berechneAbleitungen(dT/2,dX,iDT,iDX,pDNMax);
+
+ if pruefeMaxDT(4,mDT,dT) then
+ continue;
+
+ felders[5].liKo(felders[aktuelleFelder],felders[aktuelleFelder],felders[3],felders[4],
+ 0.184024714708643575149100693471120664216774047979591417844635 * dT,
+ 0.197966831227192369068141770510388793370637287463360401555746 * dT,
+ -0.0729547847313632629185146671595558023015011608914382961421311* dT);
+ felders[5].berechneAbleitungen(dT/2,dX,iDT,iDX,pDNMax);
+
+ if pruefeMaxDT(5,mDT,dT) then
+ continue;
+
+ felders[6].liKo(felders[aktuelleFelder],felders[aktuelleFelder],felders[4],felders[5],
+ 0.0879007340206681337319777094132125475918886824944548534041378* dT,
+ 0.410459702520260645318174895920453426088035325902848695210406 * dT,
+ 0.482713753678866489204726942976896106809132737721421333413261 * dT);
+ felders[6].berechneAbleitungen(dT/2,dX,iDT,iDX,pDNMax);
+
+ if pruefeMaxDT(6,mDT,dT) then
+ continue;
+
+ felders[7].liKo(felders[aktuelleFelder],felders[aktuelleFelder],felders[4],felders[5],felders[6],
+ 0.0859700504902460302188480225945808401411132615636600222593880* dT,
+ 0.330885963040722183948884057658753173648240154838402033448632 * dT,
+ 0.489662957309450192844507011135898201178015478433790097210790 * dT,
+ -0.0731856375070850736789057580558988816340355615025188195854775* dT);
+ felders[7].berechneAbleitungen(dT/2,dX,iDT,iDX,pDNMax);
+
+ if pruefeMaxDT(7,mDT,dT) then
+ continue;
+
+ felders[8].liKo(felders[aktuelleFelder],felders[aktuelleFelder],felders[5],felders[6],felders[7],
+ 0.120930449125333720660378854927668953958938996999703678812621 * dT,
+ 0.260124675758295622809007617838335174368108756484693361887839 * dT,
+ 0.0325402621549091330158899334391231259332716675992700000776101* dT,
+ -0.0595780211817361001560122202563305121444953672762930724538856* dT);
+ felders[8].berechneAbleitungen(dT/2,dX,iDT,iDX,pDNMax);
+
+ if pruefeMaxDT(8,mDT,dT) then
+ continue;
+
+ felders[9].liKo(felders[aktuelleFelder],felders[aktuelleFelder],felders[6],felders[7],felders[8],
+ 0.110854379580391483508936171010218441909425780168656559807038 * dT,
+ -0.0605761488255005587620924953655516875526344415354339234619466* dT,
+ 0.321763705601778390100898799049878904081404368603077129251110 * dT,
+ 0.510485725608063031577759012285123416744672137031752354067590 * dT);
+ felders[9].berechneAbleitungen(dT/2,dX,iDT,iDX,pDNMax);
+
+ if pruefeMaxDT(9,mDT,dT) then
+ continue;
+
+ felders[10].liKo(felders[aktuelleFelder],felders[aktuelleFelder],felders[6],felders[7],felders[8],felders[9],
+ 0.112054414752879004829715002761802363003717611158172229329393 * dT,
+ -0.144942775902865915672349828340980777181668499748506838876185 * dT,
+ -0.333269719096256706589705211415746871709467423992115497968724 * dT,
+ 0.499269229556880061353316843969978567860276816592673201240332 * dT,
+ 0.509504608929686104236098690045386253986643232352989602185060 * dT);
+ felders[10].berechneAbleitungen(dT/2,dX,iDT,iDX,pDNMax);
+
+ if pruefeMaxDT(10,mDT,dT) then
+ continue;
+
+ felders[11].liKo(felders[aktuelleFelder],felders[aktuelleFelder],felders[6],felders[7],felders[8],felders[9],felders[10],
+ 0.113976783964185986138004186736901163890724752541486831640341 * dT,
+ -0.0768813364203356938586214289120895270821349023390922987406384* dT,
+ 0.239527360324390649107711455271882373019741311201004119339563 * dT,
+ 0.397774662368094639047830462488952104564716416343454639902613 * dT,
+ 0.0107558956873607455550609147441477450257136782823280838547024* dT,
+ -0.327769124164018874147061087350233395378262992392394071906457 * dT);
+ felders[11].berechneAbleitungen(dT/2,dX,iDT,iDX,pDNMax);
+
+ if pruefeMaxDT(11,mDT,dT) then
+ continue;
+
+ felders[12].liKo(felders[aktuelleFelder],felders[aktuelleFelder],felders[6],felders[7],felders[8],felders[9],felders[10],felders[11],
+ 0.0798314528280196046351426864486400322758737630423413945356284* dT,
+ -0.0520329686800603076514949887612959068721311443881683526937298* dT,
+ -0.0576954146168548881732784355283433509066159287152968723021864* dT,
+ 0.194781915712104164976306262147382871156142921354409364738090 * dT,
+ 0.145384923188325069727524825977071194859203467568236523866582 * dT,
+ -0.0782942710351670777553986729725692447252077047239160551335016* dT,
+ -0.114503299361098912184303164290554670970133218405658122674674 * dT);
+ felders[12].berechneAbleitungen(dT/2,dX,iDT,iDX,pDNMax);
+
+ if pruefeMaxDT(12,mDT,dT) then
+ continue;
+
+ felders[13].liKo(felders[aktuelleFelder],felders[aktuelleFelder],felders[4],felders[5],felders[6],felders[7],felders[8],felders[9],felders[10],felders[11],felders[12],
+ 0.985115610164857280120041500306517278413646677314195559520529 * dT,
+ 0.330885963040722183948884057658753173648240154838402033448632 * dT,
+ 0.489662957309450192844507011135898201178015478433790097210790 * dT,
+ -1.37896486574843567582112720930751902353904327148559471526397 * dT,
+ -0.861164195027635666673916999665534573351026060987427093314412 * dT,
+ 5.78428813637537220022999785486578436006872789689499172601856 * dT,
+ 3.28807761985103566890460615937314805477268252903342356581925 * dT,
+ -2.38633905093136384013422325215527866148401465975954104585807 * dT,
+ -3.25479342483643918654589367587788726747711504674780680269911 * dT,
+ -2.16343541686422982353954211300054820889678036420109999154887 * dT);
+ felders[13].berechneAbleitungen(dT/2,dX,iDT,iDX,pDNMax);
+
+ if pruefeMaxDT(13,mDT,dT) then
+ continue;
+
+ felders[14].liKo(felders[aktuelleFelder],felders[aktuelleFelder],felders[3],felders[4],felders[6],felders[7],felders[8],felders[9],felders[10],felders[11],felders[12],felders[13],
+ 0.895080295771632891049613132336585138148156279241561345991710 * dT,
+ 0.197966831227192369068141770510388793370637287463360401555746 * dT,
+ -0.0729547847313632629185146671595558023015011608914382961421311* dT,
+ -0.851236239662007619739049371445966793289359722875702227166105 * dT,
+ 0.398320112318533301719718614174373643336480918103773904231856 * dT,
+ 3.63937263181035606029412920047090044132027387893977804176229 * dT,
+ 1.54822877039830322365301663075174564919981736348973496313065 * dT,
+ -2.12221714704053716026062427460427261025318461146260124401561 * dT,
+ -1.58350398545326172713384349625753212757269188934434237975291 * dT,
+ -1.71561608285936264922031819751349098912615880827551992973034 * dT,
+ -0.0244036405750127452135415444412216875465593598370910566069132* dT);
+ felders[14].berechneAbleitungen(dT/2,dX,iDT,iDX,pDNMax);
+
+ if pruefeMaxDT(14,mDT,dT) then
+ continue;
+
+ felders[15].liKo(felders[aktuelleFelder],felders[aktuelleFelder],felders[2],felders[5],felders[7],felders[13],felders[14],
+ -0.915176561375291440520015019275342154318951387664369720564660 * dT,
+ 1.45453440217827322805250021715664459117622483736537873607016 * dT,
+ -0.777333643644968233538931228575302137803351053629547286334469 * dT,
+ -0.0910895662155176069593203555807484200111889091770101799647985* dT,
+ 0.0910895662155176069593203555807484200111889091770101799647985* dT,
+ 0.777333643644968233538931228575302137803351053629547286334469 * dT);
+ felders[15].berechneAbleitungen(dT/2,dX,iDT,iDX,pDNMax);
+
+ if pruefeMaxDT(15,mDT,dT) then
+ continue;
+
+ felders[16].liKo(felders[aktuelleFelder],felders[aktuelleFelder],felders[3],felders[15],
+ 0.1 * dT,
+ -0.157178665799771163367058998273128921867183754126709419409654 * dT,
+ 0.157178665799771163367058998273128921867183754126709419409654 * dT);
+ felders[16].berechneAbleitungen(dT/2,dX,iDT,iDX,pDNMax);
+
+ if pruefeMaxDT(16,mDT,dT) then
+ continue;
+
+ felders[17].liKo(felders[aktuelleFelder],felders[aktuelleFelder],felders[2],felders[3],felders[5],felders[6],felders[7],felders[8],felders[9],
+ felders[10],felders[11],felders[12],felders[13],felders[14],felders[15],felders[16],
+ 0.181781300700095283888472062582262379650443831463199521664945 * dT,
+ 0.675 * dT,
+ 0.342758159847189839942220553413850871742338734703958919937260 * dT,
+ 0.259111214548322744512977076191767379267783684543182428778156 * dT,
+ -0.358278966717952089048961276721979397739750634673268802484271 * dT,
+ -1.04594895940883306095050068756409905131588123172378489286080 * dT,
+ 0.930327845415626983292300564432428777137601651182965794680397 * dT,
+ 1.77950959431708102446142106794824453926275743243327790536000 * dT,
+ 0.1 * dT,
+ -0.282547569539044081612477785222287276408489375976211189952877 * dT,
+ -0.159327350119972549169261984373485859278031542127551931461821 * dT,
+ -0.145515894647001510860991961081084111308650130578626404945571 * dT,
+ -0.259111214548322744512977076191767379267783684543182428778156 * dT,
+ -0.342758159847189839942220553413850871742338734703958919937260 * dT,
+ -0.675 * dT);
+ felders[17].berechneAbleitungen(dT/2,dX,iDT,iDX,pDNMax);
+
+ if pruefeMaxDT(17,mDT,dT) then
+ continue;
+
+ felders[1-aktuelleFelder].liKo(
+ felders[aktuelleFelder],
+ felders[aktuelleFelder],
+ felders[2],
+ felders[3],
+ felders[5],
+ felders[7],
+ felders[9],
+ felders[10],
+ felders[11],
+ felders[12],
+ felders[13],
+ felders[14],
+ felders[15],
+ felders[16],
+ felders[17],
+ dT/30,
+ dT/40,
+ dT/30,
+ dT/20,
+ dT/25,
+ 0.189237478148923490158306404106012326238162346948625830327194 * dT,
+ 0.277429188517743176508360262560654340428504319718040836339472 * dT,
+ 0.277429188517743176508360262560654340428504319718040836339472 * dT,
+ 0.189237478148923490158306404106012326238162346948625830327194 * dT,
+ -dT/25,
+ -dT/20,
+ -dT/30,
+ -dT/40,
+ -dT/30
+ );
+ end;
+ zfRungeKuttaZwoelf: begin // Quelle: http://sce.uhcl.edu/rungekutta/rk1210.txt
+ felders[2].liKo(felders[aktuelleFelder],felders[aktuelleFelder],dT*0.2);
+ felders[2].berechneAbleitungen(dT/2,dX,iDT,iDX,pDNMax);
+
+ if pruefeMaxDT(2,mDT,dT) then
+ continue;
+
+ felders[3].liKo(felders[aktuelleFelder],felders[aktuelleFelder],felders[2],
+ -0.216049382716049382716049382716049382716049382716049382716049 * dT,
+ 0.771604938271604938271604938271604938271604938271604938271605 * dT);
+ felders[3].berechneAbleitungen(dT/2,dX,iDT,iDX,pDNMax);
+
+ if pruefeMaxDT(3,mDT,dT) then
+ continue;
+
+ felders[4].liKo(felders[aktuelleFelder],felders[aktuelleFelder],felders[3],
+ dT/4.8,
+ 0.625 * dT);
+ felders[4].berechneAbleitungen(dT/2,dX,iDT,iDX,pDNMax);
+
+ if pruefeMaxDT(4,mDT,dT) then
+ continue;
+
+ felders[5].liKo(felders[aktuelleFelder],felders[aktuelleFelder],felders[3],felders[4],
+ 0.193333333333333333333333333333333333333333333333333333333333 * dT,
+ 0.22 * dT,
+ -0.08 * dT);
+ felders[5].berechneAbleitungen(dT/2,dX,iDT,iDX,pDNMax);
+
+ if pruefeMaxDT(5,mDT,dT) then
+ continue;
+
+ felders[6].liKo(felders[aktuelleFelder],felders[aktuelleFelder],felders[4],felders[5],
+ 0.1 * dT,
+ 0.4 * dT,
+ 0.5 * dT);
+ felders[6].berechneAbleitungen(dT/2,dX,iDT,iDX,pDNMax);
+
+ if pruefeMaxDT(6,mDT,dT) then
+ continue;
+
+ felders[7].liKo(felders[aktuelleFelder],felders[aktuelleFelder],felders[4],felders[5],felders[6],
+ 0.103364471650010477570395435690481791543342708330349879244197 * dT,
+ 0.124053094528946761061581889237115328211074784955180298044074 * dT,
+ 0.483171167561032899288836480451962508724109257517289177302380 * dT,
+ -0.0387530245694763252085681443767620580395733302341368038804290* dT);
+ felders[7].berechneAbleitungen(dT/2,dX,iDT,iDX,pDNMax);
+
+ if pruefeMaxDT(7,mDT,dT) then
+ continue;
+
+ felders[8].liKo(felders[aktuelleFelder],felders[aktuelleFelder],felders[5],felders[6],felders[7],
+ 0.124038261431833324081904585980175168140024670698633612292480 * dT,
+ 0.217050632197958486317846256953159942875916353757734167684657 * dT,
+ 0.0137455792075966759812907801835048190594443990939408530842918* dT,
+ -0.0661095317267682844455831341498149531672668252085016565917546* dT);
+ felders[8].berechneAbleitungen(dT/2,dX,iDT,iDX,pDNMax);
+
+ if pruefeMaxDT(8,mDT,dT) then
+ continue;
+
+ felders[9].liKo(felders[aktuelleFelder],felders[aktuelleFelder],felders[6],felders[7],felders[8],
+ 0.0914774894856882983144991846980432197088832099976660100090486 * dT,
+ -0.00544348523717469689965754944144838611346156873847009178068318* dT,
+ 0.0680716801688453518578515120895103863112751730758794372203952 * dT,
+ 0.408394315582641046727306852653894780093303185664924644551239 * dT);
+ felders[9].berechneAbleitungen(dT/2,dX,iDT,iDX,pDNMax);
+
+ if pruefeMaxDT(9,mDT,dT) then
+ continue;
+
+ felders[10].liKo(felders[aktuelleFelder],felders[aktuelleFelder],felders[6],felders[7],felders[8],felders[9],
+ 0.0890013652502551018954509355423841780143232697403434118692699 * dT,
+ 0.00499528226645532360197793408420692800405891149406814091955810* dT,
+ 0.397918238819828997341739603001347156083435060931424970826304 * dT,
+ 0.427930210752576611068192608300897981558240730580396406312359 * dT,
+ -0.0865117637557827005740277475955029103267246394128995965941585 * dT);
+ felders[10].berechneAbleitungen(dT/2,dX,iDT,iDX,pDNMax);
+
+ if pruefeMaxDT(10,mDT,dT) then
+ continue;
+
+ felders[11].liKo(felders[aktuelleFelder],felders[aktuelleFelder],felders[6],felders[7],felders[8],felders[9],felders[10],
+ 0.0695087624134907543112693906409809822706021061685544615255758 * dT,
+ 0.129146941900176461970759579482746551122871751501482634045487 * dT,
+ 1.53073638102311295076342566143214939031177504112433874313011 * dT,
+ 0.577874761129140052546751349454576715334892100418571882718036 * dT,
+ -0.951294772321088980532340837388859453930924498799228648050949 * dT,
+ -0.408276642965631951497484981519757463459627174520978426909934 * dT);
+ felders[11].berechneAbleitungen(dT/2,dX,iDT,iDX,pDNMax);
+
+ if pruefeMaxDT(11,mDT,dT) then
+ continue;
+
+ felders[12].liKo(felders[aktuelleFelder],felders[aktuelleFelder],felders[6],felders[7],felders[8],felders[9],felders[10],felders[11],
+ 0.0444861403295135866269453507092463581620165501018684152933313 * dT,
