1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
|
/* $Id$ */
#ifndef MACROS_H
#define MACROS_H
#include "map.h"
/// Fetch n bits starting at bit s from x
#define GB(x, s, n) (((x) >> (s)) & ((1U << (n)) - 1))
/// Set n bits starting at bit s in x to d
#define SB(x, s, n, d) ((x) = ((x) & ~(((1U << (n)) - 1) << (s))) | ((d) << (s)))
/// Add i to the n bits starting at bit s in x
#define AB(x, s, n, i) ((x) = ((x) & ~(((1U << (n)) - 1) << (s))) | (((x) + ((i) << (s))) & (((1U << (n)) - 1) << (s))))
#ifdef min
#undef min
#endif
#ifdef max
#undef max
#endif
static inline int min(int a, int b) { if (a <= b) return a; return b; }
static inline int max(int a, int b) { if (a >= b) return a; return b; }
static inline int64 max64(int64 a, int64 b) { if (a >= b) return a; return b; }
static inline uint minu(uint a, uint b) { if (a <= b) return a; return b; }
static inline uint maxu(uint a, uint b) { if (a >= b) return a; return b; }
static inline int clamp(int a, int min, int max)
{
if (a <= min) return min;
if (a >= max) return max;
return a;
}
static inline int32 BIGMULSS(int32 a, int32 b, int shift) {
return (int32)(((int64)(a) * (int64)(b)) >> (shift));
}
static inline int64 BIGMULSS64(int64 a, int64 b, int shift) {
return ((a) * (b)) >> (shift);
}
static inline uint32 BIGMULUS(uint32 a, uint32 b, int shift) {
return (uint32)(((uint64)(a) * (uint64)(b)) >> (shift));
}
static inline int64 BIGMULS(int32 a, int32 b) {
return (int32)(((int64)(a) * (int64)(b)));
}
/* OPT: optimized into an unsigned comparison */
//#define IS_INSIDE_1D(x, base, size) ((x) >= (base) && (x) < (base) + (size))
#define IS_INSIDE_1D(x, base, size) ( (uint)((x) - (base)) < ((uint)(size)) )
#define HASBIT(x,y) ((x) & (1 << (y)))
#define SETBIT(x,y) ((x) |= (1 << (y)))
#define CLRBIT(x,y) ((x) &= ~(1 << (y)))
#define TOGGLEBIT(x,y) ((x) ^= (1 << (y)))
// checking more bits. Maybe unneccessary, but easy to use
#define HASBITS(x,y) ((x) & (y))
#define SETBITS(x,y) ((x) |= (y))
#define CLRBITS(x,y) ((x) &= ~(y))
#define PLAYER_SPRITE_COLOR(owner) ( (_player_colors[owner] + 0x307) << PALETTE_SPRITE_START)
#define SPRITE_PALETTE(x) ((x) | PALETTE_MODIFIER_COLOR)
extern const byte _ffb_64[128];
/* Returns the position of the first bit that is not zero, counted from the
* left. Ie, 10110100 returns 2, 00000001 returns 0, etc. When x == 0 returns
* 0.
*/
#define FIND_FIRST_BIT(x) _ffb_64[(x)]
/* Returns x with the first bit that is not zero, counted from the left, set
* to zero. So, 10110100 returns 10110000, 00000001 returns 00000000, etc.
*/
#define KILL_FIRST_BIT(x) _ffb_64[(x)+64]
static inline int FindFirstBit2x64(int value)
{
/*
int i = 0;
if ( (byte) value == 0) {
i += 8;
value >>= 8;
}
return i + FIND_FIRST_BIT(value & 0x3F);
Faster ( or at least cleaner ) implementation below?
*/
if (GB(value, 0, 8) == 0) {
return FIND_FIRST_BIT(GB(value, 8, 6)) + 8;
} else {
return FIND_FIRST_BIT(GB(value, 0, 6));
}
}
static inline int KillFirstBit2x64(int value)
{
if (GB(value, 0, 8) == 0) {
return KILL_FIRST_BIT(GB(value, 8, 6)) << 8;
} else {
return value & (KILL_FIRST_BIT(GB(value, 0, 6)) | 0x3F00);
}
}
/* [min,max), strictly less than */
#define IS_BYTE_INSIDE(a,min,max) ((byte)((a)-(min)) < (byte)((max)-(min)))
#define IS_INT_INSIDE(a,min,max) ((uint)((a)-(min)) < (uint)((max)-(min)))
#define CHANCE16(a,b) ((uint16)Random() <= (uint16)((65536 * a) / b))
#define CHANCE16R(a,b,r) ((uint16)(r=Random()) <= (uint16)((65536 * a) / b))
#define CHANCE16I(a,b,v) ((uint16)(v) <= (uint16)((65536 * a) / b))
#define for_each_bit(_i,_b) \
for(_i=0; _b!=0; _i++,_b>>=1) \
if (_b&1)
#define abs myabs
static inline int intxchg_(int *a, int b) { int t = *a; *a = b; return t; }
#define intswap(a,b) ((b) = intxchg_(&(a), (b)))
static inline int uintxchg_(uint *a, uint b) { uint t = *a; *a = b; return t; }
#define uintswap(a,b) ((b) = uintxchg_(&(a), (b)))
static inline int myabs(int a) { if (a<0) a = -a; return a; }
static inline int64 myabs64(int64 a) { if (a<0) a = -a; return a; }
static inline void swap_byte(byte *a, byte *b) { byte t = *a; *a = *b; *b = t; }
static inline void swap_uint16(uint16 *a, uint16 *b) { uint16 t = *a; *a = *b; *b = t; }
static inline void swap_int16(int16 *a, int16 *b) { int16 t = *a; *a = *b; *b = t; }
static inline void swap_int32(int32 *a, int32 *b) { int32 t = *a; *a = *b; *b = t; }
static inline void swap_tile(TileIndex *a, TileIndex *b) { TileIndex t = *a; *a = *b; *b = t; }
#if defined(TTD_LITTLE_ENDIAN)
# define READ_LE_UINT16(b) (*(const uint16*)(b))
#elif defined(TTD_BIG_ENDIAN)
static inline uint16 READ_LE_UINT16(const void *b) {
return ((const byte*)b)[0] + (((const byte*)b)[1] << 8);
}
#endif
/**
* ROtate x Left/Right by n (must be >= 0)
* @note Assumes a byte has 8 bits
*/
#define ROL(x, n) ((x) << (n) | (x) >> (sizeof(x) * 8 - (n)))
#define ROR(x, n) ((x) >> (n) | (x) << (sizeof(x) * 8 - (n)))
/**
* Return the smallest multiple of n equal or greater than x
* @note n must be a power of 2
*/
#define ALIGN(x, n) (((x) + (n) - 1) & ~((n) - 1))
#endif /* MACROS_H */
|