summaryrefslogtreecommitdiff
path: root/queue.c
diff options
context:
space:
mode:
Diffstat (limited to 'queue.c')
-rw-r--r--queue.c659
1 files changed, 659 insertions, 0 deletions
diff --git a/queue.c b/queue.c
new file mode 100644
index 000000000..9256736ab
--- /dev/null
+++ b/queue.c
@@ -0,0 +1,659 @@
+#include "stdafx.h"
+#include "ttd.h"
+#include "queue.h"
+
+void Stack_Clear(Queue* q, bool free_values)
+{
+ uint i;
+ if (free_values)
+ for (i=0;i<q->stack.size;i++)
+ free(q->stack.elements[i]);
+ q->stack.size = 0;
+}
+
+void Stack_Free(Queue* q, bool free_values)
+{
+ q->clear(q, free_values);
+ free(q->stack.elements);
+ if (q->freeq)
+ free(q);
+}
+
+bool Stack_Push(Queue* q, void* item, int priority) {
+ if (q->stack.size == q->stack.max_size)
+ return false;
+ q->stack.elements[q->stack.size++] = item;
+ return true;
+}
+
+void* Stack_Pop(Queue* q) {
+ void* result;
+ if (q->stack.size == 0)
+ return NULL;
+ result = q->stack.elements[--q->stack.size];
+
+ return result;
+}
+
+bool Stack_Delete(Queue* q, void* item, int priority)
+{
+ return false;
+}
+
+Queue* init_stack(Queue* q, uint max_size) {
+ q->push = Stack_Push;
+ q->pop = Stack_Pop;
+ q->del = Stack_Delete;
+ q->clear = Stack_Clear;
+ q->free = Stack_Free;
+ q->stack.max_size = max_size;
+ q->stack.size = 0;
+ q->stack.elements = malloc(max_size * sizeof(void*));
+ q->freeq = false;
+ return q;
+}
+
+Queue* new_Stack(uint max_size)
+{
+ Queue* q = malloc(sizeof(Queue));
+ init_stack(q, max_size);
+ q->freeq = true;
+ return q;
+}
+
+/*
+ * Fifo
+ */
+
+void Fifo_Clear(Queue* q, bool free_values)
+{
+ uint head, tail;
+ if (free_values) {
+ head = q->fifo.head;
+ tail = q->fifo.tail; /* cache for speed */
+ while (head != tail) {
+ free(q->fifo.elements[tail]);
+ tail = (tail + 1) % q->fifo.max_size;
+ }
+ }
+ q->fifo.head = q->fifo.tail = 0;
+}
+
+void Fifo_Free(Queue* q, bool free_values)
+{
+ q->clear(q, free_values);
+ free(q->fifo.elements);
+ if (q->freeq)
+ free(q);
+}
+
+bool Fifo_Push(Queue* q, void* item, int priority) {
+ uint next = (q->fifo.head + 1) % q->fifo.max_size;
+ if (next == q->fifo.tail)
+ return false;
+ q->fifo.elements[q->fifo.head] = item;
+
+
+ q->fifo.head = next;
+ return true;
+}
+
+void* Fifo_Pop(Queue* q) {
+ void* result;
+ if (q->fifo.head == q->fifo.tail)
+ return NULL;
+ result = q->fifo.elements[q->fifo.tail];
+
+
+ q->fifo.tail = (q->fifo.tail + 1) % q->fifo.max_size;
+ return result;
+}
+
+bool Fifo_Delete(Queue* q, void* item, int priority)
+{
+ return false;
+}
+
+Queue* init_fifo(Queue* q, uint max_size) {
+ q->push = Fifo_Push;
