1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
|
/** @file mcf.cpp Definition of Multi-Commodity-Flow solver. */
#include "../stdafx.h"
#include "../core/math_func.hpp"
#include "mcf.h"
#include <set>
#include "../safeguards.h"
typedef std::map<NodeID, Path *> PathViaMap;
/**
* Distance-based annotation for use in the Dijkstra algorithm. This is close
* to the original meaning of "annotation" in this context. Paths are rated
* according to the sum of distances of their edges.
*/
class DistanceAnnotation : public Path {
public:
/**
* Constructor.
* @param n ID of node to be annotated.
* @param source If the node is the source of its path.
*/
DistanceAnnotation(NodeID n, bool source = false) : Path(n, source) {}
bool IsBetter(const DistanceAnnotation *base, uint cap, int free_cap, uint dist) const;
/**
* Return the actual value of the annotation, in this case the distance.
* @return Distance.
*/
inline uint GetAnnotation() const { return this->distance; }
/**
* Update the cached annotation value
*/
inline void UpdateAnnotation() { }
/**
* Comparator for std containers.
*/
struct Comparator {
bool operator()(const DistanceAnnotation *x, const DistanceAnnotation *y) const;
};
};
/**
* Capacity-based annotation for use in the Dijkstra algorithm. This annotation
* rates paths according to the maximum capacity of their edges. The Dijkstra
* algorithm still gives meaningful results like this as the capacity of a path
* can only decrease or stay the same if you add more edges.
*/
class CapacityAnnotation : public Path {
int cached_annotation;
public:
/**
* Constructor.
* @param n ID of node to be annotated.
* @param source If the node is the source of its path.
*/
CapacityAnnotation(NodeID n, bool source = false) : Path(n, source) {}
bool IsBetter(const CapacityAnnotation *base, uint cap, int free_cap, uint dist) const;
/**
* Return the actual value of the annotation, in this case the capacity.
* @return Capacity.
*/
inline int GetAnnotation() const { return this->cached_annotation; }
/**
* Update the cached annotation value
*/
inline void UpdateAnnotation()
{
this->cached_annotation = this->GetCapacityRatio();
}
/**
* Comparator for std containers.
*/
struct Comparator {
bool operator()(const CapacityAnnotation *x, const CapacityAnnotation *y) const;
};
};
/**
* Iterator class for getting the edges in the order of their next_edge
* members.
*/
class GraphEdgeIterator {
private:
LinkGraphJob &job; ///< Job being executed
EdgeIterator i; ///< Iterator pointing to current edge.
EdgeIterator end; ///< Iterator pointing beyond last edge.
public:
/**
* Construct a GraphEdgeIterator.
* @param job Job to iterate on.
*/
GraphEdgeIterator(LinkGraphJob &job) : job(job),
i(nullptr, nullptr, INVALID_NODE), end(nullptr, nullptr, INVALID_NODE)
{}
/**
* Setup the node to start iterating at.
* @param source Unused.
* @param node Node to start iterating at.
*/
void SetNode(NodeID source, NodeID node)
{
this->i = this->job[node].Begin();
this->end = this->job[node].End();
}
/**
* Retrieve the ID of the node the next edge points to.
* @return Next edge's target node ID or INVALID_NODE.
*/
NodeID Next()
{
return this->i != this->end ? (this->i++)->first : INVALID_NODE;
}
};
/**
* Iterator class for getting edges from a FlowStatMap.
*/
class FlowEdgeIterator {
private:
LinkGraphJob &job; ///< Link graph job we're working with.
/** Lookup table for getting NodeIDs from StationIDs. */
std::vector<NodeID> station_to_node;
/** Current iterator in the shares map. */
FlowStat::SharesMap::const_iterator it;
/** End of the shares map. */
FlowStat::SharesMap::const_iterator end;
public:
/**
* Constructor.
* @param job Link graph job to work with.