+ -0.00380476867056961731984232686574547203016331563626856065717964 * dT,
+ 0.0106955064029624200721262602809059154469206077644957399593972 * dT,
+ 0.0209616244499904333296674205928919920806734650660039898074652 * dT,
+ -0.0233146023259321786648561431551978077665337818756053603898847 * dT,
+ 0.00263265981064536974369934736325334761174975280887405725010964 * dT,
+ 0.00315472768977025060103545855572111407955208306374459723959783 * dT);
+ felders[12].berechneAbleitungen(dT/2,dX,iDT,iDX,pDNMax);
+
+ if pruefeMaxDT(12,mDT,dT) then
+ continue;
+
+ felders[13].liKo(felders[aktuelleFelder],felders[aktuelleFelder],felders[9],felders[10],felders[11],felders[12],
+ 0.0194588815119755475588801096525317761242073762016273186231215 * dT,
+ 0.0000678512949171812509306121653452367476194364781259165332321534 * dT,
+ -0.0000429795859049273623271005330230162343568863387724883603675550 * dT,
+ 0.0000176358982260285155407485928953302139937553442829975734148981 * dT,
+ 0.0653866627415027051009595231385181033549511358787382098351924 * dT);
+ felders[13].berechneAbleitungen(dT/2,dX,iDT,iDX,pDNMax);
+
+ if pruefeMaxDT(13,mDT,dT) then
+ continue;
+
+ felders[14].liKo(felders[aktuelleFelder],felders[aktuelleFelder],felders[9],felders[10],felders[11],felders[12],felders[13],
+ 0.206836835664277105916828174798272361078909196043446411598231 * dT,
+ 0.0166796067104156472828045866664696450306326505094792505215514 * dT,
+ -0.00879501563200710214457024178249986591130234990219959208704979 * dT,
+ 0.00346675455362463910824462315246379209427513654098596403637231 * dT,
+ -0.861264460105717678161432562258351242030270498966891201799225 * dT,
+ 0.908651882074050281096239478469262145034957129939256789178785 * dT);
+ felders[14].berechneAbleitungen(dT/2,dX,iDT,iDX,pDNMax);
+
+ if pruefeMaxDT(14,mDT,dT) then
+ continue;
+
+ felders[15].liKo(felders[aktuelleFelder],felders[aktuelleFelder],felders[9],felders[10],felders[11],felders[12],felders[13],felders[14],
+ 0.0203926084654484010091511314676925686038504449562413004562382 * dT,
+ 0.0869469392016685948675400555583947505833954460930940959577347 * dT,
+ -0.0191649630410149842286436611791405053287170076602337673587681 * dT,
+ 0.00655629159493663287364871573244244516034828755253746024098838 * dT,
+ 0.0987476128127434780903798528674033899738924968006632201445462 * dT,
+ 0.00535364695524996055083260173615567408717110247274021056118319 * dT,
+ 0.301167864010967916837091303817051676920059229784957479998077 * dT);
+ felders[15].berechneAbleitungen(dT/2,dX,iDT,iDX,pDNMax);
+
+ if pruefeMaxDT(15,mDT,dT) then
+ continue;
+
+ felders[16].liKo(felders[aktuelleFelder],felders[aktuelleFelder],felders[9],felders[10],felders[11],felders[12],felders[13],felders[14],felders[15],
+ 0.228410433917778099547115412893004398779136994596948545722283 * dT,
+ -0.498707400793025250635016567442511512138603770959682292383042 * dT,
+ 0.134841168335724478552596703792570104791700727205981058201689 * dT,
+ -0.0387458244055834158439904226924029230935161059142806805674360 * dT,
+ -1.27473257473474844240388430824908952380979292713250350199641 * dT,
+ 1.43916364462877165201184452437038081875299303577911839630524 * dT,
+ -0.214007467967990254219503540827349569639028092344812795499026 * dT,
+ 0.958202417754430239892724139109781371059908874605153648768037 * dT);
+ felders[16].berechneAbleitungen(dT/2,dX,iDT,iDX,pDNMax);
+
+ if pruefeMaxDT(16,mDT,dT) then
+ continue;
+
+ felders[17].liKo(felders[aktuelleFelder],felders[aktuelleFelder],felders[9],felders[10],felders[11],felders[12],felders[13],felders[14],felders[15],felders[16],
+ 2.00222477655974203614249646012506747121440306225711721209798 * dT,
+ 2.06701809961524912091954656438138595825411859673341600679555 * dT,
+ 0.623978136086139541957471279831494466155292316167021080663140 * dT,
+ -0.0462283685500311430283203554129062069391947101880112723185773 * dT,
+ -8.84973288362649614860075246727118949286604835457092701094630 * dT,
+ 7.74257707850855976227437225791835589560188590785037197433615 * dT,
+ -0.588358519250869210993353314127711745644125882130941202896436 * dT,
+ -1.10683733362380649395704708016953056176195769617014899442903 * dT,
+ -0.929529037579203999778397238291233214220788057511899747507074 * dT);
+ felders[17].berechneAbleitungen(dT/2,dX,iDT,iDX,pDNMax);
+
+ if pruefeMaxDT(17,mDT,dT) then
+ continue;
+
+ felders[18].liKo(felders[aktuelleFelder],felders[aktuelleFelder],felders[6],felders[7],felders[8],felders[9],
+ felders[10],felders[11],felders[12],felders[13],felders[14],felders[15],felders[16],felders[17],
+ 3.13789533412073442934451608989888796808161259330322100268310 * dT,
+ 0.129146941900176461970759579482746551122871751501482634045487 * dT,
+ 1.53073638102311295076342566143214939031177504112433874313011 * dT,
+ 0.577874761129140052546751349454576715334892100418571882718036 * dT,
+ 5.42088263055126683050056840891857421941300558851862156403363 * dT,
+ 0.231546926034829304872663800877643660904880180835945693836936 * dT,
+ 0.0759292995578913560162301311785251873561801342333194895292058 * dT,
+ -12.3729973380186513287414553402595806591349822617535905976253 * dT,
+ 9.85455883464769543935957209317369202080367765721777101906955 * dT,
+ 0.0859111431370436529579357709052367772889980495122329601159540 * dT,
+ -5.65242752862643921117182090081762761180392602644189218673969 * dT,
+ -1.94300935242819610883833776782364287728724899124166920477873 * dT,
+ -0.128352601849404542018428714319344620742146491335612353559923 * dT);
+ felders[18].berechneAbleitungen(dT/2,dX,iDT,iDX,pDNMax);
+
+ if pruefeMaxDT(18,mDT,dT) then
+ continue;
+
+ felders[19].liKo(felders[aktuelleFelder],felders[aktuelleFelder],felders[6],felders[7],felders[8],felders[9],
+ felders[10],felders[11],felders[12],felders[13],felders[14],felders[15],felders[16],felders[17],felders[18],
+ 1.38360054432196014878538118298167716825163268489922519995564 * dT,
+ 0.00499528226645532360197793408420692800405891149406814091955810 * dT,
+ 0.397918238819828997341739603001347156083435060931424970826304 * dT,
+ 0.427930210752576611068192608300897981558240730580396406312359 * dT,
+ -1.30299107424475770916551439123047573342071475998399645982146 * dT,
+ 0.661292278669377029097112528107513072734573412294008071500699 * dT,
+ -0.144559774306954349765969393688703463900585822441545655530145 * dT,
+ -6.96576034731798203467853867461083919356792248105919255460819 * dT,
+ 6.65808543235991748353408295542210450632193197576935120716437 * dT,
+ -1.66997375108841486404695805725510845049807969199236227575796 * dT,
+ 2.06413702318035263832289040301832647130604651223986452170089 * dT,
+ -0.674743962644306471862958129570837723192079875998405058648892 * dT,
+ -0.00115618834794939500490703608435907610059605754935305582045729 * dT,
+ -0.00544057908677007389319819914241631024660726585015012485938593 * dT);
+ felders[19].berechneAbleitungen(dT/2,dX,iDT,iDX,pDNMax);
+
+ if pruefeMaxDT(19,mDT,dT) then
+ continue;
+
+ felders[20].liKo(felders[aktuelleFelder],felders[aktuelleFelder],felders[5],felders[6],felders[7],felders[9],
+ felders[10],felders[11],felders[12],felders[13],felders[14],felders[15],felders[16],felders[17],felders[18],felders[19],
+ 0.951236297048287669474637975894973552166903378983475425758226 * dT,
+ 0.217050632197958486317846256953159942875916353757734167684657 * dT,
+ 0.0137455792075966759812907801835048190594443990939408530842918 * dT,
+ -0.0661095317267682844455831341498149531672668252085016565917546 * dT,
+ 0.152281696736414447136604697040747131921486432699422112099617 * dT,
+ -0.337741018357599840802300793133998004354643424457539667670080 * dT,
+ -0.0192825981633995781534949199286824400469353110630787982121133 * dT,
+ -3.68259269696866809932409015535499603576312120746888880201882 * dT,
+ 3.16197870406982063541533528419683854018352080342887002331312 * dT,
+ -0.370462522106885290716991856022051125477943482284080569177386 * dT,
+ -0.0514974200365440434996434456698127984941168616474316871020314 * dT,
+ -0.000829625532120152946787043541792848416659382675202720677536554 * dT,
+ 0.00000279801041419278598986586589070027583961355402640879503213503 * dT,
+ 0.0418603916412360287969841020776788461794119440689356178942252 * dT,
+ 0.279084255090877355915660874555379649966282167560126269290222 * dT);
+ felders[20].berechneAbleitungen(dT/2,dX,iDT,iDX,pDNMax);
+
+ if pruefeMaxDT(20,mDT,dT) then
+ continue;
+
+ felders[21].liKo(felders[aktuelleFelder],felders[aktuelleFelder],felders[4],felders[5],felders[6],felders[8],
+ felders[10],felders[11],felders[18],felders[19],felders[20],
+ 0.103364471650010477570395435690481791543342708330349879244197 * dT,
+ 0.124053094528946761061581889237115328211074784955180298044074 * dT,
+ 0.483171167561032899288836480451962508724109257517289177302380 * dT,
+ -0.0387530245694763252085681443767620580395733302341368038804290 * dT,
+ -0.438313820361122420391059788940960176420682836652600698580091 * dT,
+ -0.218636633721676647685111485017151199362509373698288330593486 * dT,
+ -0.0312334764394719229981634995206440349766174759626578122323015 * dT,
+ 0.0312334764394719229981634995206440349766174759626578122323015 * dT,
+ 0.218636633721676647685111485017151199362509373698288330593486 * dT,
+ 0.438313820361122420391059788940960176420682836652600698580091 * dT);
+ felders[21].berechneAbleitungen(dT/2,dX,iDT,iDX,pDNMax);
+
+ if pruefeMaxDT(21,mDT,dT) then
+ continue;
+
+ felders[22].liKo(felders[aktuelleFelder],felders[aktuelleFelder],felders[3],felders[4],felders[7],felders[8],
+ felders[10],felders[11],felders[18],felders[19],felders[20],felders[21],
+ 0.193333333333333333333333333333333333333333333333333333333333 * dT,
+ 0.22 * dT,
+ -0.08 * dT,
+ 0.0984256130499315928152900286856048243348202521491288575952143 * dT,
+ -0.196410889223054653446526504390100417677539095340135532418849 * dT,
+ 0.436457930493068729391826122587949137609670676712525034763317 * dT,
+ 0.0652613721675721098560370939805555698350543810708414716730270 * dT,
+ -0.0652613721675721098560370939805555698350543810708414716730270 * dT,
+ -0.436457930493068729391826122587949137609670676712525034763317 * dT,
+ 0.196410889223054653446526504390100417677539095340135532418849 * dT,
+ -0.0984256130499315928152900286856048243348202521491288575952143 * dT);
+ felders[22].berechneAbleitungen(dT/2,dX,iDT,iDX,pDNMax);
+
+ if pruefeMaxDT(22,mDT,dT) then
+ continue;
+
+ felders[23].liKo(felders[aktuelleFelder],felders[aktuelleFelder],felders[2],felders[5],felders[7],felders[21],
+ felders[22],
+ -0.216049382716049382716049382716049382716049382716049382716049 * dT,
+ 0.771604938271604938271604938271604938271604938271604938271605 * dT,
+ -0.666666666666666666666666666666666666666666666666666666666667 * dT,
+ -0.390696469295978451446999802258495981249099665294395945559163 * dT,
+ 0.390696469295978451446999802258495981249099665294395945559163 * dT,
+ 0.666666666666666666666666666666666666666666666666666666666667 * dT);
+ felders[23].berechneAbleitungen(dT/2,dX,iDT,iDX,pDNMax);
+
+ if pruefeMaxDT(23,mDT,dT) then
+ continue;
+
+ felders[24].liKo(felders[aktuelleFelder],felders[aktuelleFelder],felders[3],felders[23],
+ 0.2 * dT,
+ -0.164609053497942386831275720164609053497942386831275720164609 * dT,
+ 0.164609053497942386831275720164609053497942386831275720164609 * dT);
+ felders[24].berechneAbleitungen(dT/2,dX,iDT,iDX,pDNMax);
+
+ if pruefeMaxDT(24,mDT,dT) then
+ continue;
+
+ felders[25].liKo(felders[aktuelleFelder],felders[aktuelleFelder],felders[2],felders[3],felders[5],felders[7],
+ felders[8],felders[9],felders[10],felders[11],felders[12],felders[13],felders[14],felders[15],felders[16],
+ felders[17],felders[18],felders[19],felders[20],felders[21],felders[22],felders[23],felders[24],
+ 1.47178724881110408452949550989023611293535315518571691939396 * dT,
+ 0.7875 * dT,
+ 0.421296296296296296296296296296296296296296296296296296296296 * dT,
+ 0.291666666666666666666666666666666666666666666666666666666667 * dT,
+ 0.348600717628329563206854421629657569274689947367847465753757 * dT,
+ 0.229499544768994849582890233710555447073823569666506700662510 * dT,
+ 5.79046485790481979159831978177003471098279506036722411333192 * dT,
+ 0.418587511856506868874073759426596207226461447604248151080016 * dT,
+ 0.307039880222474002649653817490106690389251482313213999386651 * dT,
+ -4.68700905350603332214256344683853248065574415794742040470287 * dT,
+ 3.13571665593802262152038152399873856554395436199962915429076 * dT,
+ 1.40134829710965720817510506275620441055845017313930508348898 * dT,
+ -5.52931101439499023629010306005764336421276055777658156400910 * dT,
+ -0.853138235508063349309546894974784906188927508039552519557498 * dT,
+ 0.103575780373610140411804607167772795518293914458500175573749 * dT,
+ -0.140474416950600941142546901202132534870665923700034957196546 * dT,
+ -0.418587511856506868874073759426596207226461447604248151080016 * dT,
+ -0.229499544768994849582890233710555447073823569666506700662510 * dT,
+ -0.348600717628329563206854421629657569274689947367847465753757 * dT,
+ -0.291666666666666666666666666666666666666666666666666666666667 * dT,
+ -0.421296296296296296296296296296296296296296296296296296296296 * dT,
+ -0.7875 * dT);
+ felders[25].berechneAbleitungen(dT/2,dX,iDT,iDX,pDNMax);
+
+ if pruefeMaxDT(25,mDT,dT) then
+ continue;
+
+
+ felders[1-aktuelleFelder].liKo(
+ felders[aktuelleFelder],
+ felders[aktuelleFelder],
+ felders[2],
+ felders[3],
+ felders[5],
+ felders[7],
+ felders[8],
+ felders[10],
+ felders[11],
+ felders[13],
+ felders[14],
+ felders[15],
+ felders[16],
+ felders[17],
+ felders[18],
+ felders[19],
+ felders[20],
+ felders[21],
+ felders[22],
+ felders[23],
+ felders[24],
+ felders[25],
+ 0.0238095238095238095238095238095238095238095238095238095238095 * dT,
+ 0.0234375 * dT,