+ q->pop = Fifo_Pop;
+ q->del = Fifo_Delete;
+ q->clear = Fifo_Clear;
+ q->free = Fifo_Free;
+ q->fifo.max_size = max_size;
+ q->fifo.head = 0;
+ q->fifo.tail = 0;
+ q->fifo.elements = malloc(max_size * sizeof(void*));
+ q->freeq = false;
+ return q;
+}
+
+Queue* new_Fifo(uint max_size)
+{
+ Queue* q = malloc(sizeof(Queue));
+ init_fifo(q, max_size);
+ q->freeq = true;
+ return q;
+}
+
+
+/*
+ * Insertion Sorter
+ */
+
+void InsSort_Clear(Queue* q, bool free_values) {
+ InsSortNode* node = q->inssort.first;
+ InsSortNode* prev;
+ while (node != NULL) {
+ if (free_values)
+ free(node->item);
+ prev = node;
+ node = node->next;
+ free(prev);
+
+ }
+ q->inssort.first = NULL;
+}
+
+void InsSort_Free(Queue* q, bool free_values)
+{
+ q->clear(q, free_values);
+ if (q->freeq)
+ free(q);
+}
+
+bool InsSort_Push(Queue* q, void* item, int priority) {
+ InsSortNode* newnode = malloc(sizeof(InsSortNode));
+ if (newnode == NULL) return false;
+ newnode->item = item;
+ newnode->priority = priority;
+ if (q->inssort.first == NULL || q->inssort.first->priority >= priority) {
+ newnode->next = q->inssort.first;
+ q->inssort.first = newnode;
+ } else {
+ InsSortNode* node = q->inssort.first;
+ while( node != NULL ) {
+ if (node->next == NULL || node->next->priority >= priority) {
+ newnode->next = node->next;
+ node->next = newnode;
+ break;
+ }
+ node = node->next;
+ }
+ }
+ return true;
+}
+
+void* InsSort_Pop(Queue* q) {
+ InsSortNode* node = q->inssort.first;
+ void* result;
+ if (node == NULL)
+ return NULL;
+ result = node->item;
+ q->inssort.first = q->inssort.first->next;
+ if (q->inssort.first)
+ assert(q->inssort.first->priority >= node->priority);
+ free(node);
+ return result;
+}
+
+bool InsSort_Delete(Queue* q, void* item, int priority)
+{
+ return false;
+}
+
+void init_InsSort(Queue* q) {
+ q->push = InsSort_Push;
+ q->pop = InsSort_Pop;
+ q->del = InsSort_Delete;
+ q->clear = InsSort_Clear;
+ q->free = InsSort_Free;
+ q->inssort.first = NULL;
+ q->freeq = false;
+}
+
+Queue* new_InsSort() {
+ Queue* q = malloc(sizeof(Queue));
+ init_InsSort(q);
+ q->freeq = true;
+ return q;
+}
+
+
+/*
+ * Binary Heap
+ * For information, see: http://www.policyalmanac.org/games/binaryHeaps.htm
+ */
+
+#define BINARY_HEAP_BLOCKSIZE (1 << BINARY_HEAP_BLOCKSIZE_BITS)
+#define BINARY_HEAP_BLOCKSIZE_MASK (BINARY_HEAP_BLOCKSIZE-1)
+
+// To make our life easy, we make the next define
+// Because Binary Heaps works with array from 1 to n,
+// and C with array from 0 to n-1, and we don't like typing
+// q->binaryheap.elements[i-1] every time, we use this define.
