summaryrefslogtreecommitdiff
path: root/src/blitter/32bpp_sse4.cpp
blob: 7d2bc91aa23e741cb382250a6a7444c8eb7a902b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
/* $Id$ */

/*
 * This file is part of OpenTTD.
 * OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
 * OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 * See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
 */

/** @file 32bpp_sse4.cpp Implementation of the SSE4 32 bpp blitter. */

#ifdef WITH_SSE

#include "../stdafx.h"
#include "../zoom_func.h"
#include "../settings_type.h"
#include "32bpp_sse4.hpp"

/** Instantiation of the SSE4 32bpp blitter factory. */
static FBlitter_32bppSSE4 iFBlitter_32bppSSE4;

#if defined(__GNUC__)
	#pragma GCC diagnostic push
	#pragma GCC diagnostic ignored "-Wunused-variable"
#endif
/**
 * Draws a sprite to a (screen) buffer. It is templated to allow faster operation.
 *
 * @tparam mode blitter mode
 * @param bp further blitting parameters
 * @param zoom zoom level at which we are drawing
 */
template <BlitterMode mode, Blitter_32bppSSE2::ReadMode read_mode, Blitter_32bppSSE2::BlockType bt_last>
inline void Blitter_32bppSSE4::Draw(const Blitter::BlitterParams *bp, ZoomLevel zoom)
{
	const byte * const remap = bp->remap;
	Colour *dst_line = (Colour *) bp->dst + bp->top * bp->pitch + bp->left;
	int effective_width = bp->width;

	/* Find where to start reading in the source sprite. */
	const SpriteData * const sd = (const SpriteData *) bp->sprite;
	const SpriteInfo * const si = &sd->infos[zoom];
	const MapValue *src_mv_line = (const MapValue *) &sd->data[si->mv_offset] + bp->skip_top * si->sprite_width;
	const Colour *src_rgba_line = (const Colour *) ((const byte *) &sd->data[si->sprite_offset] + bp->skip_top * si->sprite_line_size);

	if (read_mode != RM_WITH_MARGIN) {
		src_rgba_line += bp->skip_left;
		src_mv_line += bp->skip_left;
	}

	/* Load these variables into register before loop. */
	const __m128i a_cm        = ALPHA_CONTROL_MASK;
	const __m128i pack_low_cm = PACK_LOW_CONTROL_MASK;
	const __m128i briAB_cm    = BRIGHTNESS_LOW_CONTROL_MASK;
	const __m128i div_cleaner = BRIGHTNESS_DIV_CLEANER;
	const __m128i ob_check    = OVERBRIGHT_PRESENCE_MASK;
	const __m128i ob_mask     = OVERBRIGHT_VALUE_MASK;
	const __m128i ob_cm       = OVERBRIGHT_CONTROL_MASK;
	const __m128i tr_nom_base = TRANSPARENT_NOM_BASE;

	for (int y = bp->height; y != 0; y--) {
		const Colour *src = src_rgba_line + META_LENGTH;
		Colour *dst = dst_line;
		const MapValue *src_mv = src_mv_line;

		switch (mode) {
			default: {
				switch (read_mode) {
					case RM_WITH_MARGIN: {
						src += src_rgba_line[0].data;
						dst += src_rgba_line[0].data;
						const int width_diff = si->sprite_width - bp->width;
						effective_width = bp->width - (int) src_rgba_line[0].data;
						const int delta_diff = (int) src_rgba_line[1].data - width_diff;
						const int new_width = effective_width - (delta_diff & ~1);
						effective_width = delta_diff > 0 ? new_width : effective_width;
						if (effective_width <= 0) break;
						/* FALLTHROUGH */
					}

					case RM_WITH_SKIP: {
						__m128i srcABCD = _mm_loadu_si128((const __m128i*) src);
						__m128i dstABCD = _mm_loadu_si128((__m128i*) dst);
						for (uint x = (uint) effective_width / 2; x > 0; x--) {
							ALPHA_BLEND_2(pack_low_cm);
							srcABCD = _mm_blend_epi16(srcABCD, dstABCD, 0xF0);
							Colour *old_dst = dst;
							src += 2;
							dst += 2;
							/* It is VERY important to read next data before it gets invalidated in cpu cache.
							 * And PEXTR latency is a real problem here.
							 */
							dstABCD = _mm_loadu_si128((__m128i*) dst);
							_mm_storeu_si128((__m128i *) old_dst, srcABCD);
							srcABCD = _mm_loadu_si128((const __m128i*) src);
						}
						if (bt_last == BT_ODD) {
							ALPHA_BLEND_2(pack_low_cm);
							*dst = (Colour) EXTR32(srcABCD, 0);
						}
						break;
					}

					default: NOT_REACHED();
				}
				break;
			}

			case BM_COLOUR_REMAP: {
				switch (read_mode) {
					case RM_WITH_MARGIN: {
						src += src_rgba_line[0].data;
						src_mv += src_rgba_line[0].data;
						dst += src_rgba_line[0].data;
						const int width_diff = si->sprite_width - bp->width;
						effective_width = bp->width - (int) src_rgba_line[0].data;
						const int delta_diff = (int) src_rgba_line[1].data - width_diff;
						const int nd = effective_width - delta_diff;
						effective_width = delta_diff > 0 ? nd : effective_width;
						if (effective_width <= 0) break;
						/* FALLTHROUGH */
					}