+ 0.03125 * dT,
+ 0.0416666666666666666666666666666666666666666666666666666666667 * dT,
+ 0.05 * dT,
+ 0.05 * dT,
+ 0.1 * dT,
+ 0.0714285714285714285714285714285714285714285714285714285714286 * dT,
+ 0.138413023680782974005350203145033146748813640089941234591267 * dT,
+ 0.215872690604931311708935511140681138965472074195773051123019 * dT,
+ 0.243809523809523809523809523809523809523809523809523809523810 * dT,
+ 0.215872690604931311708935511140681138965472074195773051123019 * dT,
+ 0.138413023680782974005350203145033146748813640089941234591267 * dT,
+ -0.0714285714285714285714285714285714285714285714285714285714286 * dT,
+ -0.1 * dT,
+ -0.05 * dT,
+ -0.05 * dT,
+ -0.0416666666666666666666666666666666666666666666666666666666667 * dT,
+ -0.03125 * dT,
+ -0.0234375 * dT,
+ 0.0238095238095238095238095238095238095238095238095238095238095 * dT
+ );
+ end;
+ zfRungeKuttaVierzehn: begin // Quelle: http://sce.uhcl.edu/rungekutta/rk1412.txt
+ end;
end{of case};
break;
@@ -1205,6 +1704,18 @@ begin
Zeitverfahren:=zfRungeKuttaVier;
continue;
end;
+ if s='runge-Kutta-10' then begin
+ Zeitverfahren:=zfRungeKuttaZehn;
+ continue;
+ end;
+ if s='runge-Kutta-12' then begin
+ Zeitverfahren:=zfRungeKuttaZwoelf;
+ continue;
+ end;
+ if s='runge-Kutta-14' then begin
+ Zeitverfahren:=zfRungeKuttaVierzehn;
+ continue;
+ end;
if s='euler-Vorwärts' then begin
Zeitverfahren:=zfEulerVorwaerts;
continue;
@@ -1372,6 +1883,12 @@ begin
pro.schreibe('Iteration mittels Runge-Kutta-3/8');
zfRungeKuttaVier:
pro.schreibe('Iteration mittels Runge-Kutta-4');
+ zfRungeKuttaZehn:
+ pro.schreibe('Iteration mittels Runge-Kutta-10');
+ zfRungeKuttaZwoelf:
+ pro.schreibe('Iteration mittels Runge-Kutta-12');
+ zfRungeKuttaVierzehn:
+ pro.schreibe('Iteration mittels Runge-Kutta-14');
else
pro.schreibe('Iteration mittels unbekanntem Verfahren');
end{of case};
diff --git a/Plasmapropagation.lpi b/Plasmapropagation.lpi
index 28ad15a..c722825 100644
--- a/Plasmapropagation.lpi
+++ b/Plasmapropagation.lpi
@@ -32,7 +32,7 @@
<LaunchingApplication PathPlusParams="/usr/bin/screen -T 'Lazarus Run Output' -e $(LazarusDir)/tools/runwait.sh $(TargetCmdLine)"/>
</local>
</RunParams>
- <Units Count="4">
+ <Units Count="5">
<Unit0>
<Filename Value="Plasmapropagation.lpr"/>
<IsPartOfProject Value="True"/>
@@ -49,6 +49,10 @@
<Filename Value="input.plap"/>
<IsPartOfProject Value="True"/>
</Unit3>
+ <Unit4>
+ <Filename Value="linearkombination.inc"/>
+ <IsPartOfProject Value="True"/>
+ </Unit4>
</Units>
</ProjectOptions>
<CompilerOptions>
diff --git a/Plasmapropagation.lps b/Plasmapropagation.lps
index e1cfd0c..3a563d0 100644
--- a/Plasmapropagation.lps
+++ b/Plasmapropagation.lps
@@ -3,25 +3,25 @@
<ProjectSession>
<Version Value="9"/>
<BuildModes Active="Default"/>
- <Units Count="12">
+ <Units Count="13">
<Unit0>
<Filename Value="Plasmapropagation.lpr"/>
<IsPartOfProject Value="True"/>
- <TopLine Value="11"/>
<CursorPos X="34" Y="11"/>
- <UsageCount Value="164"/>
+ <UsageCount Value="173"/>
<Loaded Value="True"/>
</Unit0>
<Unit1>
<Filename Value="Physikunit.pas"/>
<IsPartOfProject Value="True"/>
+ <IsVisibleTab Value="True"/>
<EditorIndex Value="1"/>
- <TopLine Value="76"/>
- <CursorPos X="60" Y="110"/>
- <FoldState Value=" T3kf0-4 pigkU0A5 pjDjb084]9Ija0M3]94jY09[I43jO067[I5S0J1]9akG0U2 poOpJ0D2 T0\1Pc071'"/>
- <UsageCount Value="105"/>
+ <TopLine Value="691"/>
+ <CursorPos X="46" Y="802"/>
+ <FoldState Value=" T3lM0-4 pigkU0A5 pjDjb084]9Ija09[943kG07[944jN0#nP p0xM0U2 pogpb0D2 T0~dPc071V"/>
+ <UsageCount Value="114"/>
<Bookmarks Count="1">
- <Item0 Y="1031"/>
+ <Item0 Y="1530"/>
</Bookmarks>
<Loaded Value="True"/>
</Unit1>
@@ -31,23 +31,22 @@
<EditorIndex Value="-1"/>
<TopLine Value="20"/>
<CursorPos X="22" Y="31"/>
- <UsageCount Value="67"/>
+ <UsageCount Value="76"/>
</Unit2>
<Unit3>
<Filename Value="input.plap"/>
<IsPartOfProject Value="True"/>
- <IsVisibleTab Value="True"/>
- <EditorIndex Value="2"/>
- <CursorPos Y="5"/>
- <UsageCount Value="66"/>
+ <EditorIndex Value="3"/>
+ <CursorPos X="18" Y="4"/>
+ <UsageCount Value="75"/>
<Loaded Value="True"/>
<DefaultSyntaxHighlighter Value="None"/>
</Unit3>
<Unit4>
<Filename Value="input.epost"/>
- <EditorIndex Value="3"/>
+ <EditorIndex Value="4"/>
<CursorPos X="32" Y="21"/>
- <UsageCount Value="66"/>
+ <UsageCount Value="70"/>
<Loaded Value="True"/>
<DefaultSyntaxHighlighter Value="None"/>
</Unit4>
@@ -57,14 +56,14 @@
<TopLine Value="53"/>
<CursorPos Y="53"/>
<FoldState Value=" T3i905B pj0jV034 piaj60U2-"/>
- <UsageCount Value="20"/>
+ <UsageCount Value="19"/>
</Unit5>
<Unit6>
<Filename Value="../units/lowlevelunit.pas"/>
<EditorIndex Value="-1"/>
<TopLine Value="4"/>
<CursorPos X="86" Y="23"/>
- <UsageCount Value="10"/>
+ <UsageCount Value="9"/>
</Unit6>
<Unit7>
<Filename Value="../units/mystringlistunit.pas"/>
@@ -72,155 +71,165 @@
<TopLine Value="367"/>
<CursorPos X="17" Y="390"/>
<FoldState Value=" T3i3075 piZjD0WQ"/>
- <UsageCount Value="11"/>
+ <UsageCount Value="10"/>
</Unit7>
<Unit8>
<Filename Value="../epost/werteunit.pas"/>
<EditorIndex Value="-1"/>
<TopLine Value="950"/>
<CursorPos X="30" Y="1054"/>
- <UsageCount Value="8"/>
+ <UsageCount Value="7"/>
</Unit8>
<Unit9>
<Filename Value="../epost/typenunit.pas"/>
<EditorIndex Value="-1"/>
<TopLine Value="347"/>
<CursorPos X="62" Y="358"/>
- <UsageCount Value="8"/>
+ <UsageCount Value="7"/>
</Unit9>
<Unit10>
<Filename Value="../units/systemunit.pas"/>
<EditorIndex Value="-1"/>
<CursorPos X="3" Y="79"/>
- <UsageCount Value="8"/>
+ <UsageCount Value="7"/>
</Unit10>
<Unit11>
<Filename Value="/usr/lib/fpc/src/rtl/inc/objpash.inc"/>
<EditorIndex Value="-1"/>
<TopLine Value="232"/>
<CursorPos X="23" Y="192"/>
- <UsageCount Value="8"/>
+ <UsageCount Value="7"/>
</Unit11>
+ <Unit12>
+ <Filename Value="linearkombination.inc"/>
+ <IsPartOfProject Value="True"/>
+ <EditorIndex Value="2"/>
+ <TopLine Value="26"/>
+ <CursorPos X="21" Y="182"/>
+ <UsageCount Value="23"/>
+ <Loaded Value="True"/>
+ </Unit12>
</Units>
<JumpHistory Count="30" HistoryIndex="29">
<Position1>
<Filename Value="Physikunit.pas"/>
- <Caret Line="121" Column="45" TopLine="98"/>
+ <Caret Line="124" Column="171" TopLine="97"/>
</Position1>
<Position2>
- <Filename Value="Physikunit.pas"/>
- <Caret Line="837" Column="13" TopLine="806"/>
+ <Filename Value="linearkombination.inc"/>
+ <Caret Line="3" Column="36"/>
</Position2>
<Position3>
<Filename Value="Physikunit.pas"/>
- <Caret Line="843" Column="10" TopLine="806"/>
+ <Caret Line="708" Column="47" TopLine="362"/>
</Position3>
<Position4>
- <Filename Value="Physikunit.pas"/>
- <Caret Line="835" Column="63" TopLine="806"/>
+ <Filename Value="linearkombination.inc"/>
+ <Caret Line="5" Column="16"/>
</Position4>
<Position5>
<Filename Value="Physikunit.pas"/>
- <Caret Line="121" Column="79" TopLine="112"/>
+ <Caret Line="590" Column="32" TopLine="377"/>
</Position5>
<Position6>
<Filename Value="Physikunit.pas"/>
- <Caret Line="861" TopLine="855"/>
+ <Caret Line="596" Column="14" TopLine="286"/>
</Position6>
<Position7>
<Filename Value="Physikunit.pas"/>
- <Caret Line="120" TopLine="120"/>
+ <Caret Line="590" TopLine="355"/>
</Position7>
<Position8>
- <Filename Value="Physikunit.pas"/>
- <Caret Line="121" Column="59" TopLine="98"/>
+ <Filename Value="linearkombination.inc"/>
+ <Caret Line="48" Column="55" TopLine="13"/>
</Position8>
<Position9>
- <Filename Value="Physikunit.pas"/>
- <Caret Line="851" TopLine="806"/>
+ <Filename Value="linearkombination.inc"/>
+ <Caret Line="82" Column="89" TopLine="45"/>
</Position9>
<Position10>
<Filename Value="Physikunit.pas"/>
- <Caret Line="911" Column="64" TopLine="879"/>
+ <Caret Line="608" Column="15" TopLine="523"/>
</Position10>
<Position11>
- <Filename Value="Physikunit.pas"/>
- <Caret Line="913" Column="16" TopLine="897"/>
+ <Filename Value="linearkombination.inc"/>
+ <Caret Line="79" Column="45" TopLine="45"/>
</Position11>
<Position12>
- <Filename Value="Physikunit.pas"/>
- <Caret Line="18" Column="77"/>
+ <Filename Value="linearkombination.inc"/>
+ <Caret Line="28"/>
</Position12>
<Position13>
- <Filename Value="Physikunit.pas"/>
- <Caret Line="785" Column="44" TopLine="674"/>
+ <Filename Value="Plasmapropagation.lpr"/>
+ <Caret Line="11" Column="40" TopLine="11"/>
</Position13>
<Position14>
<Filename Value="Physikunit.pas"/>
- <Caret Line="915" Column="23" TopLine="883"/>
+ <Caret Line="1255" TopLine="1233"/>
</Position14>
<Position15>
<Filename Value="Physikunit.pas"/>
- <Caret Line="1072" Column="34" TopLine="981"/>
+ <Caret Line="1498" Column="77" TopLine="1465"/>
</Position15>
<Position16>
<Filename Value="Physikunit.pas"/>
- <Caret Line="1119" Column="48" TopLine="1087"/>
+ <Caret Line="1281" Column="80" TopLine="1269"/>
</Position16>
<Position17>
- <Filename Value="Physikunit.pas"/>
- <Caret Line="1123" Column="42" TopLine="1091"/>
+ <Filename Value="linearkombination.inc"/>
+ <Caret Line="140" Column="19" TopLine="108"/>
</Position17>
<Position18>
<Filename Value="Physikunit.pas"/>
- <Caret Line="1291" Column="6" TopLine="1257"/>
+ <Caret Line="616" Column="14" TopLine="523"/>
</Position18>
<Position19>
<Filename Value="Physikunit.pas"/>
- <Caret Line="18" Column="77"/>
+ <Caret Line="123" Column="105" TopLine="94"/>
</Position19>
<Position20>
<Filename Value="Physikunit.pas"/>
+ <Caret Line="1299" Column="80" TopLine="1287"/>
</Position20>
<Position21>
- <Filename Value="Physikunit.pas"/>
- <Caret Line="18" Column="77"/>
+ <Filename Value="linearkombination.inc"/>
+ <Caret Line="146" Column="20" TopLine="114"/>
</Position21>
<Position22>
<Filename Value="Physikunit.pas"/>
- <Caret Line="785" Column="44" TopLine="674"/>
+ <Caret Line="622" Column="15" TopLine="502"/>
</Position22>
<Position23>
<Filename Value="Physikunit.pas"/>
- <Caret Line="915" Column="23" TopLine="883"/>
+ <Caret Line="1319" Column="80" TopLine="1311"/>
</Position23>
<Position24>
<Filename Value="Physikunit.pas"/>
- <Caret Line="1072" Column="34" TopLine="981"/>
+ <Caret Line="630" Column="15" TopLine="617"/>
</Position24>
<Position25>
<Filename Value="Physikunit.pas"/>
- <Caret Line="1123" Column="42" TopLine="1091"/>
+ <Caret Line="1443" Column="79" TopLine="1443"/>
</Position25>
<Position26>
- <Filename Value="Physikunit.pas"/>
- <Caret Line="1291" Column="21" TopLine="1259"/>
+ <Filename Value="linearkombination.inc"/>
+ <Caret Line="101" Column="39" TopLine="62"/>
</Position26>
<Position27>
- <Filename Value="Physikunit.pas"/>
- <Caret Line="891" Column="95" TopLine="872"/>
+ <Filename Value="linearkombination.inc"/>
+ <Caret Line="18" Column="50"/>
</Position27>
<Position28>
<Filename Value="Physikunit.pas"/>
- <Caret Line="88" Column="64" TopLine="64"/>
+ <Caret Line="638" Column="15" TopLine="596"/>
</Position28>
<Position29>
<Filename Value="Physikunit.pas"/>
- <Caret Line="597" TopLine="526"/>
+ <Caret Line="1519" TopLine="1497"/>
</Position29>
<Position30>
<Filename Value="Physikunit.pas"/>
- <Caret Line="811" Column="19" TopLine="778"/>
+ <Caret Line="134" Column="248" TopLine="110"/>
</Position30>
</JumpHistory>
</ProjectSession>
diff --git a/input.plap b/input.plap
index b061987..b1adc5f 100644
--- a/input.plap
+++ b/input.plap
@@ -1,7 +1,10 @@
# Parameterdatei für Plasmapropagation
allgemein
- runge-Kutta-3/8
+# runge-Kutta-14
+ runge-Kutta-12
+# runge-Kutta-10
+# runge-Kutta-3/8
# runge-Kutta-4
# euler-Vorwärts
ortsschritt 10^-2 * λ
diff --git a/linearkombination.inc b/linearkombination.inc
new file mode 100644
index 0000000..2d6a27d
--- /dev/null
+++ b/linearkombination.inc
@@ -0,0 +1,186 @@
+
+// Werte werden auf (in1 + \sum_i faki * ini') gesetzt
+
+procedure tWertePunkt.liKo(in1,in2
+{$IFDEF lkA3},in3
+{$IFDEF lkA4},in4
+{$IFDEF lkA5},in5
+{$IFDEF lkA6},in6
+{$IFDEF lkA7},in7
+{$IFDEF lkA8},in8
+{$IFDEF lkA9},in9
+{$IFDEF lkA10},in10
+{$IFDEF lkA11},in11
+{$IFDEF lkA12},in12
+{$IFDEF lkA14},in13,in14
+{$IFDEF lkA15},in15
+{$IFDEF lkA16},in16
+{$IFDEF lkA22},in17,in18,in19,in20,in21,in22
+{$IFDEF lkA23},in23
+{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}: tWertePunkt;
+fak2
+{$IFDEF lkA3},fak3
+{$IFDEF lkA4},fak4
+{$IFDEF lkA5},fak5
+{$IFDEF lkA6},fak6
+{$IFDEF lkA7},fak7
+{$IFDEF lkA8},fak8
+{$IFDEF lkA9},fak9
+{$IFDEF lkA10},fak10
+{$IFDEF lkA11},fak11
+{$IFDEF lkA12},fak12
+{$IFDEF lkA14},fak13,fak14
+{$IFDEF lkA15},fak15
+{$IFDEF lkA16},fak16
+{$IFDEF lkA22},fak17,fak18,fak19,fak20,fak21,fak22
+{$IFDEF lkA23},fak23
+{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}: extended);
+var
+ emF: tEMFeldInhalt;
+ maF: tMaterieFeldInhalt;
+ i: longint;
+begin
+(* tEMFeldInhalt = (
+ efA,efAX,efAY,efAZ,
+ efDAXDT,efDAYDT,efDAZDT,
+ efDPhiDX
+ ); *)
+ for emF:=efAX to efDPhiDX do // alles außer efA, welchen Ableitung ja nicht berechnet wurde
+ emWerte[emF,false]:=
+ in1.emWerte[emF,false]
+ + fak2 * in2.emWerte[emF,true] {$IFDEF lkA3}
+ + fak3 * in3.emWerte[emF,true] {$IFDEF lkA4}
+ + fak4 * in4.emWerte[emF,true] {$IFDEF lkA5}
+ + fak5 * in5.emWerte[emF,true] {$IFDEF lkA6}
+ + fak6 * in6.emWerte[emF,true] {$IFDEF lkA7}
+ + fak7 * in7.emWerte[emF,true] {$IFDEF lkA8}
+ + fak8 * in8.emWerte[emF,true] {$IFDEF lkA9}
+ + fak9 * in9.emWerte[emF,true] {$IFDEF lkA10}
+ + fak10 * in10.emWerte[emF,true] {$IFDEF lkA11}
+ + fak11 * in11.emWerte[emF,true] {$IFDEF lkA12}
+ + fak12 * in12.emWerte[emF,true] {$IFDEF lkA14}
+ + fak13 * in13.emWerte[emF,true]
+ + fak14 * in14.emWerte[emF,true] {$IFDEF lkA15}
+ + fak15 * in15.emWerte[emF,true] {$IFDEF lkA16}
+ + fak16 * in16.emWerte[emF,true] {$IFDEF lkA22}
+ + fak17 * in17.emWerte[emF,true]
+ + fak18 * in18.emWerte[emF,true]
+ + fak19 * in19.emWerte[emF,true]
+ + fak20 * in20.emWerte[emF,true]
+ + fak21 * in21.emWerte[emF,true]