*/
FlowEdgeIterator(LinkGraphJob &job) : job(job)
{
for (NodeID i = 0; i < job.Size(); ++i) {
StationID st = job[i].Station();
if (st >= this->station_to_node.size()) {
this->station_to_node.resize(st + 1);
}
this->station_to_node[st] = i;
}
}
/**
* Setup the node to retrieve edges from.
* @param source Root of the current path tree.
* @param node Current node to be checked for outgoing flows.
*/
void SetNode(NodeID source, NodeID node)
{
const FlowStatMap &flows = this->job[node].Flows();
FlowStatMap::const_iterator it = flows.find(this->job[source].Station());
if (it != flows.end()) {
this->it = it->second.GetShares()->begin();
this->end = it->second.GetShares()->end();
} else {
this->it = FlowStat::empty_sharesmap.begin();
this->end = FlowStat::empty_sharesmap.end();
}
}
/**
* Get the next node for which a flow exists.
* @return ID of next node with flow.
*/
NodeID Next()
{
if (this->it == this->end) return INVALID_NODE;
return this->station_to_node[(this->it++)->second];
}
};
/**
* Determines if an extension to the given Path with the given parameters is
* better than this path.
* @param base Other path.
* @param free_cap Capacity of the new edge to be added to base.
* @param dist Distance of the new edge.
* @return True if base + the new edge would be better than the path associated
* with this annotation.
*/
bool DistanceAnnotation::IsBetter(const DistanceAnnotation *base, uint cap,
int free_cap, uint dist) const
{
/* If any of the paths is disconnected, the other one is better. If both
* are disconnected, this path is better.*/
if (base->distance == UINT_MAX) {
return false;
} else if (this->distance == UINT_MAX) {
return true;
}
if (free_cap > 0 && base->free_capacity > 0) {
/* If both paths have capacity left, compare their distances.
* If the other path has capacity left and this one hasn't, the
* other one's better (thus, return true). */
return this->free_capacity > 0 ? (base->distance + dist < this->distance) : true;
} else {
/* If the other path doesn't have capacity left, but this one has,
* the other one is worse (thus, return false).
* If both paths are out of capacity, do the regular distance
* comparison. */
return this->free_capacity > 0 ? false : (base->distance + dist < this->distance);
}
}
/**
* Determines if an extension to the given Path with the given parameters is
* better than this path.
* @param base Other path.
* @param free_cap Capacity of the new edge to be added to base.
* @param dist Distance of the new edge.
* @return True if base + the new edge would be better than the path associated
* with this annotation.
*/
bool CapacityAnnotation::IsBetter(const CapacityAnnotation *base, uint cap,
int free_cap, uint dist) const
{
int min_cap = Path::GetCapacityRatio(min(base->free_capacity, free_cap), min(base->capacity, cap));
int this_cap = this->GetCapacityRatio();
if (min_cap == this_cap) {
/* If the capacities are the same and the other path isn't disconnected
* choose the shorter path. */
return base->distance == UINT_MAX ? false : (base->distance + dist < this->distance);
} else {
return min_cap > this_cap;
}
}
/**
* A slightly modified Dijkstra algorithm. Grades the paths not necessarily by
* distance, but by the value Tannotation computes. It uses the max_saturation
* setting to artificially decrease capacities.
* @tparam Tannotation Annotation to be used.
* @tparam Tedge_iterator Iterator to be used for getting outgoing edges.
* @param source_node Node where the algorithm starts.
* @param paths Container for the paths to be calculated.
*/
template<class Tannotation, class Tedge_iterator>
void MultiCommodityFlow::Dijkstra(NodeID source_node, PathVector &paths)
{
typedef std::set<Tannotation *, typename Tannotation::Comparator> AnnoSet;
Tedge_iterator iter(this->job);
uint size = this->job.Size();
AnnoSet annos;
paths.resize(size, nullptr);
for (NodeID node = 0; node < size; ++node) {
Tannotation *anno = new Tannotation(node, node == source_node);
anno->UpdateAnnotation();
annos.insert(anno);
paths[node] = anno;
}
while (!annos.empty()) {
typename AnnoSet::iterator i = annos.begin();
Tannotation *source = *i;
annos.erase(i);
NodeID from = source->GetNode();
iter.SetNode(source_node, from);
for (NodeID to = iter.Next(); to != INVALID_NODE; to = iter.Next()) {
if (to == from) continue; // Not a real edge but a consumption sign.