+#define BIN_HEAP_ARR(i) q->binaryheap.elements[((i)-1) >> BINARY_HEAP_BLOCKSIZE_BITS][((i)-1) & BINARY_HEAP_BLOCKSIZE_MASK]
+
+void BinaryHeap_Clear(Queue* q, bool free_values)
+{
+ /* Free all items if needed and free all but the first blocks of
+ * memory */
+ uint i,j;
+ for (i=0;i<q->binaryheap.blocks;i++) {
+ if (q->binaryheap.elements[i] == NULL) {
+ /* No more allocated blocks */
+ break;
+ }
+ /* For every allocated block */
+ if (free_values)
+ for (j=0;j<(1<<BINARY_HEAP_BLOCKSIZE_BITS);j++) {
+ /* For every element in the block */
+ if ((q->binaryheap.size >> BINARY_HEAP_BLOCKSIZE_BITS) == i
+ && (q->binaryheap.size & BINARY_HEAP_BLOCKSIZE_MASK) == j)
+ break; /* We're past the last element */
+ free(q->binaryheap.elements[i][j].item);
+ }
+ if (i != 0) {
+ /* Leave the first block of memory alone */
+ free(q->binaryheap.elements[i]);
+ q->binaryheap.elements[i] = NULL;
+ }
+ }
+ q->binaryheap.size = 0;
+ q->binaryheap.blocks = 1;
+}
+
+void BinaryHeap_Free(Queue* q, bool free_values)
+{
+ uint i;
+ q->clear(q, free_values);
+ for (i=0;i<q->binaryheap.blocks;i++) {
+ if (q->binaryheap.elements[i] == NULL)
+ break;
+ free(q->binaryheap.elements[i]);
+ }
+ if (q->freeq)
+ free(q);
+}
+
+bool BinaryHeap_Push(Queue* q, void* item, int priority) {
+ #ifdef QUEUE_DEBUG
+ printf("[BinaryHeap] Pushing an element. There are %d elements left\n", q->binaryheap.size);
+ #endif
+ if (q->binaryheap.size == q->binaryheap.max_size)
+ return false;
+ assert(q->binaryheap.size < q->binaryheap.max_size);
+
+ if (q->binaryheap.elements[q->binaryheap.size >> BINARY_HEAP_BLOCKSIZE_BITS] == NULL) {
+ /* The currently allocated blocks are full, allocate a new one */
+ assert((q->binaryheap.size & BINARY_HEAP_BLOCKSIZE_MASK) == 0);
+ q->binaryheap.elements[q->binaryheap.size >> BINARY_HEAP_BLOCKSIZE_BITS] = malloc(BINARY_HEAP_BLOCKSIZE * sizeof(BinaryHeapNode));
+ q->binaryheap.blocks++;
+#ifdef QUEUE_DEBUG
+ printf("[BinaryHeap] Increasing size of elements to %d nodes\n",q->binaryheap.blocks * BINARY_HEAP_BLOCKSIZE);
+#endif
+ }
+
+ // Add the item at the end of the array
+ BIN_HEAP_ARR(q->binaryheap.size+1).priority = priority;
+ BIN_HEAP_ARR(q->binaryheap.size+1).item = item;
+ q->binaryheap.size++;
+
+ // Now we are going to check where it belongs. As long as the parent is
+ // bigger, we switch with the parent
+ {
+ int i, j;
+ BinaryHeapNode temp;
+ i = q->binaryheap.size;
+ while (i > 1) {
+ // Get the parent of this object (divide by 2)
+ j = i / 2;
+ // Is the parent bigger then the current, switch them
+ if (BIN_HEAP_ARR(i).priority <= BIN_HEAP_ARR(j).priority) {
+ temp = BIN_HEAP_ARR(j);
+ BIN_HEAP_ARR(j) = BIN_HEAP_ARR(i);
+ BIN_HEAP_ARR(i) = temp;
+ i = j;
+ } else {
+ // It is not, we're done!
+ break;
+ }
+ }
+ }
+
+ return true;
+}
+
+bool BinaryHeap_Delete(Queue* q, void* item, int priority)
+{
+ #ifdef QUEUE_DEBUG
+ printf("[BinaryHeap] Deleting an element. There are %d elements left\n", q->binaryheap.size);
+ #endif
+ uint i = 0;
+ // First, we try to find the item..
+ do {
+ if (BIN_HEAP_ARR(i+1).item == item) break;
+ i++;
+ } while (i < q->binaryheap.size);
+ // We did not find the item, so we return false
+ if (i == q->binaryheap.size) return false;
+
+ // Now we put the last item over the current item while decreasing the size of the elements
+ q->binaryheap.size--;
+ BIN_HEAP_ARR(i+1) = BIN_HEAP_ARR(q->binaryheap.size+1);
+
+ // Now the only thing we have to do, is resort it..