+ + fak22 * in22.emWerte[emF,true] {$IFDEF lkA23}
+ + fak23 * in23.emWerte[emF,true]
+ {$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF};
+
+(* tMaterieFeldInhalt = (
+ mfN,mfDPsiDX,
+ mfP,mfPX,mfPY,mfPZ,
+ mfGamma,mfIGamma
+ ); *)
+ for i:=0 to length(matWerte)-1 do // siehe oben
+ for maF:=mfN to mfDPsiDX do
+ matWerte[i,maF,false]:=
+ in1.matWerte[i,maF,false]
+ + fak2 * in2.matWerte[i,maF,true] {$IFDEF lkA3}
+ + fak3 * in3.matWerte[i,maF,true] {$IFDEF lkA4}
+ + fak4 * in4.matWerte[i,maF,true] {$IFDEF lkA5}
+ + fak5 * in5.matWerte[i,maF,true] {$IFDEF lkA6}
+ + fak6 * in6.matWerte[i,maF,true] {$IFDEF lkA7}
+ + fak7 * in7.matWerte[i,maF,true] {$IFDEF lkA8}
+ + fak8 * in8.matWerte[i,maF,true] {$IFDEF lkA9}
+ + fak9 * in9.matWerte[i,maF,true] {$IFDEF lkA10}
+ + fak10 * in10.matWerte[i,maF,true] {$IFDEF lkA11}
+ + fak11 * in11.matWerte[i,maF,true] {$IFDEF lkA12}
+ + fak12 * in12.matWerte[i,maF,true] {$IFDEF lkA14}
+ + fak13 * in13.matWerte[i,maF,true]
+ + fak14 * in14.matWerte[i,maF,true] {$IFDEF lkA15}
+ + fak15 * in15.matWerte[i,maF,true] {$IFDEF lkA16}
+ + fak16 * in16.matWerte[i,maF,true] {$IFDEF lkA22}
+ + fak17 * in17.matWerte[i,maF,true]
+ + fak18 * in18.matWerte[i,maF,true]
+ + fak19 * in19.matWerte[i,maF,true]
+ + fak20 * in20.matWerte[i,maF,true]
+ + fak21 * in21.matWerte[i,maF,true]
+ + fak22 * in22.matWerte[i,maF,true] {$IFDEF lkA23}
+ + fak23 * in23.matWerte[i,maF,true]
+ {$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF};
+end;
+
+// Werte werden auf (in1 + \sum_i faki * ini') gesetzt
+
+procedure tFelder.liKo(in1,in2
+{$IFDEF lkA3},in3
+{$IFDEF lkA4},in4
+{$IFDEF lkA5},in5
+{$IFDEF lkA6},in6
+{$IFDEF lkA7},in7
+{$IFDEF lkA8},in8
+{$IFDEF lkA9},in9
+{$IFDEF lkA10},in10
+{$IFDEF lkA11},in11
+{$IFDEF lkA12},in12
+{$IFDEF lkA14},in13,in14
+{$IFDEF lkA15},in15
+{$IFDEF lkA16},in16
+{$IFDEF lkA22},in17,in18,in19,in20,in21,in22
+{$IFDEF lkA23},in23
+{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}: tFelder;
+fak2
+{$IFDEF lkA3},fak3
+{$IFDEF lkA4},fak4
+{$IFDEF lkA5},fak5
+{$IFDEF lkA6},fak6
+{$IFDEF lkA7},fak7
+{$IFDEF lkA8},fak8
+{$IFDEF lkA9},fak9
+{$IFDEF lkA10},fak10
+{$IFDEF lkA11},fak11
+{$IFDEF lkA12},fak12
+{$IFDEF lkA14},fak13,fak14
+{$IFDEF lkA15},fak15
+{$IFDEF lkA16},fak16
+{$IFDEF lkA22},fak17,fak18,fak19,fak20,fak21,fak22
+{$IFDEF lkA23},fak23
+{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}: extended);
+var
+ i: longint;
+begin
+ for i:=0 to length(inhalt)-1 do
+ inhalt[i].liKo(
+ in1.inhalt[i],in2.inhalt[i]
+ {$IFDEF lkA3},in3.inhalt[i]
+ {$IFDEF lkA4},in4.inhalt[i]
+ {$IFDEF lkA5},in5.inhalt[i]
+ {$IFDEF lkA6},in6.inhalt[i]
+ {$IFDEF lkA7},in7.inhalt[i]
+ {$IFDEF lkA8},in8.inhalt[i]
+ {$IFDEF lkA9},in9.inhalt[i]
+ {$IFDEF lkA10},in10.inhalt[i]
+ {$IFDEF lkA11},in11.inhalt[i]
+ {$IFDEF lkA12},in12.inhalt[i]
+ {$IFDEF lkA14},in13.inhalt[i],in14.inhalt[i]
+ {$IFDEF lkA15},in15.inhalt[i]
+ {$IFDEF lkA16},in16.inhalt[i]
+ {$IFDEF lkA22},in17.inhalt[i],in18.inhalt[i],in19.inhalt[i],in20.inhalt[i],in21.inhalt[i],in22.inhalt[i]
+ {$IFDEF lkA23},in23.inhalt[i]
+ {$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF},
+ fak2
+ {$IFDEF lkA3},fak3
+ {$IFDEF lkA4},fak4
+ {$IFDEF lkA5},fak5
+ {$IFDEF lkA6},fak6
+ {$IFDEF lkA7},fak7
+ {$IFDEF lkA8},fak8
+ {$IFDEF lkA9},fak9
+ {$IFDEF lkA10},fak10
+ {$IFDEF lkA11},fak11
+ {$IFDEF lkA12},fak12
+ {$IFDEF lkA14},fak13,fak14
+ {$IFDEF lkA15},fak15
+ {$IFDEF lkA16},fak16
+ {$IFDEF lkA22},fak17,fak18,fak19,fak20,fak21,fak22
+ {$IFDEF lkA23},fak23
+ {$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF}{$ENDIF});
+end;
+
+
diff --git a/rk108.txt b/rk108.txt
new file mode 100644
index 0000000..2374007
--- /dev/null
+++ b/rk108.txt
@@ -0,0 +1,187 @@
+ THE COEFFICIENTS OF RK10(8) TO 60 DIGITS
+ using the notation of Fehlberg, Bettis, Horn, et alia
+
+
+ k a[k]
+
+ 0 0.000000000000000000000000000000000000000000000000000000000000
+ 1 0.100000000000000000000000000000000000000000000000000000000000
+ 2 0.539357840802981787532485197881302436857273449701009015505500
+ 3 0.809036761204472681298727796821953655285910174551513523258250
+ 4 0.309036761204472681298727796821953655285910174551513523258250
+ 5 0.981074190219795268254879548310562080489056746118724882027805
+ 6 0.833333333333333333333333333333333333333333333333333333333333
+ 7 0.354017365856802376329264185948796742115824053807373968324184
+ 8 0.882527661964732346425501486979669075182867844268052119663791
+ 9 0.642615758240322548157075497020439535959501736363212695909875
+ 10 0.357384241759677451842924502979560464040498263636787304090125
+ 11 0.117472338035267653574498513020330924817132155731947880336209
+ 12 0.833333333333333333333333333333333333333333333333333333333333
+ 13 0.309036761204472681298727796821953655285910174551513523258250
+ 14 0.539357840802981787532485197881302436857273449701009015505500
+ 15 0.100000000000000000000000000000000000000000000000000000000000
+ 16 1.00000000000000000000000000000000000000000000000000000000000
+
+
+ k c[k]
+
+ 0 0.0333333333333333333333333333333333333333333333333333333333333
+ 1 0.0250000000000000000000000000000000000000000000000000000000000
+ 2 0.0333333333333333333333333333333333333333333333333333333333333
+ 3 0.000000000000000000000000000000000000000000000000000000000000
+ 4 0.0500000000000000000000000000000000000000000000000000000000000
+ 5 0.000000000000000000000000000000000000000000000000000000000000
+ 6 0.0400000000000000000000000000000000000000000000000000000000000
+ 7 0.000000000000000000000000000000000000000000000000000000000000
+ 8 0.189237478148923490158306404106012326238162346948625830327194
+ 9 0.277429188517743176508360262560654340428504319718040836339472
+ 10 0.277429188517743176508360262560654340428504319718040836339472
+ 11 0.189237478148923490158306404106012326238162346948625830327194
+ 12 -0.0400000000000000000000000000000000000000000000000000000000000
+ 13 -0.0500000000000000000000000000000000000000000000000000000000000
+ 14 -0.0333333333333333333333333333333333333333333333333333333333333
+ 15 -0.0250000000000000000000000000000000000000000000000000000000000
+ 16 0.0333333333333333333333333333333333333333333333333333333333333
+
+
+ k j ß[k,j]
+
+ 1 0 0.100000000000000000000000000000000000000000000000000000000000
+ 2 0 -0.915176561375291440520015019275342154318951387664369720564660
+ 2 1 1.45453440217827322805250021715664459117622483736537873607016
+ 3 0 0.202259190301118170324681949205488413821477543637878380814562
+ 3 1 0.000000000000000000000000000000000000000000000000000000000000
+ 3 2 0.606777570903354510974045847616465241464432630913635142443687
+ 4 0 0.184024714708643575149100693471120664216774047979591417844635
+ 4 1 0.000000000000000000000000000000000000000000000000000000000000
+ 4 2 0.197966831227192369068141770510388793370637287463360401555746
+ 4 3 -0.0729547847313632629185146671595558023015011608914382961421311
+ 5 0 0.0879007340206681337319777094132125475918886824944548534041378
+ 5 1 0.000000000000000000000000000000000000000000000000000000000000
+ 5 2 0.000000000000000000000000000000000000000000000000000000000000
+ 5 3 0.410459702520260645318174895920453426088035325902848695210406
+ 5 4 0.482713753678866489204726942976896106809132737721421333413261
+ 6 0 0.0859700504902460302188480225945808401411132615636600222593880
+ 6 1 0.000000000000000000000000000000000000000000000000000000000000
+ 6 2 0.000000000000000000000000000000000000000000000000000000000000
+ 6 3 0.330885963040722183948884057658753173648240154838402033448632
+ 6 4 0.489662957309450192844507011135898201178015478433790097210790
+ 6 5 -0.0731856375070850736789057580558988816340355615025188195854775
+ 7 0 0.120930449125333720660378854927668953958938996999703678812621
+ 7 1 0.000000000000000000000000000000000000000000000000000000000000
+ 7 2 0.000000000000000000000000000000000000000000000000000000000000
+ 7 3 0.000000000000000000000000000000000000000000000000000000000000
+ 7 4 0.260124675758295622809007617838335174368108756484693361887839
+ 7 5 0.0325402621549091330158899334391231259332716675992700000776101
+ 7 6 -0.0595780211817361001560122202563305121444953672762930724538856
+ 8 0 0.110854379580391483508936171010218441909425780168656559807038
+ 8 1 0.000000000000000000000000000000000000000000000000000000000000
+ 8 2 0.000000000000000000000000000000000000000000000000000000000000
+ 8 3 0.000000000000000000000000000000000000000000000000000000000000
+ 8 4 0.000000000000000000000000000000000000000000000000000000000000
+ 8 5 -0.0605761488255005587620924953655516875526344415354339234619466
+ 8 6 0.321763705601778390100898799049878904081404368603077129251110
+ 8 7 0.510485725608063031577759012285123416744672137031752354067590
+ 9 0 0.112054414752879004829715002761802363003717611158172229329393
+ 9 1 0.000000000000000000000000000000000000000000000000000000000000
+ 9 2 0.000000000000000000000000000000000000000000000000000000000000
+ 9 3 0.000000000000000000000000000000000000000000000000000000000000
+ 9 4 0.000000000000000000000000000000000000000000000000000000000000
+ 9 5 -0.144942775902865915672349828340980777181668499748506838876185
+ 9 6 -0.333269719096256706589705211415746871709467423992115497968724
+ 9 7 0.499269229556880061353316843969978567860276816592673201240332
+ 9 8 0.509504608929686104236098690045386253986643232352989602185060
+10 0 0.113976783964185986138004186736901163890724752541486831640341
+10 1 0.000000000000000000000000000000000000000000000000000000000000
+10 2 0.000000000000000000000000000000000000000000000000000000000000
+10 3 0.000000000000000000000000000000000000000000000000000000000000
+10 4 0.000000000000000000000000000000000000000000000000000000000000
+10 5 -0.0768813364203356938586214289120895270821349023390922987406384
+10 6 0.239527360324390649107711455271882373019741311201004119339563
+10 7 0.397774662368094639047830462488952104564716416343454639902613
+10 8 0.0107558956873607455550609147441477450257136782823280838547024
+10 9 -0.327769124164018874147061087350233395378262992392394071906457
+11 0 0.0798314528280196046351426864486400322758737630423413945356284
+11 1 0.000000000000000000000000000000000000000000000000000000000000
+11 2 0.000000000000000000000000000000000000000000000000000000000000
+11 3 0.000000000000000000000000000000000000000000000000000000000000
+11 4 0.000000000000000000000000000000000000000000000000000000000000
+11 5 -0.0520329686800603076514949887612959068721311443881683526937298
+11 6 -0.0576954146168548881732784355283433509066159287152968723021864
+11 7 0.194781915712104164976306262147382871156142921354409364738090
+11 8 0.145384923188325069727524825977071194859203467568236523866582
+11 9 -0.0782942710351670777553986729725692447252077047239160551335016
+11 10 -0.114503299361098912184303164290554670970133218405658122674674
+12 0 0.985115610164857280120041500306517278413646677314195559520529
+12 1 0.000000000000000000000000000000000000000000000000000000000000
+12 2 0.000000000000000000000000000000000000000000000000000000000000
+12 3 0.330885963040722183948884057658753173648240154838402033448632
+12 4 0.489662957309450192844507011135898201178015478433790097210790
+12 5 -1.37896486574843567582112720930751902353904327148559471526397
+12 6 -0.861164195027635666673916999665534573351026060987427093314412
+12 7 5.78428813637537220022999785486578436006872789689499172601856
+12 8 3.28807761985103566890460615937314805477268252903342356581925
+12 9 -2.38633905093136384013422325215527866148401465975954104585807
+12 10 -3.25479342483643918654589367587788726747711504674780680269911
+12 11 -2.16343541686422982353954211300054820889678036420109999154887
+13 0 0.895080295771632891049613132336585138148156279241561345991710
+13 1 0.000000000000000000000000000000000000000000000000000000000000
+13 2 0.197966831227192369068141770510388793370637287463360401555746
+13 3 -0.0729547847313632629185146671595558023015011608914382961421311
+13 4 0.0000000000000000000000000000000000000000000000000000000000000
+13 5 -0.851236239662007619739049371445966793289359722875702227166105
+13 6 0.398320112318533301719718614174373643336480918103773904231856
+13 7 3.63937263181035606029412920047090044132027387893977804176229
+13 8 1.54822877039830322365301663075174564919981736348973496313065
+13 9 -2.12221714704053716026062427460427261025318461146260124401561
+13 10 -1.58350398545326172713384349625753212757269188934434237975291
+13 11 -1.71561608285936264922031819751349098912615880827551992973034
+13 12 -0.0244036405750127452135415444412216875465593598370910566069132
+14 0 -0.915176561375291440520015019275342154318951387664369720564660
+14 1 1.45453440217827322805250021715664459117622483736537873607016
+14 2 0.000000000000000000000000000000000000000000000000000000000000
+14 3 0.000000000000000000000000000000000000000000000000000000000000
+14 4 -0.777333643644968233538931228575302137803351053629547286334469
+14 5 0.000000000000000000000000000000000000000000000000000000000000
+14 6 -0.0910895662155176069593203555807484200111889091770101799647985
+14 7 0.000000000000000000000000000000000000000000000000000000000000
+14 8 0.000000000000000000000000000000000000000000000000000000000000
+14 9 0.000000000000000000000000000000000000000000000000000000000000
+14 10 0.000000000000000000000000000000000000000000000000000000000000
+14 11 0.000000000000000000000000000000000000000000000000000000000000
+14 12 0.0910895662155176069593203555807484200111889091770101799647985
+14 13 0.777333643644968233538931228575302137803351053629547286334469
+15 0 0.100000000000000000000000000000000000000000000000000000000000
+15 1 0.000000000000000000000000000000000000000000000000000000000000
+15 2 -0.157178665799771163367058998273128921867183754126709419409654