					case RM_WITH_SKIP: {
						__m128i srcABCD = _mm_loadu_si128((const __m128i*) src);
						__m128i dstABCD = _mm_loadu_si128((__m128i*) dst);
						uint32 mvX2 = *((uint32 *) const_cast<MapValue *>(src_mv));

						for (uint x = (uint) effective_width / 2; x > 0; x--) {
							/* Remap colours. */
							if (mvX2 & 0x00FF00FF) {
								/* Written so the compiler uses CMOV. */
								const Colour src0 = src[0];
								const uint m0 = (byte) mvX2;
								const uint r0 = remap[m0];
								const Colour c0map = (this->LookupColourInPalette(r0).data & 0x00FFFFFF) | (src0.data & 0xFF000000);
								Colour c0 = 0; // Use alpha of 0 to keep dst as is.
								c0 = r0 == 0 ? c0 : c0map;
								c0 = m0 != 0 ? c0 : src0;
								INSR32(c0.data, srcABCD, 0);

								const Colour src1 = src[1];
								const uint m1 = (byte) (mvX2 >> 16);
								const uint r1 = remap[m1];
								const Colour c1map = (this->LookupColourInPalette(r1).data & 0x00FFFFFF) | (src1.data & 0xFF000000);
								Colour c1 = 0;
								c1 = r1 == 0 ? c1 : c1map;
								c1 = m1 != 0 ? c1 : src1;
								INSR32(c1.data, srcABCD, 1);

								if ((mvX2 & 0xFF00FF00) != 0x80008000) {
									ADJUST_BRIGHTNESS_2(srcABCD, mvX2);
								}
							}

							/* Blend colours. */
							ALPHA_BLEND_2(pack_low_cm);
							srcABCD = _mm_blend_epi16(srcABCD, dstABCD, 0xF0);
							Colour *old_dst = dst;
							dst += 2;
							src += 2;
							src_mv += 2;
							dstABCD = _mm_loadu_si128((__m128i*) dst);
							_mm_storeu_si128((__m128i *) old_dst, srcABCD);
							mvX2 = *((uint32 *) const_cast<MapValue *>(src_mv));
							srcABCD = _mm_loadu_si128((const __m128i*) src);
						}

						if (effective_width & 1) {
							/* In case the m-channel is zero, do not remap this pixel in any way. */
							if ((byte) mvX2 == 0) {
								if (src->a < 255) {
									ALPHA_BLEND_2(pack_low_cm);
									(*dst).data = EXTR32(srcABCD, 0);
								} else
									*dst = *src;
							} else {
								const uint r = remap[(byte) mvX2];
								if (r != 0) {
									Colour remapped_colour = AdjustBrightness(this->LookupColourInPalette(r), (byte) (mvX2 >> 8));
									if (src->a == 255) {
										*dst = remapped_colour;
									} else {
										remapped_colour.a = src->a;
										INSR32(remapped_colour.data, srcABCD, 0);
										ALPHA_BLEND_2(pack_low_cm);
										(*dst).data = EXTR32(srcABCD, 0);
									}
								}
							}
						}
						break;
					}

					default: NOT_REACHED();
				}
				src_mv_line += si->sprite_width;
				break;
			}

			case BM_TRANSPARENT: {
				/* Make the current colour a bit more black, so it looks like this image is transparent.
				 * rgb = rgb * ((256/4) * 4 - (alpha/4)) / ((256/4) * 4)
				 */
				__m128i srcABCD = _mm_loadu_si128((const __m128i*) src);
				__m128i dstABCD = _mm_loadu_si128((__m128i*) dst);
				for (uint x = (uint) bp->width / 2; x > 0; x--) {
					__m128i srcAB = _mm_unpacklo_epi8(srcABCD, _mm_setzero_si128());
					__m128i dstAB = _mm_unpacklo_epi8(dstABCD, _mm_setzero_si128());
					__m128i dstCD = _mm_unpackhi_epi8(dstABCD, _mm_setzero_si128());
					__m128i alphaAB = _mm_shuffle_epi8(srcAB, a_cm);
					alphaAB = _mm_srli_epi16(alphaAB, 2); // Reduce to 64 levels of shades so the max value fits in 16 bits.
					__m128i nom = _mm_sub_epi16(tr_nom_base, alphaAB);
					dstAB = _mm_mullo_epi16(dstAB, nom);
					dstAB = _mm_srli_epi16(dstAB, 8);
					dstAB = _mm_packus_epi16(dstAB, dstCD);
					Colour *old_dst = dst;
					src += 2;
					dst += 2;
					dstABCD = _mm_loadu_si128((__m128i*) dst);
					_mm_storeu_si128((__m128i *) old_dst, dstAB);
					srcABCD = _mm_loadu_si128((const __m128i*) src);
				}
				if (bp->width & 1) {
					__m128i srcAB = _mm_unpacklo_epi8(srcABCD, _mm_setzero_si128());
					__m128i dstAB = _mm_unpacklo_epi8(dstABCD, _mm_setzero_si128());
					__m128i alphaAB = _mm_shuffle_epi8(srcAB, a_cm);
					alphaAB = _mm_srli_epi16(alphaAB, 2);
					__m128i nom = _mm_sub_epi16(tr_nom_base, alphaAB);
					dstAB = _mm_mullo_epi16(dstAB, nom);
					dstAB = _mm_srli_epi16(dstAB, 8);
					dstAB = _mm_packus_epi16(dstAB, dstAB);
					(*dst).data = EXTR32(dstAB, 0);
				}