Edge edge = this->job[from][to];
uint capacity = edge.Capacity();
if (this->max_saturation != UINT_MAX) {
capacity *= this->max_saturation;
capacity /= 100;
if (capacity == 0) capacity = 1;
}
/* punish in-between stops a little */
uint distance = DistanceMaxPlusManhattan(this->job[from].XY(), this->job[to].XY()) + 1;
Tannotation *dest = static_cast<Tannotation *>(paths[to]);
if (dest->IsBetter(source, capacity, capacity - edge.Flow(), distance)) {
annos.erase(dest);
dest->Fork(source, capacity, capacity - edge.Flow(), distance);
dest->UpdateAnnotation();
annos.insert(dest);
}
}
}
}
/**
* Clean up paths that lead nowhere and the root path.
* @param source_id ID of the root node.
* @param paths Paths to be cleaned up.
*/
void MultiCommodityFlow::CleanupPaths(NodeID source_id, PathVector &paths)
{
Path *source = paths[source_id];
paths[source_id] = nullptr;
for (PathVector::iterator i = paths.begin(); i != paths.end(); ++i) {
Path *path = *i;
if (path == nullptr) continue;
if (path->GetParent() == source) path->Detach();
while (path != source && path != nullptr && path->GetFlow() == 0) {
Path *parent = path->GetParent();
path->Detach();
if (path->GetNumChildren() == 0) {
paths[path->GetNode()] = nullptr;
delete path;
}
path = parent;
}
}
delete source;
paths.clear();
}
/**
* Push flow along a path and update the unsatisfied_demand of the associated
* edge.
* @param edge Edge whose ends the path connects.
* @param path End of the path the flow should be pushed on.
* @param accuracy Accuracy of the calculation.
* @param max_saturation If < UINT_MAX only push flow up to the given
* saturation, otherwise the path can be "overloaded".
*/
uint MultiCommodityFlow::PushFlow(Edge &edge, Path *path, uint accuracy,
uint max_saturation)
{
assert(edge.UnsatisfiedDemand() > 0);
uint flow = Clamp(edge.Demand() / accuracy, 1, edge.UnsatisfiedDemand());
flow = path->AddFlow(flow, this->job, max_saturation);
edge.SatisfyDemand(flow);
return flow;
}
/**
* Find the flow along a cycle including cycle_begin in path.
* @param path Set of paths that form the cycle.
* @param cycle_begin Path to start at.
* @return Flow along the cycle.
*/
uint MCF1stPass::FindCycleFlow(const PathVector &path, const Path *cycle_begin)
{
uint flow = UINT_MAX;
const Path *cycle_end = cycle_begin;
do {
flow = min(flow, cycle_begin->GetFlow());
cycle_begin = path[cycle_begin->GetNode()];
} while (cycle_begin != cycle_end);
return flow;
}
/**
* Eliminate a cycle of the given flow in the given set of paths.
* @param path Set of paths containing the cycle.
* @param cycle_begin Part of the cycle to start at.
* @param flow Flow along the cycle.
