1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
|
/* $Id$ */
/** @file articulated_vehicles.cpp Implementation of articulated vehicles. */
#include "stdafx.h"
#include "openttd.h"
#include "articulated_vehicles.h"
#include "train.h"
#include "roadveh.h"
#include "newgrf_callbacks.h"
#include "newgrf_engine.h"
#include "vehicle_func.h"
static const uint MAX_ARTICULATED_PARTS = 100; ///< Maximum of articulated parts per vehicle, i.e. when to abort calling the articulated vehicle callback.
uint CountArticulatedParts(EngineID engine_type, bool purchase_window)
{
if (!HasBit(EngInfo(engine_type)->callbackmask, CBM_VEHICLE_ARTIC_ENGINE)) return 0;
/* If we can't allocate a vehicle now, we can't allocate it in the command
* either, so it doesn't matter how many articulated parts there are. */
if (!Vehicle::CanAllocateItem()) return 0;
Vehicle *v = NULL;;
if (!purchase_window) {
v = new InvalidVehicle();
v->engine_type = engine_type;
}
uint i;
for (i = 1; i < MAX_ARTICULATED_PARTS; i++) {
uint16 callback = GetVehicleCallback(CBID_VEHICLE_ARTIC_ENGINE, i, 0, engine_type, v);
if (callback == CALLBACK_FAILED || GB(callback, 0, 8) == 0xFF) break;
}
delete v;
return i - 1;
}
/**
* Returns the default (non-refitted) capacity of a specific EngineID.
* @param engine the EngineID of iterest
* @param type the type of the engine
* @param cargo_type returns the default cargo type, if needed
* @return capacity
*/
static inline uint16 GetVehicleDefaultCapacity(EngineID engine, VehicleType type, CargoID *cargo_type)
{
switch (type) {
case VEH_TRAIN: {
const RailVehicleInfo *rvi = RailVehInfo(engine);
if (cargo_type != NULL) *cargo_type = rvi->cargo_type;
return GetEngineProperty(engine, 0x14, rvi->capacity) + (rvi->railveh_type == RAILVEH_MULTIHEAD ? rvi->capacity : 0);
}
case VEH_ROAD: {
const RoadVehicleInfo *rvi = RoadVehInfo(engine);
if (cargo_type != NULL) *cargo_type = rvi->cargo_type;
return GetEngineProperty(engine, 0x0F, rvi->capacity);
}
case VEH_SHIP: {
const ShipVehicleInfo *svi = ShipVehInfo(engine);
if (cargo_type != NULL) *cargo_type = svi->cargo_type;
return GetEngineProperty(engine, 0x0D, svi->capacity);
}
case VEH_AIRCRAFT: {
const AircraftVehicleInfo *avi = AircraftVehInfo(engine);
if (cargo_type != NULL) *cargo_type = CT_PASSENGERS;
return avi->passenger_capacity;
}
default: NOT_REACHED();
}
}
/**
* Returns all cargos a vehicle can carry.
* @param engine the EngineID of iterest
* @param type the type of the engine
* @param include_initial_cargo_type if true the default cargo type of the vehicle is included; if false only the refit_mask
* @return bit set of CargoIDs
*/
static inline uint32 GetAvailableVehicleCargoTypes(EngineID engine, VehicleType type, bool include_initial_cargo_type)
{
uint32 cargos = 0;
CargoID initial_cargo_type;
if (GetVehicleDefaultCapacity(engine, type, &initial_cargo_type) > 0) {
if (type != VEH_SHIP || ShipVehInfo(engine)->refittable) {
const EngineInfo *ei = EngInfo(engine);
cargos = ei->refit_mask;
}
if (include_initial_cargo_type && initial_cargo_type < NUM_CARGO) SetBit(cargos, initial_cargo_type);
}
return cargos;
}
uint16 *GetCapacityOfArticulatedParts(EngineID engine, VehicleType type)
{
static uint16 capacity[NUM_CARGO];
memset(capacity, 0, sizeof(capacity));
CargoID cargo_type;
uint16 cargo_capacity = GetVehicleDefaultCapacity(engine, type, &cargo_type);
if (cargo_type < NUM_CARGO) capacity[cargo_type] = cargo_capacity;
if (type != VEH_TRAIN && type != VEH_ROAD) return capacity;
if (!HasBit(EngInfo(engine)->callbackmask, CBM_VEHICLE_ARTIC_ENGINE)) return capacity;
for (uint i = 1; i < MAX_ARTICULATED_PARTS; i++) {
uint16 callback = GetVehicleCallback(CBID_VEHICLE_ARTIC_ENGINE, i, 0, engine, NULL);
if (callback == CALLBACK_FAILED || GB(callback, 0, 8) == 0xFF) break;
EngineID artic_engine = GetNewEngineID(GetEngineGRF(engine), type, GB(callback, 0, 7));
cargo_capacity = GetVehicleDefaultCapacity(artic_engine, type, &cargo_type);
if (cargo_type < NUM_CARGO) capacity[cargo_type] += cargo_capacity;
}
return capacity;
}
/**
* Ors the refit_masks of all articulated parts.