				break;
			}
		}

		src_rgba_line = (const Colour*) ((const byte*) src_rgba_line + si->sprite_line_size);
		dst_line += bp->pitch;
	}
}
#if defined(__GNUC__)
	#pragma GCC diagnostic pop
#endif

/**
 * Draws a sprite to a (screen) buffer. Calls adequate templated function.
 *
 * @param bp further blitting parameters
 * @param mode blitter mode
 * @param zoom zoom level at which we are drawing
 */
void Blitter_32bppSSE4::Draw(Blitter::BlitterParams *bp, BlitterMode mode, ZoomLevel zoom)
{
	const BlockType bt_last = (BlockType) (bp->width & 1);
	switch (mode) {
		case BM_NORMAL: {
			if (bp->skip_left != 0 || bp->width <= MARGIN_NORMAL_THRESHOLD) {
				switch (bt_last) {
					case BT_EVEN: Draw<BM_NORMAL, RM_WITH_SKIP, BT_EVEN>(bp, zoom); return;
					case BT_ODD:  Draw<BM_NORMAL, RM_WITH_SKIP, BT_ODD>(bp, zoom); return;
					default: NOT_REACHED();
				}
			} else {
				switch (bt_last) {
					case BT_EVEN: Draw<BM_NORMAL, RM_WITH_MARGIN, BT_EVEN>(bp, zoom); return;
					case BT_ODD:  Draw<BM_NORMAL, RM_WITH_MARGIN, BT_ODD>(bp, zoom); return;
					default: NOT_REACHED();
				}
			}
			break;
		}
		case BM_COLOUR_REMAP:
			if (bp->skip_left != 0 || bp->width <= MARGIN_REMAP_THRESHOLD) {
				Draw<BM_COLOUR_REMAP, RM_WITH_SKIP, BT_NONE>(bp, zoom); return;
			} else {
				Draw<BM_COLOUR_REMAP, RM_WITH_MARGIN, BT_NONE>(bp, zoom); return;
			}
		case BM_TRANSPARENT:  Draw<BM_TRANSPARENT, RM_NONE, BT_NONE>(bp, zoom); return;
		default: NOT_REACHED();
	}
}

/** Same code as seen in 32bpp_sse2.cpp but some macros are not the same. */
inline Colour Blitter_32bppSSE4::AdjustBrightness(Colour colour, uint8 brightness)
{
	/* Shortcut for normal brightness. */
	if (brightness == DEFAULT_BRIGHTNESS) return colour;

	return Blitter_32bppSSE4::ReallyAdjustBrightness(colour, brightness);
}

/* static */ Colour Blitter_32bppSSE4::ReallyAdjustBrightness(Colour colour, uint8 brightness)
{
	ALIGN(16) uint64 c16 = colour.b | (uint64) colour.g << 16 | (uint64) colour.r << 32;
	c16 *= brightness;
	uint64 c16_ob = c16; // Helps out of order execution.
	c16 /= DEFAULT_BRIGHTNESS;
	c16 &= 0x01FF01FF01FF;

	/* Sum overbright (maximum for each rgb is 508, 9 bits, -255 is changed in -256 so we just have to take the 8 lower bits into account). */
	c16_ob = (((c16_ob >> (8 + 7)) & 0x0100010001) * 0xFF) & c16;
	uint64 ob = (uint16) c16_ob + (uint16) (c16_ob >> 16) + (uint16) (c16_ob >> 32);

	const uint32 alpha32 = colour.data & 0xFF000000;
	__m128i ret;
	INSR64(c16, ret, 0);
	if (ob != 0) {
		/* Reduce overbright strength. */
		ob /= 2;
		__m128i ob128;
		INSR64(ob | ob << 16 | ob << 32, ob128, 0);
		__m128i white = OVERBRIGHT_VALUE_MASK;
		__m128i c128 = ret;
		ret = _mm_subs_epu16(white, c128); /* PSUBUSW,   (255 - rgb) */
		ret = _mm_mullo_epi16(ret, ob128); /* PMULLW, ob*(255 - rgb) */
		ret = _mm_srli_epi16(ret, 8);      /* PSRLW,  ob*(255 - rgb)/256 */
		ret = _mm_add_epi16(ret, c128);    /* PADDW,  ob*(255 - rgb)/256 + rgb */
	}

	ret = _mm_packus_epi16(ret, ret);      /* PACKUSWB, saturate and pack. */
	return alpha32 | EXTR32(ret, 0);
}

#endif /* WITH_SSE */