+15 3 0.000000000000000000000000000000000000000000000000000000000000
+15 4 0.000000000000000000000000000000000000000000000000000000000000
+15 5 0.000000000000000000000000000000000000000000000000000000000000
+15 6 0.000000000000000000000000000000000000000000000000000000000000
+15 7 0.000000000000000000000000000000000000000000000000000000000000
+15 8 0.000000000000000000000000000000000000000000000000000000000000
+15 9 0.000000000000000000000000000000000000000000000000000000000000
+15 10 0.000000000000000000000000000000000000000000000000000000000000
+15 11 0.000000000000000000000000000000000000000000000000000000000000
+15 12 0.000000000000000000000000000000000000000000000000000000000000
+15 13 0.000000000000000000000000000000000000000000000000000000000000
+15 14 0.157178665799771163367058998273128921867183754126709419409654
+16 0 0.181781300700095283888472062582262379650443831463199521664945
+16 1 0.675000000000000000000000000000000000000000000000000000000000
+16 2 0.342758159847189839942220553413850871742338734703958919937260
+16 3 0.000000000000000000000000000000000000000000000000000000000000
+16 4 0.259111214548322744512977076191767379267783684543182428778156
+16 5 -0.358278966717952089048961276721979397739750634673268802484271
+16 6 -1.04594895940883306095050068756409905131588123172378489286080
+16 7 0.930327845415626983292300564432428777137601651182965794680397
+16 8 1.77950959431708102446142106794824453926275743243327790536000
+16 9 0.100000000000000000000000000000000000000000000000000000000000
+16 10 -0.282547569539044081612477785222287276408489375976211189952877
+16 11 -0.159327350119972549169261984373485859278031542127551931461821
+16 12 -0.145515894647001510860991961081084111308650130578626404945571
+16 13 -0.259111214548322744512977076191767379267783684543182428778156
+16 14 -0.342758159847189839942220553413850871742338734703958919937260
+16 15 -0.675000000000000000000000000000000000000000000000000000000000
+
+
+ The estimate of the local truncation error is (1/360) h ( f(t1,x1)-f(t15,x15) ) \ No newline at end of file
diff --git a/rk1210.txt b/rk1210.txt
new file mode 100644
index 0000000..1155477
--- /dev/null
+++ b/rk1210.txt
@@ -0,0 +1,364 @@
+ THE COEFFICIENTS OF RK12(10) TO 60 DIGITS
+ using the notation of Fehlberg, Bettis, Horn, et alia
+
+ k a[k]
+
+ 0 0.000000000000000000000000000000000000000000000000000000000000
+ 1 0.200000000000000000000000000000000000000000000000000000000000
+ 2 0.555555555555555555555555555555555555555555555555555555555556
+ 3 0.833333333333333333333333333333333333333333333333333333333333
+ 4 0.333333333333333333333333333333333333333333333333333333333333
+ 5 1.00000000000000000000000000000000000000000000000000000000000
+ 6 0.671835709170513812712245661002797570438953420568682550710222
+ 7 0.288724941110620201935458488967024976908118598341806976469674
+ 8 0.562500000000000000000000000000000000000000000000000000000000
+ 9 0.833333333333333333333333333333333333333333333333333333333333
+ 10 0.947695431179199287562380162101836721649589325892740646458322
+ 11 0.0548112876863802643887753674810754475842153612931128785028369
+ 12 0.0848880518607165350639838930162674302064148175640019542045934
+ 13 0.265575603264642893098114059045616835297201264164077621448665
+ 14 0.500000000000000000000000000000000000000000000000000000000000
+ 15 0.734424396735357106901885940954383164702798735835922378551335
+ 16 0.915111948139283464936016106983732569793585182435998045795407
+ 17 0.947695431179199287562380162101836721649589325892740646458322
+ 18 0.833333333333333333333333333333333333333333333333333333333333
+ 19 0.288724941110620201935458488967024976908118598341806976469674
+ 20 0.671835709170513812712245661002797570438953420568682550710222
+ 21 0.333333333333333333333333333333333333333333333333333333333333
+ 22 0.555555555555555555555555555555555555555555555555555555555556
+ 23 0.200000000000000000000000000000000000000000000000000000000000
+ 24 1.00000000000000000000000000000000000000000000000000000000000
+
+ k c[k]
+
+ 0 0.0238095238095238095238095238095238095238095238095238095238095
+ 1 0.0234375000000000000000000000000000000000000000000000000000000
+ 2 0.0312500000000000000000000000000000000000000000000000000000000
+ 3 0.000000000000000000000000000000000000000000000000000000000000
+ 4 0.0416666666666666666666666666666666666666666666666666666666667
+ 5 0.000000000000000000000000000000000000000000000000000000000000
+ 6 0.0500000000000000000000000000000000000000000000000000000000000
+ 7 0.0500000000000000000000000000000000000000000000000000000000000
+ 8 0.000000000000000000000000000000000000000000000000000000000000
+ 9 0.100000000000000000000000000000000000000000000000000000000000
+ 10 0.0714285714285714285714285714285714285714285714285714285714286
+ 11 0.000000000000000000000000000000000000000000000000000000000000
+ 12 0.138413023680782974005350203145033146748813640089941234591267
+ 13 0.215872690604931311708935511140681138965472074195773051123019
+ 14 0.243809523809523809523809523809523809523809523809523809523810
+ 15 0.215872690604931311708935511140681138965472074195773051123019
+ 16 0.138413023680782974005350203145033146748813640089941234591267
+ 17 -0.0714285714285714285714285714285714285714285714285714285714286
+ 18 -0.100000000000000000000000000000000000000000000000000000000000
+ 19 -0.0500000000000000000000000000000000000000000000000000000000000
+ 20 -0.0500000000000000000000000000000000000000000000000000000000000
+ 21 -0.0416666666666666666666666666666666666666666666666666666666667
+ 22 -0.0312500000000000000000000000000000000000000000000000000000000
+ 23 -0.0234375000000000000000000000000000000000000000000000000000000
+ 24 0.0238095238095238095238095238095238095238095238095238095238095
+
+
+ k j ß[k,j]
+
+ 1 0 0.200000000000000000000000000000000000000000000000000000000000
+ 2 0 -0.216049382716049382716049382716049382716049382716049382716049
+ 2 1 0.771604938271604938271604938271604938271604938271604938271605
+ 3 0 0.208333333333333333333333333333333333333333333333333333333333
+ 3 1 0.000000000000000000000000000000000000000000000000000000000000
+ 3 2 0.625000000000000000000000000000000000000000000000000000000000
+ 4 0 0.193333333333333333333333333333333333333333333333333333333333
+ 4 1 0.000000000000000000000000000000000000000000000000000000000000
+ 4 2 0.220000000000000000000000000000000000000000000000000000000000
+ 4 3 -0.0800000000000000000000000000000000000000000000000000000000000
+ 5 0 0.100000000000000000000000000000000000000000000000000000000000
+ 5 1 0.000000000000000000000000000000000000000000000000000000000000
+ 5 2 0.000000000000000000000000000000000000000000000000000000000000
+ 5 3 0.400000000000000000000000000000000000000000000000000000000000
+ 5 4 0.500000000000000000000000000000000000000000000000000000000000
+ 6 0 0.103364471650010477570395435690481791543342708330349879244197
+ 6 1 0.000000000000000000000000000000000000000000000000000000000000
+ 6 2 0.000000000000000000000000000000000000000000000000000000000000
+ 6 3 0.124053094528946761061581889237115328211074784955180298044074
+ 6 4 0.483171167561032899288836480451962508724109257517289177302380
+ 6 5 -0.0387530245694763252085681443767620580395733302341368038804290
+ 7 0 0.124038261431833324081904585980175168140024670698633612292480
+ 7 1 0.000000000000000000000000000000000000000000000000000000000000
+ 7 2 0.000000000000000000000000000000000000000000000000000000000000
+ 7 3 0.000000000000000000000000000000000000000000000000000000000000
+ 7 4 0.217050632197958486317846256953159942875916353757734167684657
+ 7 5 0.0137455792075966759812907801835048190594443990939408530842918
+ 7 6 -0.0661095317267682844455831341498149531672668252085016565917546
+ 8 0 0.0914774894856882983144991846980432197088832099976660100090486
+ 8 1 0.000000000000000000000000000000000000000000000000000000000000
+ 8 2 0.000000000000000000000000000000000000000000000000000000000000
+ 8 3 0.000000000000000000000000000000000000000000000000000000000000
+ 8 4 0.000000000000000000000000000000000000000000000000000000000000
+ 8 5 -0.00544348523717469689965754944144838611346156873847009178068318
+ 8 6 0.0680716801688453518578515120895103863112751730758794372203952
+ 8 7 0.408394315582641046727306852653894780093303185664924644551239
+ 9 0 0.0890013652502551018954509355423841780143232697403434118692699
+ 9 1 0.000000000000000000000000000000000000000000000000000000000000
+ 9 2 0.000000000000000000000000000000000000000000000000000000000000
+ 9 3 0.000000000000000000000000000000000000000000000000000000000000
+ 9 4 0.000000000000000000000000000000000000000000000000000000000000
+ 9 5 0.00499528226645532360197793408420692800405891149406814091955810
+ 9 6 0.397918238819828997341739603001347156083435060931424970826304
+ 9 7 0.427930210752576611068192608300897981558240730580396406312359
+ 9 8 -0.0865117637557827005740277475955029103267246394128995965941585
+ 10 0 0.0695087624134907543112693906409809822706021061685544615255758
+ 10 1 0.000000000000000000000000000000000000000000000000000000000000
+ 10 2 0.000000000000000000000000000000000000000000000000000000000000
+ 10 3 0.000000000000000000000000000000000000000000000000000000000000
+ 10 4 0.000000000000000000000000000000000000000000000000000000000000
+ 10 5 0.129146941900176461970759579482746551122871751501482634045487
+ 10 6 1.53073638102311295076342566143214939031177504112433874313011
+ 10 7 0.577874761129140052546751349454576715334892100418571882718036
+ 10 8 -0.951294772321088980532340837388859453930924498799228648050949
+ 10 9 -0.408276642965631951497484981519757463459627174520978426909934
+ 11 0 0.0444861403295135866269453507092463581620165501018684152933313
+ 11 1 0.000000000000000000000000000000000000000000000000000000000000
+ 11 2 0.000000000000000000000000000000000000000000000000000000000000
+ 11 3 0.000000000000000000000000000000000000000000000000000000000000
+ 11 4 0.000000000000000000000000000000000000000000000000000000000000
+ 11 5 -0.00380476867056961731984232686574547203016331563626856065717964
+ 11 6 0.0106955064029624200721262602809059154469206077644957399593972
+ 11 7 0.0209616244499904333296674205928919920806734650660039898074652
+ 11 8 -0.0233146023259321786648561431551978077665337818756053603898847
+ 11 9 0.00263265981064536974369934736325334761174975280887405725010964
+ 11 10 0.00315472768977025060103545855572111407955208306374459723959783
+ 12 0 0.0194588815119755475588801096525317761242073762016273186231215
+ 12 1 0.000000000000000000000000000000000000000000000000000000000000
+ 12 2 0.000000000000000000000000000000000000000000000000000000000000
+ 12 3 0.000000000000000000000000000000000000000000000000000000000000
+ 12 4 0.000000000000000000000000000000000000000000000000000000000000
+ 12 5 0.000000000000000000000000000000000000000000000000000000000000
+ 12 6 0.000000000000000000000000000000000000000000000000000000000000
+ 12 7 0.000000000000000000000000000000000000000000000000000000000000
+ 12 8 0.0000678512949171812509306121653452367476194364781259165332321534
+ 12 9 -0.0000429795859049273623271005330230162343568863387724883603675550
+ 12 10 0.0000176358982260285155407485928953302139937553442829975734148981
+ 12 11 0.0653866627415027051009595231385181033549511358787382098351924
+ 13 0 0.206836835664277105916828174798272361078909196043446411598231
+ 13 1 0.000000000000000000000000000000000000000000000000000000000000
+ 13 2 0.000000000000000000000000000000000000000000000000000000000000
+ 13 3 0.000000000000000000000000000000000000000000000000000000000000
+ 13 4 0.000000000000000000000000000000000000000000000000000000000000
+ 13 5 0.000000000000000000000000000000000000000000000000000000000000
+ 13 6 0.000000000000000000000000000000000000000000000000000000000000
+ 13 7 0.000000000000000000000000000000000000000000000000000000000000
+ 13 8 0.0166796067104156472828045866664696450306326505094792505215514
+ 13 9 -0.00879501563200710214457024178249986591130234990219959208704979
+ 13 10 0.00346675455362463910824462315246379209427513654098596403637231
+ 13 11 -0.861264460105717678161432562258351242030270498966891201799225
+ 13 12 0.908651882074050281096239478469262145034957129939256789178785
+ 14 0 0.0203926084654484010091511314676925686038504449562413004562382
+ 14 1 0.000000000000000000000000000000000000000000000000000000000000
+ 14 2 0.000000000000000000000000000000000000000000000000000000000000
+ 14 3 0.000000000000000000000000000000000000000000000000000000000000
+ 14 4 0.000000000000000000000000000000000000000000000000000000000000
+ 14 5 0.000000000000000000000000000000000000000000000000000000000000
+ 14 6 0.000000000000000000000000000000000000000000000000000000000000
+ 14 7 0.000000000000000000000000000000000000000000000000000000000000
+ 14 8 0.0869469392016685948675400555583947505833954460930940959577347
+ 14 9 -0.0191649630410149842286436611791405053287170076602337673587681
+ 14 10 0.00655629159493663287364871573244244516034828755253746024098838
+ 14 11 0.0987476128127434780903798528674033899738924968006632201445462
+ 14 12 0.00535364695524996055083260173615567408717110247274021056118319
+ 14 13 0.301167864010967916837091303817051676920059229784957479998077
+ 15 0 0.228410433917778099547115412893004398779136994596948545722283
+ 15 1 0.000000000000000000000000000000000000000000000000000000000000
+ 15 2 0.000000000000000000000000000000000000000000000000000000000000
+ 15 3 0.000000000000000000000000000000000000000000000000000000000000
+ 15 4 0.000000000000000000000000000000000000000000000000000000000000
+ 15 5 0.000000000000000000000000000000000000000000000000000000000000
+ 15 6 0.000000000000000000000000000000000000000000000000000000000000