* Note: Vehicles with a default capacity of zero are ignored.
* @param engine the first part
* @param type the vehicle type
* @param include_initial_cargo_type if true the default cargo type of the vehicle is included; if false only the refit_mask
* @return bit mask of CargoIDs which are a refit option for at least one articulated part
*/
uint32 GetUnionOfArticulatedRefitMasks(EngineID engine, VehicleType type, bool include_initial_cargo_type)
{
uint32 cargos = GetAvailableVehicleCargoTypes(engine, type, include_initial_cargo_type);
if (type != VEH_TRAIN && type != VEH_ROAD) return cargos;
if (!HasBit(EngInfo(engine)->callbackmask, CBM_VEHICLE_ARTIC_ENGINE)) return cargos;
for (uint i = 1; i < MAX_ARTICULATED_PARTS; i++) {
uint16 callback = GetVehicleCallback(CBID_VEHICLE_ARTIC_ENGINE, i, 0, engine, NULL);
if (callback == CALLBACK_FAILED || GB(callback, 0, 8) == 0xFF) break;
EngineID artic_engine = GetNewEngineID(GetEngineGRF(engine), type, GB(callback, 0, 7));
cargos |= GetAvailableVehicleCargoTypes(artic_engine, type, include_initial_cargo_type);
}
return cargos;
}
/**
* Ands the refit_masks of all articulated parts.
* Note: Vehicles with a default capacity of zero are ignored.
* @param engine the first part
* @param type the vehicle type
* @param include_initial_cargo_type if true the default cargo type of the vehicle is included; if false only the refit_mask
* @return bit mask of CargoIDs which are a refit option for every articulated part (with default capacity > 0)
*/
uint32 GetIntersectionOfArticulatedRefitMasks(EngineID engine, VehicleType type, bool include_initial_cargo_type)
{
uint32 cargos = UINT32_MAX;
uint32 veh_cargos = GetAvailableVehicleCargoTypes(engine, type, include_initial_cargo_type);
if (veh_cargos != 0) cargos &= veh_cargos;
if (type != VEH_TRAIN && type != VEH_ROAD) return cargos;
if (!HasBit(EngInfo(engine)->callbackmask, CBM_VEHICLE_ARTIC_ENGINE)) return cargos;
for (uint i = 1; i < MAX_ARTICULATED_PARTS; i++) {
uint16 callback = GetVehicleCallback(CBID_VEHICLE_ARTIC_ENGINE, i, 0, engine, NULL);
if (callback == CALLBACK_FAILED || GB(callback, 0, 8) == 0xFF) break;
EngineID artic_engine = GetNewEngineID(GetEngineGRF(engine), type, GB(callback, 0, 7));
veh_cargos = GetAvailableVehicleCargoTypes(artic_engine, type, include_initial_cargo_type);
if (veh_cargos != 0) cargos &= veh_cargos;
}
return cargos;
}
/**
* Tests if all parts of an articulated vehicle are refitted to the same cargo.