*/
void MCF1stPass::EliminateCycle(PathVector &path, Path *cycle_begin, uint flow)
{
Path *cycle_end = cycle_begin;
do {
NodeID prev = cycle_begin->GetNode();
cycle_begin->ReduceFlow(flow);
if (cycle_begin->GetFlow() == 0) {
PathList &node_paths = this->job[cycle_begin->GetParent()->GetNode()].Paths();
for (PathList::iterator i = node_paths.begin(); i != node_paths.end(); ++i) {
if (*i == cycle_begin) {
node_paths.erase(i);
node_paths.push_back(cycle_begin);
break;
}
}
}
cycle_begin = path[prev];
Edge edge = this->job[prev][cycle_begin->GetNode()];
edge.RemoveFlow(flow);
} while (cycle_begin != cycle_end);
}
/**
* Eliminate cycles for origin_id in the graph. Start searching at next_id and
* work recursively. Also "summarize" paths: Add up the flows along parallel
* paths in one.
* @param path Paths checked in parent calls to this method.
* @param origin_id Origin of the paths to be checked.
* @param next_id Next node to be checked.
* @return If any cycles have been found and eliminated.
*/
bool MCF1stPass::EliminateCycles(PathVector &path, NodeID origin_id, NodeID next_id)
{
Path *at_next_pos = path[next_id];
/* this node has already been searched */
if (at_next_pos == Path::invalid_path) return false;
if (at_next_pos == nullptr) {
/* Summarize paths; add up the paths with the same source and next hop
* in one path each. */
PathList &paths = this->job[next_id].Paths();
PathViaMap next_hops;
for (PathList::iterator i = paths.begin(); i != paths.end();) {
Path *new_child = *i;
uint new_flow = new_child->GetFlow();
if (new_flow == 0) break;
if (new_child->GetOrigin() == origin_id) {
PathViaMap::iterator via_it = next_hops.find(new_child->GetNode());
if (via_it == next_hops.end()) {
next_hops[new_child->GetNode()] = new_child;
++i;
} else {
Path *child = via_it->second;
child->AddFlow(new_flow);
new_child->ReduceFlow(new_flow);
/* We might hit end() with with the ++ here and skip the
* newly push_back'ed path. That's good as the flow of that
* path is 0 anyway. */
paths.erase(i++);
paths.push_back(new_child);
}
} else {
++i;
}
}
bool found = false;
/* Search the next hops for nodes we have already visited */
for (PathViaMap::iterator via_it = next_hops.begin();
via_it != next_hops.end(); ++via_it) {
Path *child = via_it->second;
if (child->GetFlow() > 0) {
/* Push one child into the path vector and search this child's
* children. */
path[next_id] = child;
found = this->EliminateCycles(path, origin_id, child->GetNode()) || found;
}
}
/* All paths departing from this node have been searched. Mark as
* resolved if no cycles found. If cycles were found further cycles
* could be found in this branch, thus it has to be searched again next
* time we spot it.
*/
path[next_id] = found ? nullptr : Path::invalid_path;
return found;
}
/* This node has already been visited => we have a cycle.
* Backtrack to find the exact flow. */
uint flow = this->FindCycleFlow(path, at_next_pos);
if (flow > 0) {
this->EliminateCycle(path, at_next_pos, flow);
return true;
}
return false;
}
/**
* Eliminate all cycles in the graph. Check paths starting at each node for
* potential cycles.
* @return If any cycles have been found and eliminated.
*/
bool MCF1stPass::EliminateCycles()
{
bool cycles_found = false;
uint size = this->job.Size();
PathVector path(size, nullptr);
for (NodeID node = 0; node < size; ++node) {
/* Starting at each node in the graph find all cycles involving this
* node. */
std::fill(path.begin(), path.end(), (Path *)nullptr);
cycles_found |= this->EliminateCycles(path, node, node);
}
return cycles_found;
}
/**
* Run the first pass of the MCF calculation.
* @param job Link graph job to calculate.