+ 15 7 0.000000000000000000000000000000000000000000000000000000000000
+ 15 8 -0.498707400793025250635016567442511512138603770959682292383042
+ 15 9 0.134841168335724478552596703792570104791700727205981058201689
+ 15 10 -0.0387458244055834158439904226924029230935161059142806805674360
+ 15 11 -1.27473257473474844240388430824908952380979292713250350199641
+ 15 12 1.43916364462877165201184452437038081875299303577911839630524
+ 15 13 -0.214007467967990254219503540827349569639028092344812795499026
+ 15 14 0.958202417754430239892724139109781371059908874605153648768037
+ 16 0 2.00222477655974203614249646012506747121440306225711721209798
+ 16 1 0.000000000000000000000000000000000000000000000000000000000000
+ 16 2 0.000000000000000000000000000000000000000000000000000000000000
+ 16 3 0.000000000000000000000000000000000000000000000000000000000000
+ 16 4 0.000000000000000000000000000000000000000000000000000000000000
+ 16 5 0.000000000000000000000000000000000000000000000000000000000000
+ 16 6 0.000000000000000000000000000000000000000000000000000000000000
+ 16 7 0.000000000000000000000000000000000000000000000000000000000000
+ 16 8 2.06701809961524912091954656438138595825411859673341600679555
+ 16 9 0.623978136086139541957471279831494466155292316167021080663140
+ 16 10 -0.0462283685500311430283203554129062069391947101880112723185773
+ 16 11 -8.84973288362649614860075246727118949286604835457092701094630
+ 16 12 7.74257707850855976227437225791835589560188590785037197433615
+ 16 13 -0.588358519250869210993353314127711745644125882130941202896436
+ 16 14 -1.10683733362380649395704708016953056176195769617014899442903
+ 16 15 -0.929529037579203999778397238291233214220788057511899747507074
+ 17 0 3.13789533412073442934451608989888796808161259330322100268310
+ 17 1 0.000000000000000000000000000000000000000000000000000000000000
+ 17 2 0.000000000000000000000000000000000000000000000000000000000000
+ 17 3 0.000000000000000000000000000000000000000000000000000000000000
+ 17 4 0.000000000000000000000000000000000000000000000000000000000000
+ 17 5 0.129146941900176461970759579482746551122871751501482634045487
+ 17 6 1.53073638102311295076342566143214939031177504112433874313011
+ 17 7 0.577874761129140052546751349454576715334892100418571882718036
+ 17 8 5.42088263055126683050056840891857421941300558851862156403363
+ 17 9 0.231546926034829304872663800877643660904880180835945693836936
+ 17 10 0.0759292995578913560162301311785251873561801342333194895292058
+ 17 11 -12.3729973380186513287414553402595806591349822617535905976253
+ 17 12 9.85455883464769543935957209317369202080367765721777101906955
+ 17 13 0.0859111431370436529579357709052367772889980495122329601159540
+ 17 14 -5.65242752862643921117182090081762761180392602644189218673969
+ 17 15 -1.94300935242819610883833776782364287728724899124166920477873
+ 17 16 -0.128352601849404542018428714319344620742146491335612353559923
+ 18 0 1.38360054432196014878538118298167716825163268489922519995564
+ 18 1 0.000000000000000000000000000000000000000000000000000000000000
+ 18 2 0.000000000000000000000000000000000000000000000000000000000000
+ 18 3 0.000000000000000000000000000000000000000000000000000000000000
+ 18 4 0.000000000000000000000000000000000000000000000000000000000000
+ 18 5 0.00499528226645532360197793408420692800405891149406814091955810
+ 18 6 0.397918238819828997341739603001347156083435060931424970826304
+ 18 7 0.427930210752576611068192608300897981558240730580396406312359
+ 18 8 -1.30299107424475770916551439123047573342071475998399645982146
+ 18 9 0.661292278669377029097112528107513072734573412294008071500699
+ 18 10 -0.144559774306954349765969393688703463900585822441545655530145
+ 18 11 -6.96576034731798203467853867461083919356792248105919255460819
+ 18 12 6.65808543235991748353408295542210450632193197576935120716437
+ 18 13 -1.66997375108841486404695805725510845049807969199236227575796
+ 18 14 2.06413702318035263832289040301832647130604651223986452170089
+ 18 15 -0.674743962644306471862958129570837723192079875998405058648892
+ 18 16 -0.00115618834794939500490703608435907610059605754935305582045729
+ 18 17 -0.00544057908677007389319819914241631024660726585015012485938593
+ 19 0 0.951236297048287669474637975894973552166903378983475425758226
+ 19 1 0.000000000000000000000000000000000000000000000000000000000000
+ 19 2 0.000000000000000000000000000000000000000000000000000000000000
+ 19 3 0.000000000000000000000000000000000000000000000000000000000000
+ 19 4 0.217050632197958486317846256953159942875916353757734167684657
+ 19 5 0.0137455792075966759812907801835048190594443990939408530842918
+ 19 6 -0.0661095317267682844455831341498149531672668252085016565917546
+ 19 7 0.000000000000000000000000000000000000000000000000000000000000
+ 19 8 0.152281696736414447136604697040747131921486432699422112099617
+ 19 9 -0.337741018357599840802300793133998004354643424457539667670080
+ 19 10 -0.0192825981633995781534949199286824400469353110630787982121133
+ 19 11 -3.68259269696866809932409015535499603576312120746888880201882
+ 19 12 3.16197870406982063541533528419683854018352080342887002331312
+ 19 13 -0.370462522106885290716991856022051125477943482284080569177386
+ 19 14 -0.0514974200365440434996434456698127984941168616474316871020314
+ 19 15 -0.000829625532120152946787043541792848416659382675202720677536554
+ 19 16 0.00000279801041419278598986586589070027583961355402640879503213503
+ 19 17 0.0418603916412360287969841020776788461794119440689356178942252
+ 19 18 0.279084255090877355915660874555379649966282167560126269290222
+ 20 0 0.103364471650010477570395435690481791543342708330349879244197
+ 20 1 0.000000000000000000000000000000000000000000000000000000000000
+ 20 2 0.000000000000000000000000000000000000000000000000000000000000
+ 20 3 0.124053094528946761061581889237115328211074784955180298044074
+ 20 4 0.483171167561032899288836480451962508724109257517289177302380
+ 20 5 -0.0387530245694763252085681443767620580395733302341368038804290
+ 20 6 0.000000000000000000000000000000000000000000000000000000000000
+ 20 7 -0.438313820361122420391059788940960176420682836652600698580091
+ 20 8 0.000000000000000000000000000000000000000000000000000000000000
+ 20 9 -0.218636633721676647685111485017151199362509373698288330593486
+ 20 10 -0.0312334764394719229981634995206440349766174759626578122323015
+ 20 11 0.000000000000000000000000000000000000000000000000000000000000
+ 20 12 0.000000000000000000000000000000000000000000000000000000000000
+ 20 13 0.000000000000000000000000000000000000000000000000000000000000
+ 20 14 0.000000000000000000000000000000000000000000000000000000000000
+ 20 15 0.000000000000000000000000000000000000000000000000000000000000
+ 20 16 0.000000000000000000000000000000000000000000000000000000000000
+ 20 17 0.0312334764394719229981634995206440349766174759626578122323015
+ 20 18 0.218636633721676647685111485017151199362509373698288330593486
+ 20 19 0.438313820361122420391059788940960176420682836652600698580091
+ 21 0 0.193333333333333333333333333333333333333333333333333333333333
+ 21 1 0.000000000000000000000000000000000000000000000000000000000000
+ 21 2 0.220000000000000000000000000000000000000000000000000000000000
+ 21 3 -0.0800000000000000000000000000000000000000000000000000000000000
+ 21 4 0.000000000000000000000000000000000000000000000000000000000000
+ 21 5 0.000000000000000000000000000000000000000000000000000000000000
+ 21 6 0.0984256130499315928152900286856048243348202521491288575952143
+ 21 7 -0.196410889223054653446526504390100417677539095340135532418849
+ 21 8 0.000000000000000000000000000000000000000000000000000000000000
+ 21 9 0.436457930493068729391826122587949137609670676712525034763317
+ 21 10 0.0652613721675721098560370939805555698350543810708414716730270
+ 21 11 0.000000000000000000000000000000000000000000000000000000000000
+ 21 12 0.000000000000000000000000000000000000000000000000000000000000
+ 21 13 0.000000000000000000000000000000000000000000000000000000000000
+ 21 14 0.000000000000000000000000000000000000000000000000000000000000
+ 21 15 0.000000000000000000000000000000000000000000000000000000000000
+ 21 16 0.000000000000000000000000000000000000000000000000000000000000
+ 21 17 -0.0652613721675721098560370939805555698350543810708414716730270
+ 21 18 -0.436457930493068729391826122587949137609670676712525034763317
+ 21 19 0.196410889223054653446526504390100417677539095340135532418849
+ 21 20 -0.0984256130499315928152900286856048243348202521491288575952143
+ 22 0 -0.216049382716049382716049382716049382716049382716049382716049
+ 22 1 0.771604938271604938271604938271604938271604938271604938271605
+ 22 2 0.000000000000000000000000000000000000000000000000000000000000
+ 22 3 0.000000000000000000000000000000000000000000000000000000000000
+ 22 4 -0.666666666666666666666666666666666666666666666666666666666667
+ 22 5 0.000000000000000000000000000000000000000000000000000000000000
+ 22 6 -0.390696469295978451446999802258495981249099665294395945559163
+ 22 7 0.000000000000000000000000000000000000000000000000000000000000
+ 22 8 0.000000000000000000000000000000000000000000000000000000000000
+ 22 9 0.000000000000000000000000000000000000000000000000000000000000
+ 22 10 0.000000000000000000000000000000000000000000000000000000000000
+ 22 11 0.000000000000000000000000000000000000000000000000000000000000
+ 22 12 0.000000000000000000000000000000000000000000000000000000000000
+ 22 13 0.000000000000000000000000000000000000000000000000000000000000
+ 22 14 0.000000000000000000000000000000000000000000000000000000000000
+ 22 15 0.000000000000000000000000000000000000000000000000000000000000
+ 22 16 0.000000000000000000000000000000000000000000000000000000000000
+ 22 17 0.000000000000000000000000000000000000000000000000000000000000
+ 22 18 0.000000000000000000000000000000000000000000000000000000000000
+ 22 19 0.000000000000000000000000000000000000000000000000000000000000
+ 22 20 0.390696469295978451446999802258495981249099665294395945559163
+ 22 21 0.666666666666666666666666666666666666666666666666666666666667
+ 23 0 0.200000000000000000000000000000000000000000000000000000000000
+ 23 1 0.000000000000000000000000000000000000000000000000000000000000
+ 23 2 -0.164609053497942386831275720164609053497942386831275720164609
+ 23 3 0.000000000000000000000000000000000000000000000000000000000000
+ 23 4 0.000000000000000000000000000000000000000000000000000000000000
+ 23 5 0.000000000000000000000000000000000000000000000000000000000000
+ 23 6 0.000000000000000000000000000000000000000000000000000000000000
+ 23 7 0.000000000000000000000000000000000000000000000000000000000000
+ 23 8 0.000000000000000000000000000000000000000000000000000000000000
+ 23 9 0.000000000000000000000000000000000000000000000000000000000000
+ 23 10 0.000000000000000000000000000000000000000000000000000000000000
+ 23 11 0.000000000000000000000000000000000000000000000000000000000000
+ 23 12 0.000000000000000000000000000000000000000000000000000000000000
+ 23 13 0.000000000000000000000000000000000000000000000000000000000000
+ 23 14 0.000000000000000000000000000000000000000000000000000000000000
+ 23 15 0.000000000000000000000000000000000000000000000000000000000000
+ 23 16 0.000000000000000000000000000000000000000000000000000000000000
+ 23 17 0.000000000000000000000000000000000000000000000000000000000000
+ 23 18 0.000000000000000000000000000000000000000000000000000000000000
+ 23 19 0.000000000000000000000000000000000000000000000000000000000000
+ 23 20 0.000000000000000000000000000000000000000000000000000000000000
+ 23 21 0.000000000000000000000000000000000000000000000000000000000000
+ 23 22 0.164609053497942386831275720164609053497942386831275720164609
+ 24 0 1.47178724881110408452949550989023611293535315518571691939396
+ 24 1 0.787500000000000000000000000000000000000000000000000000000000
+ 24 2 0.421296296296296296296296296296296296296296296296296296296296
+ 24 3 0.000000000000000000000000000000000000000000000000000000000000
+ 24 4 0.291666666666666666666666666666666666666666666666666666666667
+ 24 5 0.000000000000000000000000000000000000000000000000000000000000
+ 24 6 0.348600717628329563206854421629657569274689947367847465753757
+ 24 7 0.229499544768994849582890233710555447073823569666506700662510
+ 24 8 5.79046485790481979159831978177003471098279506036722411333192
+ 24 9 0.418587511856506868874073759426596207226461447604248151080016
+ 24 10 0.307039880222474002649653817490106690389251482313213999386651
+ 24 11 -4.68700905350603332214256344683853248065574415794742040470287
+ 24 12 3.13571665593802262152038152399873856554395436199962915429076
+ 24 13 1.40134829710965720817510506275620441055845017313930508348898
+ 24 14 -5.52931101439499023629010306005764336421276055777658156400910
+ 24 15 -0.853138235508063349309546894974784906188927508039552519557498
+ 24 16 0.103575780373610140411804607167772795518293914458500175573749
+ 24 17 -0.140474416950600941142546901202132534870665923700034957196546
+ 24 18 -0.418587511856506868874073759426596207226461447604248151080016
+ 24 19 -0.229499544768994849582890233710555447073823569666506700662510
+ 24 20 -0.348600717628329563206854421629657569274689947367847465753757
+ 24 21 -0.291666666666666666666666666666666666666666666666666666666667
+ 24 22 -0.421296296296296296296296296296296296296296296296296296296296
+ 24 23 -0.787500000000000000000000000000000000000000000000000000000000
+
+ The estimate of the local truncation error is (49/640) h ( f(t1,x1)-f(t23,x23) ) \ No newline at end of file
diff --git a/rk1412.txt b/rk1412.txt
new file mode 100644
index 0000000..19ee14f
--- /dev/null
+++ b/rk1412.txt
@@ -0,0 +1,681 @@
+ THE COEFFICIENTS OF RK14(12) TO 60 DIGITS
+ using the notation of Fehlberg, Bettis, Horn, et alia.