+ // On place i there is the item to be sorted.. let's start there
+ {
+ uint j;
+ BinaryHeapNode temp;
+ // Because of the fast that Binary Heap uses array from 1 to n, we need to increase
+ // i with 1
+ i++;
+
+ for (;;) {
+ j = i;
+ // Check if we have 2 childs
+ if (2*j+1 <= q->binaryheap.size) {
+ // Is this child smaller then the parent?
+ if (BIN_HEAP_ARR(j).priority >= BIN_HEAP_ARR(2*j).priority) {i = 2*j; }
+ // Yes, we _need_ to use i here, not j, because we want to have the smallest child
+ // This way we get that straight away!
+ if (BIN_HEAP_ARR(i).priority >= BIN_HEAP_ARR(2*j+1).priority) { i = 2*j+1; }
+ // Do we have one child?
+ } else if (2*j <= q->binaryheap.size) {
+ if (BIN_HEAP_ARR(j).priority >= BIN_HEAP_ARR(2*j).priority) { i = 2*j; }
+ }
+
+ // One of our childs is smaller then we are, switch
+ if (i != j) {
+ temp = BIN_HEAP_ARR(j);
+ BIN_HEAP_ARR(j) = BIN_HEAP_ARR(i);
+ BIN_HEAP_ARR(i) = temp;
+ } else {
+ // None of our childs is smaller, so we stay here.. stop :)
+ break;
+ }
+ }
+ }
+
+ return true;
+}
+
+void* BinaryHeap_Pop(Queue* q) {
+ #ifdef QUEUE_DEBUG
+ printf("[BinaryHeap] Popping an element. There are %d elements left\n", q->binaryheap.size);
+ #endif
+ void* result;
+ if (q->binaryheap.size == 0)
+ return NULL;
+
+ // The best item is always on top, so give that as result
+ result = BIN_HEAP_ARR(1).item;
+ // And now we should get ride of this item...
+ BinaryHeap_Delete(q,BIN_HEAP_ARR(1).item, BIN_HEAP_ARR(1).priority);
+
+ return result;
+}
+
+void init_BinaryHeap(Queue* q, uint max_size)
+{
+ assert(q);
+ q->push = BinaryHeap_Push;
+ q->pop = BinaryHeap_Pop;
+ q->del = BinaryHeap_Delete;
+ q->clear = BinaryHeap_Clear;
+ q->free = BinaryHeap_Free;
+ q->binaryheap.max_size = max_size;
+ q->binaryheap.size = 0;
+ // We malloc memory in block of BINARY_HEAP_BLOCKSIZE
+ // It autosizes when it runs out of memory
+ q->binaryheap.elements = calloc(1, ((max_size - 1) / BINARY_HEAP_BLOCKSIZE) + 1);
+ q->binaryheap.elements[0] = malloc(BINARY_HEAP_BLOCKSIZE * sizeof(BinaryHeapNode));
+ q->binaryheap.blocks = 1;
+ q->freeq = false;
+#ifdef QUEUE_DEBUG
+ printf("[BinaryHeap] Initial size of elements is %d nodes\n",(1024));
+#endif
+}
+
+Queue* new_BinaryHeap(uint max_size) {
+ Queue* q = malloc(sizeof(Queue));
+ init_BinaryHeap(q, max_size);
+ q->freeq = true;
+ return q;
+}
+
+// Because we don't want anyone else to bother with our defines
+#undef BIN_HEAP_ARR
+
+/*
+ * Hash
+ */
+
+void init_Hash(Hash* h, Hash_HashProc* hash, int num_buckets) {
+ /* Allocate space for the Hash, the buckets and the bucket flags */
+ int i;
+ assert(h);
+ #ifdef HASH_DEBUG
+ debug("Allocated hash: %p", h);
+ #endif
+ h->hash = hash;
+ h->size = 0;
+ h->num_buckets = num_buckets;
+ h->buckets = malloc(num_buckets * (sizeof(HashNode) + sizeof(bool)));
+ #ifdef HASH_DEBUG
+ debug("Buckets = %p", h->buckets);
+ #endif
+ h->buckets_in_use = (bool*)(h->buckets + num_buckets);
+ h->freeh = false;
+ for (i=0;i<num_buckets;i++)
+ h->buckets_in_use[i] = false;