*/
MCF1stPass::MCF1stPass(LinkGraphJob &job) : MultiCommodityFlow(job)
{
PathVector paths;
uint size = job.Size();
uint accuracy = job.Settings().accuracy;
bool more_loops;
std::vector<bool> finished_sources(size);
do {
more_loops = false;
for (NodeID source = 0; source < size; ++source) {
if (finished_sources[source]) continue;
/* First saturate the shortest paths. */
this->Dijkstra<DistanceAnnotation, GraphEdgeIterator>(source, paths);
bool source_demand_left = false;
for (NodeID dest = 0; dest < size; ++dest) {
Edge edge = job[source][dest];
if (edge.UnsatisfiedDemand() > 0) {
Path *path = paths[dest];
assert(path != nullptr);
/* Generally only allow paths that don't exceed the
* available capacity. But if no demand has been assigned
* yet, make an exception and allow any valid path *once*. */
if (path->GetFreeCapacity() > 0 && this->PushFlow(edge, path,
accuracy, this->max_saturation) > 0) {
/* If a path has been found there is a chance we can
* find more. */
more_loops = more_loops || (edge.UnsatisfiedDemand() > 0);
} else if (edge.UnsatisfiedDemand() == edge.Demand() &&
path->GetFreeCapacity() > INT_MIN) {
this->PushFlow(edge, path, accuracy, UINT_MAX);
}
if (edge.UnsatisfiedDemand() > 0) source_demand_left = true;
}
}
finished_sources[source] = !source_demand_left;
this->CleanupPaths(source, paths);
}
} while ((more_loops || this->EliminateCycles()) && !job.IsJobAborted());
}
/**
* Run the second pass of the MCF calculation which assigns all remaining
* demands to existing paths.
* @param job Link graph job to calculate.
*/
MCF2ndPass::MCF2ndPass(LinkGraphJob &job) : MultiCommodityFlow(job)
{
this->max_saturation = UINT_MAX; // disable artificial cap on saturation
PathVector paths;
uint size = job.Size();
uint accuracy = job.Settings().accuracy;
bool demand_left = true;
std::vector<bool> finished_sources(size);
while (demand_left && !job.IsJobAborted()) {
demand_left = false;
for (NodeID source = 0; source < size; ++source) {
if (finished_sources[source]) continue;
this->Dijkstra<CapacityAnnotation, FlowEdgeIterator>(source, paths);
bool source_demand_left = false;
for (NodeID dest = 0; dest < size; ++dest) {
Edge edge = this->job[source][dest];
Path *path = paths[dest];
if (edge.UnsatisfiedDemand() > 0 && path->GetFreeCapacity() > INT_MIN) {
this->PushFlow(edge, path, accuracy, UINT_MAX);
if (edge.UnsatisfiedDemand() > 0) {
demand_left = true;
source_demand_left = true;
}
}
}
finished_sources[source] = !source_demand_left;
this->CleanupPaths(source, paths);
}
}
}
/**
* Relation that creates a weak order without duplicates.
* Avoid accidentally deleting different paths of the same capacity/distance in
* a set. When the annotation is the same node IDs are compared, so there are
* no equal ranges.
* @tparam T Type to be compared on.
* @param x_anno First value.
* @param y_anno Second value.
* @param x Node id associated with the first value.
* @param y Node id associated with the second value.
*/
template <typename T>
bool Greater(T x_anno, T y_anno, NodeID x, NodeID y)
{
if (x_anno > y_anno) return true;
if (x_anno < y_anno) return false;
return x > y;
}
/**
* Compare two capacity annotations.
* @param x First capacity annotation.
* @param y Second capacity annotation.
* @return If x is better than y.
*/
bool CapacityAnnotation::Comparator::operator()(const CapacityAnnotation *x,
const CapacityAnnotation *y) const
{
return x != y && Greater<int>(x->GetAnnotation(), y->GetAnnotation(),
x->GetNode(), y->GetNode());
}
/**
* Compare two distance annotations.
* @param x First distance annotation.
* @param y Second distance annotation.
* @return If x is better than y.
*/
bool DistanceAnnotation::Comparator::operator()(const DistanceAnnotation *x,
const DistanceAnnotation *y) const
{
return x != y && !Greater<uint>(x->GetAnnotation(), y->GetAnnotation(),
x->GetNode(), y->GetNode());
}
|