+
+
+
+
+ k a[k]
+ 0 0.000000000000000000000000000000000000000000000000000000000000
+ 1 0.111111111111111111111111111111111111111111111111111111111111
+ 2 0.555555555555555555555555555555555555555555555555555555555556
+ 3 0.833333333333333333333333333333333333333333333333333333333333
+ 4 0.333333333333333333333333333333333333333333333333333333333333
+ 5 1.00000000000000000000000000000000000000000000000000000000000
+ 6 0.669986979272772921764683785505998513938845229638460353285142
+ 7 0.297068384213818357389584716808219413223332094698915687379168
+ 8 0.727272727272727272727272727272727272727272727272727272727273
+ 9 0.140152799042188765276187487966946717629806463082532936287323
+10 0.700701039770150737151099854830749337941407049265546408969222
+11 0.363636363636363636363636363636363636363636363636363636363636
+12 0.263157894736842105263157894736842105263157894736842105263158
+13 0.0392172246650270859125196642501208648863714315266128052078483
+14 0.812917502928376762983393159278036506189612372617238550774312
+15 0.166666666666666666666666666666666666666666666666666666666667
+16 0.900000000000000000000000000000000000000000000000000000000000
+17 0.0641299257451966923312771193896682809481096651615083225402924
+18 0.204149909283428848927744634301023405027149505241333751628870
+19 0.395350391048760565615671369827324372352227297456659450554577
+20 0.604649608951239434384328630172675627647772702543340549445423
+21 0.795850090716571151072255365698976594972850494758666248371130
+22 0.935870074254803307668722880610331719051890334838491677459708
+23 0.166666666666666666666666666666666666666666666666666666666667
+24 0.812917502928376762983393159278036506189612372617238550774312
+25 0.0392172246650270859125196642501208648863714315266128052078483
+26 0.363636363636363636363636363636363636363636363636363636363636
+27 0.700701039770150737151099854830749337941407049265546408969222
+28 0.140152799042188765276187487966946717629806463082532936287323
+29 0.297068384213818357389584716808219413223332094698915687379168
+30 0.669986979272772921764683785505998513938845229638460353285142
+31 0.333333333333333333333333333333333333333333333333333333333333
+32 0.555555555555555555555555555555555555555555555555555555555556
+33 0.111111111111111111111111111111111111111111111111111111111111
+34 1.00000000000000000000000000000000000000000000000000000000000
+
+ k c[k]
+
+ 0 0.0178571428571428571428571428571428571428571428571428571428571
+ 1 0.00585937500000000000000000000000000000000000000000000000000000
+ 2 0.0117187500000000000000000000000000000000000000000000000000000
+ 3 0
+ 4 0.0175781250000000000000000000000000000000000000000000000000000
+ 5 0
+ 6 0.0234375000000000000000000000000000000000000000000000000000000
+ 7 0.0292968750000000000000000000000000000000000000000000000000000
+ 8 0
+ 9 0.0351562500000000000000000000000000000000000000000000000000000
+10 0.0410156250000000000000000000000000000000000000000000000000000
+11 0.0468750000000000000000000000000000000000000000000000000000000
+12 0
+13 0.0527343750000000000000000000000000000000000000000000000000000
+14 0.0585937500000000000000000000000000000000000000000000000000000
+15 0.0644531250000000000000000000000000000000000000000000000000000
+16 0
+17 0.105352113571753019691496032887878162227673083080523884041670
+18 0.170561346241752182382120338553874085887555487802790804737501
+19 0.206229397329351940783526485701104894741914286259542454077972
+20 0.206229397329351940783526485701104894741914286259542454077972
+21 0.170561346241752182382120338553874085887555487802790804737501
+22 0.105352113571753019691496032887878162227673083080523884041670
+23 -0.0644531250000000000000000000000000000000000000000000000000000
+24 -0.0585937500000000000000000000000000000000000000000000000000000
+25 -0.0527343750000000000000000000000000000000000000000000000000000
+26 -0.0468750000000000000000000000000000000000000000000000000000000
+27 -0.0410156250000000000000000000000000000000000000000000000000000
+28 -0.0351562500000000000000000000000000000000000000000000000000000
+29 -0.0292968750000000000000000000000000000000000000000000000000000
+30 -0.0234375000000000000000000000000000000000000000000000000000000
+31 -0.0175781250000000000000000000000000000000000000000000000000000
+32 -0.0117187500000000000000000000000000000000000000000000000000000
+33 -0.00585937500000000000000000000000000000000000000000000000000000
+34 0.0178571428571428571428571428571428571428571428571428571428571
+
+ k j ß[k,j]
+
+ 1 0 0.111111111111111111111111111111111111111111111111111111111111
+ 2 0 -0.833333333333333333333333333333333333333333333333333333333333
+ 2 1 1.38888888888888888888888888888888888888888888888888888888889
+ 3 0 0.208333333333333333333333333333333333333333333333333333333333
+ 3 1 0
+ 3 2 0.625000000000000000000000000000000000000000000000000000000000
+ 4 0 0.193333333333333333333333333333333333333333333333333333333333
+ 4 1 0
+ 4 2 0.220000000000000000000000000000000000000000000000000000000000
+ 4 3 -0.0800000000000000000000000000000000000000000000000000000000000
+ 5 0 0.100000000000000000000000000000000000000000000000000000000000
+ 5 1 0
+ 5 2 0
+ 5 3 0.400000000000000000000000000000000000000000000000000000000000
+ 5 4 0.500000000000000000000000000000000000000000000000000000000000
+ 6 0 0.103484561636679776672993546511910344499744798201971316606663
+ 6 1 0
+ 6 2 0
+ 6 3 0.122068887306407222589644082868962077139592714834162134741275
+ 6 4 0.482574490331246622475134780125688112865919023850168049679402
+ 6 5 -0.0381409600015606999730886240005620205664113072478411477421970
+ 7 0 0.124380526654094412881516420868799316268491466359671423163289
+ 7 1 0
+ 7 2 0
+ 7 3 0
+ 7 4 0.226120282197584301422238662979202901196752320742633143965145
+ 7 5 0.0137885887618080880607695837016477814530969417491493385363543
+ 7 6 -0.0672210133996684449749399507414305856950086341525382182856200
+ 8 0 0.0936919065659673815530885456083005933866349695217750085655603
+ 8 1 0
+ 8 2 0
+ 8 3 0
+ 8 4 0
+ 8 5 -0.00613406843450510987229498995641664735620914507128858871007099
+ 8 6 0.216019825625503063708860097659866573490979433278117320188668
+ 8 7 0.423695063515761937337619073960976753205867469544123532683116
+ 9 0 0.0838479812409052664616968791372814085980533139224911131069335
+ 9 1 0
+ 9 2 0
+ 9 3 0
+ 9 4 0
+ 9 5 -0.0117949367100973814319755056031295775367961960590736150777613
+ 9 6 -0.247299020568812652339473838743194598325992840353340132697498
+ 9 7 0.0978080858367729012259313014081291665503740655476733940756599
+ 9 8 0.217590689243420631360008651767860318344168120024782176879989
+10 0 0.0615255359769428227954562389614314714333423969064821107453940
+10 1 0
+10 2 0
+10 3 0
+10 4 0
+10 5 0.00592232780324503308042990005798046524738389560444257136834990
+10 6 0.470326159963841112217224303205894113455362530746108825010848
+10 7 0.299688863848679000853981837096192399136831121671781279184194
+10 8 -0.247656877593994914689992276329810825853958069263947095548189
+10 9 0.110895029771437682893999851839061714522445173600678718208625
+11 0 0.0419700073362782579861792864787277787213483656543104611245994
+11 1 0
+11 2 0
+11 3 0
+11 4 0
+11 5 -0.00317987696266205093901912847692712407988609169703103952205634
+11 6 0.806397714906192077260821711520379506393543111567419750119748
+11 7 0.0975983126412388979093522850684288851314672048003054550357187
+11 8 0.778575578158398909027512446452927238999763460594181964958853
+11 9 0.204890423831599428189499202098105603312029235081420653574829
+11 10 -1.56261579627468188307070943950527825211462892236424360892806
+12 0 0.0437726782233730163574465242495339811688214967071614123256973
+12 1 0
+12 2 0
+12 3 0
+12 4 0
+12 5 0
+12 6 0
+12 7 0
+12 8 0.00624365027520195208794358628580933625281631216903095917201250
+12 9 0.200043097109577314994435165469647856829066232218264969608768
+12 10 -0.00805328367804983036823857162048902911923392887337029314844206
+12 11 0.0211517528067396521915711903523399601316877825157550573051221
+13 0 0.0283499250363514563095023591920717312247137654896477097768495
+13 1 0
+13 2 0
+13 3 0
+13 4 0
+13 5 0
+13 6 0
+13 7 0
+13 8 0.00249163204855817407538949148805995149459884653585417680098222
+13 9 0.0230138787854593149638399846373742768772087122638142234223658
+13 10 -0.00322155956692977098724476092467120878189463604760620461043308
+13 11 0.00988442549447664668946335414487885256040819982786014648129297
+13 12 -0.0213010771328887351384307642875927384886634565429572466632092
+14 0 0.343511894290243001049432234735147943083353174980701426268122
+14 1 0
+14 2 0
+14 3 0
+14 4 0
+14 5 0
+14 6 0
+14 7 0
+14 8 0.210451912023627385609097011999010655788807405225626700040882
+14 9 1.03427452057230411936482926828825709938667999698324740166559
+14 10 0.00600303645864422487051240448206640574939078092406156945568306
+14 11 0.855938125099619537578012106002407728915062652616416005816477
+14 12 -0.977235005036766810872264852372525633013107656892839677696022
+14 13 -0.660026980479294694616225013856327693720573981219974874776419
+15 0 -0.0143574001672168069538206399935076366657755954378399880691949
+15 1 0
+15 2 0
+15 3 0
+15 4 0
+15 5 0
+15 6 0
+15 7 0
+15 8 -0.0366253270049039970293685796848974791733119081733552207318285
+15 9 0.0350254975636213681976849406979846524346789082471103574920148
+15 10 0.0360946016362113508931786658758335239823689929864237671348749
+15 11 -0.0265219967553681106351595946834601923649627012457464284442911
+15 12 0.0445699011305698119638911537508839908104336323082226770910408
+15 13 0.124343093331358243286225595741786448038973408895106741855721
+15 14 0.00413829693239480694403512496204335960426192908674476033832967
+16 0 0.356032404425120290975609116398089176264106222379748802654822
+16 1 0
+16 2 0
+16 3 0
+16 4 0
+16 5 0
+16 6 0
+16 7 0
+16 8 -0.450192758947562595966821779075956175110645100214763601190349
+16 9 0.430527907083710898626656292808782917793030154094709462877146
+16 10 0.511973029011022237668556960394071692077125787030651386389972
+16 11 0.908303638886404260390159124638110213997496214819904630546596
+16 12 -1.23921093371933931757372469151534028854413889248605726186520
+16 13 -0.649048661671761465141672348879062553905402831967191097656668
+16 14 0.251708904586819292210480529948970541404887852931447491219418
+16 15 0.779906470345586398810756795282334476023540593411550187024263
+17 0 0.0130935687406513066406881206418834980127470438213192487844956
+17 1 0
+17 2 0
+17 3 0
+17 4 0
+17 5 0
+17 6 0
+17 7 0
+17 8 0
+17 9 0
+17 10 0
+17 11 0
+17 12 -0.0000932053067985113945908461962767108237858631509684667142124826
+17 13 0.0505374334262299359640090443138590726770942344716122381702746
+17 14 8.04470341944487979109579109610197797641311868930865361048975*10^-7
+17 15 0.000591726029494171190528755742777717259844340971924321528178248
+17 16 -4.01614722154557337064691684906375587732264247950093804676867*10^-7
+18 0 0.0207926484466053012541944544000765652167255206144373407979758
+18 1 0
+18 2 0
+18 3 0
+18 4 0
+18 5 0
+18 6 0
+18 7 0
+18 8 0
+18 9 0
+18 10 0
+18 11 0
+18 12 0.000582695918800085915101902697837284108951406103029871570103075
+18 13 -0.00801700732358815939083342186525852746640558465919633524655451
+18 14 4.03847643847136940375170821743560570484117290330895506618968*10^-6
+18 15 0.0854609998055506144225056114567535602510114622033622491802597
+18 16 -2.04486480935804242706707569691004307904442837552677456232848*10^-6
+18 17 0.105328578824431893399799402979093997354240904235172843146582
+19 0 1.40153449795736021415446247355771306718486452917597731683689
+19 1 0
+19 2 0
+19 3 0
+19 4 0
+19 5 0
+19 6 0
+19 7 0
+19 8 0
+19 9 0
+19 10 0
+19 11 0
+19 12 -0.230252000984221261616272410367415621261130298274455611733277
+19 13 -7.21106840466912905659582237106874247165856493509961561958267
+19 14 0.00372901560694836335236995327852132340217759566678662385552634
+19 15 -4.71415495727125020678778179392224757011323373221820091641216
+19 16 -0.00176367657545349242053841995032797673574903886695600132759652
+19 17 7.64130548038698765563029310880237651185173367813936997648198
+19 18 3.50602043659751834989896082949744710968212949893375368243588
+20 0 11.9514650694120686799372385830716401674473610826553517297976
+20 1 0
+20 2 0
+20 3 0
+20 4 0
+20 5 0
+20 6 0
+20 7 0
+20 8 0
+20 9 0
+20 10 0
+20 11 0
+20 12 7.79480932108175968783516700231764388220284279598980948538579
+20 13 -56.4501393867325792523560991120904281440468100061340556540132
+20 14 0.0912376306930644901344530449290276645709607450403673704844997
+20 15 -12.7336279925434886201945524309199275038162717529918963305155
+20 16 -0.0396895921904719712313542810939736674712383070433147873009352
+20 17 54.4392141883570886996225765155307791861438378423305337073797
+20 18 -3.64411637921569236846406990361350645806721478409266709351203
+20 19 -0.804503249910509910899030787958579499315694913210787878260459
+21 0 -148.809426507100488427838868268647625561930612082148597076690
+21 1 0
+21 2 0
+21 3 0
+21 4 0
+21 5 0
+21 6 0
+21 7 0
+21 8 0
+21 9 0
+21 10 0
+21 11 0
+21 12 -91.7295278291256484357935662402321623495228729036354276506427
+21 13 707.656144971598359834575719286335716154821128966649565194286
+21 14 -1.10563611857482440905296961311590930801338308942637769555540
+21 15 176.134591883811372587859898076055660406999516762301689616841
+21 16 0.491384824214880662268898345164454557416884631402764792538746
+21 17 -684.278000449814944358237535610895081956077167893600278300805
+21 18 27.9910604998398258984224332124380407446002518400668657974589
+21 19 13.1939710030282333443670964371153238435064159623744975073252
+21 20 1.25128781283980445450114974148056006317268830077396406361417
+22 0 -9.67307946948196763644126118433219395839951408571877262880482
+22 1 0
+22 2 0
+22 3 0
+22 4 0
+22 5 0
+22 6 0
+22 7 0
+22 8 0
+22 9 0
+22 10 0
+22 11 0
+22 12 -4.46990150858505531443846227701960360497830681408751431146712
+22 13 45.5127128690952681968241950400052751178905907817398483534845
+22 14 -0.0713085086183826912791492024438246129930559805352394367050813
+22 15 11.2273614068412741582590624479939384207826800776794485051540
+22 16 0.126244376717622724516237912909138809361786889819105426371393
+22 17 -43.5439339549483313605810624907242107623814304467621407753424
+22 18 0.787174307543058978398792994996550902064546091443233850464377
+22 19 0.532264696744684215669300708603886690785395776821503851830821
+22 20 0.422422733996325326010225127471388772575086538809603346825334
+22 21 0.0859131249503067107308438031499859443441115056294154956487671
+23 0 -10.0664032447054702403396606900426891472202824757968765569183
+23 1 0
+23 2 0
+23 3 0
+23 4 0
+23 5 0
+23 6 0
+23 7 0
+23 8 -0.0366253270049039970293685796848974791733119081733552207318285
+23 9 0.0350254975636213681976849406979846524346789082471103574920148
+23 10 0.0360946016362113508931786658758335239823689929864237671348749
+23 11 -0.0265219967553681106351595946834601923649627012457464284442911