* Note: Vehicles not carrying anything are ignored
* @param v the first vehicle in the chain
* @param cargo_type returns the common CargoID if needed. (CT_INVALID if no part is carrying something or they are carrying different things)
* @return true if some parts are carrying different cargos, false if all parts are carrying the same (nothing is also the same)
*/
bool IsArticulatedVehicleCarryingDifferentCargos(const Vehicle *v, CargoID *cargo_type)
{
CargoID first_cargo = CT_INVALID;
do {
if (v->cargo_cap > 0 && v->cargo_type != CT_INVALID) {
if (first_cargo == CT_INVALID) first_cargo = v->cargo_type;
if (first_cargo != v->cargo_type) {
if (cargo_type != NULL) *cargo_type = CT_INVALID;
return true;
}
}
switch (v->type) {
case VEH_TRAIN:
v = (EngineHasArticPart(v) ? GetNextArticPart(v) : NULL);
break;
case VEH_ROAD:
v = (RoadVehHasArticPart(v) ? v->Next() : NULL);
break;
default:
v = NULL;
break;
}
} while (v != NULL);
if (cargo_type != NULL) *cargo_type = first_cargo;
return false;
}
void AddArticulatedParts(Vehicle **vl, VehicleType type)
{
const Vehicle *v = vl[0];
Vehicle *u = vl[0];
if (!HasBit(EngInfo(v->engine_type)->callbackmask, CBM_VEHICLE_ARTIC_ENGINE)) return;
for (uint i = 1; i < MAX_ARTICULATED_PARTS; i++) {
uint16 callback = GetVehicleCallback(CBID_VEHICLE_ARTIC_ENGINE, i, 0, v->engine_type, v);
if (callback == CALLBACK_FAILED || GB(callback, 0, 8) == 0xFF) return;
/* Attempt to use pre-allocated vehicles until they run out. This can happen
* if the callback returns different values depending on the cargo type. */
u->SetNext(vl[i]);
if (u->Next() == NULL) return;
Vehicle *previous = u;
u = u->Next();
EngineID engine_type = GetNewEngineID(GetEngineGRF(v->engine_type), type, GB(callback, 0, 7));
bool flip_image = HasBit(callback, 7);
/* get common values from first engine */
u->direction = v->direction;
u->owner = v->owner;
u->tile = v->tile;
u->x_pos = v->x_pos;
u->y_pos = v->y_pos;
u->z_pos = v->z_pos;
u->build_year = v->build_year;
u->vehstatus = v->vehstatus & ~VS_STOPPED;
u->cargo_subtype = 0;
u->max_speed = 0;
u->max_age = 0;
u->engine_type = engine_type;
u->value = 0;
u->subtype = 0;
u->cur_image = 0xAC2;
u->random_bits = VehicleRandomBits();
switch (type) {
default: NOT_REACHED();
case VEH_TRAIN: {
const RailVehicleInfo *rvi_artic = RailVehInfo(engine_type);
u = new (u) Train();
previous->SetNext(u);
u->u.rail.track = v->u.rail.track;
u->u.rail.railtype = v->u.rail.railtype;
u->u.rail.first_engine = v->engine_type;
u->spritenum = rvi_artic->image_index;
u->cargo_type = rvi_artic->cargo_type;
u->cargo_cap = rvi_artic->capacity; // Callback 36 is called when the consist is finished
SetArticulatedPart(u);
} break;
case VEH_ROAD: {
const RoadVehicleInfo *rvi_artic = RoadVehInfo(engine_type);
u = new (u) RoadVehicle();
previous->SetNext(u);
u->u.road.first_engine = v->engine_type;
u->u.road.cached_veh_length = GetRoadVehLength(u);
u->u.road.state = RVSB_IN_DEPOT;
u->u.road.roadtype = v->u.road.roadtype;
u->u.road.compatible_roadtypes = v->u.road.compatible_roadtypes;
u->spritenum = rvi_artic->image_index;
u->cargo_type = rvi_artic->cargo_type;
u->cargo_cap = rvi_artic->capacity; // Callback 36 is called when the consist is finished
SetRoadVehArticPart(u);
} break;
}
if (flip_image) u->spritenum++;
VehiclePositionChanged(u);
}
}
|