+23 12 -6.27088972181464143590553149478871603839356122957396018530209
+23 13 48.2079237442562989090702103008195063923492593141636117832993
+23 14 -0.0694471689136165640882395180583732834557754169149088630301342
+23 15 12.6810690204850295698341370913609807066108483811412127009785
+23 16 0.0119671168968323754838161435501011294100927813964199613229864
+23 17 -46.7249764992482408003358268242662695593201321659795608950429
+23 18 1.33029613326626711314710039298216591399033511191227101321435
+23 19 1.00766787503398298353438903619926657771162717793661719708370
+23 20 0.0209512051933665091664122388475480702892770753864487241177616
+23 21 0.0210134706331264177317735424331396407424412188443757490871603
+23 22 0.00952196014417121794175101542454575907376360233658356240547761
+24 0 -409.478081677743708772589097409370357624424341606752069725341
+24 1 0
+24 2 0
+24 3 0
+24 4 0
+24 5 0
+24 6 0
+24 7 0
+24 8 0.210451912023627385609097011999010655788807405225626700040882
+24 9 1.03427452057230411936482926828825709938667999698324740166559
+24 10 0.00600303645864422487051240448206640574939078092406156945568306
+24 11 0.855938125099619537578012106002407728915062652616416005816477
+24 12 -250.516998547447860492777657729316130386584050420782075966990
+24 13 1946.42466652388427766053750328264758595829850895761428240231
+24 14 -3.04503882102310365506105809086860882786950544097602101685174
+24 15 490.626379528281713521208265299168083841598542274061671576230
+24 16 1.56647589531270907115484067013597445739595615245966775329993
+24 17 -1881.97428994011173362217267377035870619215906638453056643641
+24 18 75.2592224724847175278837713643303149821620618914245864351135
+24 19 34.5734356980331067622434344736554689696728644793551014989002
+24 20 3.21147679440968961435417361847073755169022966748891627882572
+24 21 -0.460408041738414391307201404237058848867245095265382820823055
+24 22 -0.0870718339841810522431884137957986245724252047388936572215438
+24 23 -7.39351814158303067567016952195521063999185773249132944724553
+25 0 3.43347475853550878921093496257596781120623891072008459930197
+25 1 0
+25 2 0
+25 3 0
+25 4 0
+25 5 0
+25 6 0
+25 7 0
+25 8 0.00249163204855817407538949148805995149459884653585417680098222
+25 9 0.0230138787854593149638399846373742768772087122638142234223658
+25 10 -0.00322155956692977098724476092467120878189463604760620461043308
+25 11 0.00988442549447664668946335414487885256040819982786014648129297
+25 12 2.16252799377922507788307841904757354045759225335732707916530
+25 13 -16.2699864546457421328065640660139489006987552040228852402716
+25 14 -0.128534502120524552843583417470935010538029037542654506231743
+25 15 -8.98915042666504253089307820833379330486511746063552853023189
+25 16 -0.00348595363232025333387080201851013650192401767250513765000963
+25 17 15.7936194113339807536235187388695574135853387025139738341334
+25 18 -0.574403330914095065628165482017335820148383663195675408024658
+25 19 -0.345602039021393296692722496608124982535237228827655306030152
+25 20 -0.00662241490206585091731619991383757781133067992707418687587487
+25 21 -0.00777788129242204164032546458607364309759347209626759111946150
+25 22 -0.00356084192402274913338827232697437364675240818791706587952939
+25 23 4.79282506449930799649797749629840189457296934139359048988332
+25 24 0.153725464873068577844576387402512082757034273069877432944621
+26 0 32.3038520871985442326994734440031535091364975047784630088983
+26 1 0
+26 2 0
+26 3 0
+26 4 0
+26 5 -0.00317987696266205093901912847692712407988609169703103952205634
+26 6 0.806397714906192077260821711520379506393543111567419750119748
+26 7 0.0975983126412388979093522850684288851314672048003054550357187
+26 8 0.778575578158398909027512446452927238999763460594181964958853
+26 9 0.204890423831599428189499202098105603312029235081420653574829
+26 10 -1.56261579627468188307070943950527825211462892236424360892806
+26 11 0
+26 12 16.3429891882310570648504243973927174708753353504154550405647
+26 13 -154.544555293543621230730189631471036399316683669609116705323
+26 14 1.56971088703334872692034283417621761466263593582497085955201
+26 15 3.27685545087248131321429817269900731165522404974733504794135
+26 16 -0.0503489245193653176348040727199783626534081095691632396802451
+26 17 153.321151858041665070593767885914694011224363102594556731397
+26 18 7.17568186327720495846766484814784143567826308034865369443637
+26 19 -2.94036748675300481945917659896930989215320594380777597403592
+26 20 -0.0665845946076803144470749676022628870281920493197256887985612
+26 21 -0.0462346054990843661229248668562217261176966514016859284197145
+26 22 -0.0204198733585679401539388228617269778848579774821581777675337
+26 23 -53.3523106438735850515953441165998107974045090495791591218714
+26 24 -1.35548714715078654978732186705996404017554501614191325114947
+26 25 -1.57196275801232751882901735171459249177687219114442583461866
+27 0 -16.6451467486341512872031294403931758764560371130818978459405
+27 1 0
+27 2 0
+27 3 0
+27 4 0
+27 5 0.00592232780324503308042990005798046524738389560444257136834990
+27 6 0.470326159963841112217224303205894113455362530746108825010848
+27 7 0.299688863848679000853981837096192399136831121671781279184194
+27 8 -0.247656877593994914689992276329810825853958069263947095548189
+27 9 0.110895029771437682893999851839061714522445173600678718208625
+27 10 0
+27 11 -0.491719043846229147070666628704194097678081907210673044988866
+27 12 -11.4743154427289496968389492564352536350842454130853175250727
+27 13 80.2593166576230272541702485886484400152793366623589989106256
+27 14 -0.384132303980042847625312526759029103746926841342088219165648
+27 15 7.28147667468107583471326950926136115767612581862877764249646
+27 16 -0.132699384612248379510571708176035274836827341616751884314074
+27 17 -81.0799832525730726674679289752255240006070716633632990308935
+27 18 -1.25037492835620639521768185656179119962253747492403205797494
+27 19 2.59263594969543681023776379504377324994226447359296887778718
+27 20 -0.301440298346404539830163997260526875264431537275641495291993
+27 21 0.221384460789832337451706451572773791695246839057318414301020
+27 22 0.0827577274771892931955989870974693152996276435429809890551210
+27 23 18.9960662040611520464672450037243263998175161412237156872211
+27 24 0.269231946409639685623468015128334167460051910348912845121977
+27 25 1.62674827447066537462989364929628933988125029284183680279020
+27 26 0.491719043846229147070666628704194097678081907210673044988866
+28 0 0.0838479812409052664616968791372814085980533139224911131069335
+28 1 0
+28 2 0
+28 3 0
+28 4 0
+28 5 -0.0117949367100973814319755056031295775367961960590736150777613
+28 6 -0.247299020568812652339473838743194598325992840353340132697498
+28 7 0.0978080858367729012259313014081291665503740655476733940756599
+28 8 0.217590689243420631360008651767860318344168120024782176879989
+28 9 0
+28 10 0.137585606763325224865659632196787746647447222975084865975440
+28 11 0.0439870229715046685058790092341545026046103890294261359042581
+28 12 0
+28 13 -0.513700813768193341957004456618630303738757363641964030086972
+28 14 0.826355691151315508644211308399153458701423158616168576922372
+28 15 25.7018139719811832625873882972519939511136556341960074626615
+28 16 0
+28 17 0
+28 18 0
+28 19 0
+28 20 0
+28 21 0
+28 22 0
+28 23 -25.7018139719811832625873882972519939511136556341960074626615
+28 24 -0.826355691151315508644211308399153458701423158616168576922372
+28 25 0.513700813768193341957004456618630303738757363641964030086972
+28 26 -0.0439870229715046685058790092341545026046103890294261359042581
+28 27 -0.137585606763325224865659632196787746647447222975084865975440
+29 0 0.124380526654094412881516420868799316268491466359671423163289
+29 1 0
+29 2 0
+29 3 0
+29 4 0.226120282197584301422238662979202901196752320742633143965145
+29 5 0.0137885887618080880607695837016477814530969417491493385363543
+29 6 -0.0672210133996684449749399507414305856950086341525382182856200
+29 7 0
+29 8 0
+29 9 -0.856238975085428354755349769879501772112121597411563802855067
+29 10 -1.96337522866858908928262850028093813988180440518267404553576
+29 11 -0.232332822724119401237246257308921847250108199230419994978218
+29 12 0
+29 13 4.30660719086453349461668936876562947772432562053478092626764
+29 14 -2.92722963249465482659787911202390446687687394950633612630592
+29 15 -82.3131666397858944454492334105458707735761966428138676971041
+29 16 0
+29 17 0
+29 18 0
+29 19 0
+29 20 0
+29 21 0
+29 22 0
+29 23 82.3131666397858944454492334105458707735761966428138676971041
+29 24 2.92722963249465482659787911202390446687687394950633612630592
+29 25 -4.30660719086453349461668936876562947772432562053478092626764
+29 26 0.232332822724119401237246257308921847250108199230419994978218
+29 27 1.96337522866858908928262850028093813988180440518267404553576
+29 28 0.856238975085428354755349769879501772112121597411563802855067
+30 0 0.103484561636679776672993546511910344499744798201971316606663
+30 1 0
+30 2 0
+30 3 0.122068887306407222589644082868962077139592714834162134741275
+30 4 0.482574490331246622475134780125688112865919023850168049679402
+30 5 -0.0381409600015606999730886240005620205664113072478411477421970
+30 6 0
+30 7 -0.550499525310802324138388507020508177411414311000037561712836
+30 8 0
+30 9 -0.711915811585189227887648262043794387578291882406745570495765
+30 10 -0.584129605671551340432988730158480872095335329645227595707052
+30 11 0
+30 12 0
+30 13 2.11046308125864932128717300046622750300375054278936987850718
+30 14 -0.0837494736739572135525742023001037992695260175335123517729291
+30 15 5.10021499072320914075295969043344113107545060862804249161191
+30 16 0
+30 17 0
+30 18 0
+30 19 0
+30 20 0
+30 21 0
+30 22 0
+30 23 -5.10021499072320914075295969043344113107545060862804249161191
+30 24 0.0837494736739572135525742023001037992695260175335123517729291
+30 25 -2.11046308125864932128717300046622750300375054278936987850718
+30 26 0
+30 27 0.584129605671551340432988730158480872095335329645227595707052
+30 28 0.711915811585189227887648262043794387578291882406745570495765
+30 29 0.550499525310802324138388507020508177411414311000037561712836
+31 0 0.193333333333333333333333333333333333333333333333333333333333
+31 1 0
+31 2 0.220000000000000000000000000000000000000000000000000000000000
+31 3 -0.0800000000000000000000000000000000000000000000000000000000000
+31 4 0
+31 5 0
+31 6 0.109993425580724703919462404865068340845119058295846426463652
+31 7 -0.254297048076270161384068506997153122141835626976703920846242
+31 8 0
+31 9 0.865570777116694254343770343821098281832847401233011859346737
+31 10 3.32416449114093083106799552786572018336860092936986407160200
+31 11 0
+31 12 0
+31 13 -12.0102223315977933882352385148661841260301942633996815127277
+31 14 0.476601466242493239430442776862061899602963782003580209476163
+31 15 -29.0243011221036390525802623213654099596251221332470910692353
+31 16 0
+31 17 0
+31 18 0
+31 19 0
+31 20 0
+31 21 0
+31 22 0
+31 23 29.0243011221036390525802623213654099596251221332470910692353
+31 24 -0.476601466242493239430442776862061899602963782003580209476163
+31 25 12.0102223315977933882352385148661841260301942633996815127277
+31 26 0
+31 27 -3.32416449114093083106799552786572018336860092936986407160200
+31 28 -0.865570777116694254343770343821098281832847401233011859346737
+31 29 0.254297048076270161384068506997153122141835626976703920846242
+31 30 -0.109993425580724703919462404865068340845119058295846426463652
+32 0 -0.833333333333333333333333333333333333333333333333333333333333
+32 1 1.38888888888888888888888888888888888888888888888888888888889
+32 2 0
+32 3 0
+32 4 -0.750000000000000000000000000000000000000000000000000000000000
+32 5 0
+32 6 -0.492529543718026304422682049114021320200214681580657784719074
+32 7 0
+32 8 0
+32 9 0
+32 10 0
+32 11 0
+32 12 0
+32 13 0
+32 14 0
+32 15 0
+32 16 0
+32 17 0
+32 18 0
+32 19 0
+32 20 0
+32 21 0
+32 22 0
+32 23 0
+32 24 0
+32 25 0
+32 26 0
+32 27 0
+32 28 0
+32 29 0
+32 30 0.492529543718026304422682049114021320200214681580657784719074
+32 31 0.750000000000000000000000000000000000000000000000000000000000
+33 0 0.111111111111111111111111111111111111111111111111111111111111
+33 1 0
+33 2 -0.222222222222222222222222222222222222222222222222222222222222
+33 3 0
+33 4 0
+33 5 0
+33 6 0
+33 7 0
+33 8 0
+33 9 0
+33 10 0
+33 11 0
+33 12 0
+33 13 0
+33 14 0
+33 15 0
+33 16 0
+33 17 0
+33 18 0
+33 19 0
+33 20 0
+33 21 0
+33 22 0
+33 23 0
+33 24 0
+33 25 0
+33 26 0
+33 27 0
+33 28 0
+33 29 0
+33 30 0
+33 31 0
+33 32 0.222222222222222222222222222222222222222222222222222222222222
+34 0 0.285835140388971558796088842163836414852927537894596466840753
+34 1 0.291666666666666666666666666666666666666666666666666666666667
+34 2 0.218750000000000000000000000000000000000000000000000000000000
+34 3 0
+34 4 0.164062500000000000000000000000000000000000000000000000000000
+34 5 0
+34 6 0.218194354945556658327188241581352107093288824322187941141516
+34 7 0.180392898478697766863635221946775437719620053641849228562435
+34 8 0
+34 9 0.205713839404845018859120755122929542277570094982808905393991
+34 10 0.242715791581770239970282927959446515762745971386670541948576
+34 11 0.246465780813629305833609291181891407799228103869305705137021
+34 12 -3.44991940790890824979834154601622662060370460614931644223924
+34 13 0.228875562160036081760729060738458584294220372552740218459295
+34 14 0.283290599702151415321527419056733335978436595493855789831434
+34 15 3.21085125837766640960131490544236787005557320332238705967955
+34 16 -0.223538777364845699920233756214162507964125230083674032084065
+34 17 -0.707121157204419073518727286207487212130091231955206160635271
+34 18 3.21123345150287080408174729202856500893260034443022374267639
+34 19 1.40954348309669766030414474301123175769045945573548986335553
+34 20 -0.151362053443742613121602276742518111090963026203676055891793
+34 21 0.372350574527014276454724080214619984397121028202148298716575
+34 22 0.252978746406361336722199907762141285915775728129414319261111
+34 23 -3.21085125837766640960131490544236787005557320332238705967955
+34 24 -0.283290599702151415321527419056733335978436595493855789831434
+34 25 -0.228875562160036081760729060738458584294220372552740218459295
+34 26 -0.246465780813629305833609291181891407799228103869305705137021
+34 27 -0.242715791581770239970282927959446515762745971386670541948576
+34 28 -0.205713839404845018859120755122929542277570094982808905393991
+34 29 -0.180392898478697766863635221946775437719620053641849228562435
+34 30 -0.218194354945556658327188241581352107093288824322187941141516
+34 31 -0.164062500000000000000000000000000000000000000000000000000000
+34 32 -0.218750000000000000000000000000000000000000000000000000000000
+34 33 -0.291666666666666666666666666666666666666666666666666666666667
+
+
+ The estimate of the local truncation error is ( 1/1000 ) h ( f(t1,x1)-f(t33,x33) )