+}
+
+Hash* new_Hash(Hash_HashProc* hash, int num_buckets) {
+ Hash* h = malloc(sizeof(Hash));
+ init_Hash(h, hash, num_buckets);
+ h->freeh = true;
+ return h;
+}
+
+void delete_Hash(Hash* h, bool free_values) {
+ uint i;
+ /* Iterate all buckets */
+ for (i=0;i<h->num_buckets;i++)
+ {
+ if (h->buckets_in_use[i]) {
+ HashNode* node;
+ /* Free the first value */
+ if (free_values)
+ free(h->buckets[i].value);
+ node = h->buckets[i].next;
+ while (node != NULL) {
+ HashNode* prev = node;
+ node = node->next;
+ /* Free the value */
+ if (free_values)
+ free(prev->value);
+ /* Free the node */
+ free(prev);
+ }
+ }
+ }
+ free(h->buckets);
+ /* No need to free buckets_in_use, it is always allocated in one
+ * malloc with buckets */
+ #ifdef HASH_DEBUG
+ debug("Freeing Hash: %p", h);
+ #endif
+ if (h->freeh)
+ free(h);
+}
+
+void clear_Hash(Hash* h, bool free_values)
+{
+ uint i;
+ HashNode* node;
+ /* Iterate all buckets */
+ for (i=0;i<h->num_buckets;i++)
+ {
+ if (h->buckets_in_use[i]) {
+ h->buckets_in_use[i] = false;
+ /* Free the first value */
+ if (free_values)
+ free(h->buckets[i].value);
+ node = h->buckets[i].next;
+ while (node != NULL) {
+ HashNode* prev = node;
+ node = node->next;
+ if (free_values)
+ free(prev->value);
+ free(prev);
+ }
+ }
+ }
+ h->size = 0;
+}
+
+/* Finds the node that that saves this key pair. If it is not
+ * found, returns NULL. If it is found, *prev is set to the
+ * node before the one found, or if the node found was the first in the bucket
+ * to NULL. If it is not found, *prev is set to the last HashNode in the
+ * bucket, or NULL if it is empty. prev can also be NULL, in which case it is
+ * not used for output.
+ */
+HashNode* Hash_FindNode(Hash* h, uint key1, uint key2, HashNode** prev_out) {
+ uint hash = h->hash(key1, key2);
+ HashNode* result = NULL;
+ #ifdef HASH_DEBUG
+ debug("Looking for %u, %u", key1, key2);
+ #endif
+ /* Check if the bucket is empty */
+ if (!h->buckets_in_use[hash]) {
+ if (prev_out)
+ *prev_out = NULL;
+ result = NULL;
+ /* Check the first node specially */
+ } else if (h->buckets[hash].key1 == key1 && h->buckets[hash].key2 == key2) {
+ /* Save the value */
+ result = h->buckets + hash;
+ if (prev_out)
+ *prev_out = NULL;
+ #ifdef HASH_DEBUG
+ debug("Found in first node: %p", result);
+ #endif
+ /* Check all other nodes */
+ } else {
+ HashNode* prev = h->buckets + hash;
+ HashNode* node = prev->next;
+ while (node != NULL) {
+ if (node->key1 == key1 && node->key2 == key2) {
+ /* Found it */
+ result = node;
+ #ifdef HASH_DEBUG
+ debug("Found in other node: %p", result);
+ #endif
+ break;
+ }
+ prev = node;
+ node = node->next;
+ }
+ if (prev_out)
+ *prev_out = prev;
+ }
+ #ifdef HASH_DEBUG
+ if (result == NULL)
+ debug("Not found");
+ #endif
+ return result;
+}
+
+void* Hash_Delete(Hash* h, uint key1, uint key2) {
+ void* result;
+ HashNode* prev; /* Used as output var for below function call */
+ HashNode* node = Hash_FindNode(h, key1, key2, &prev);
+
+ if (node == NULL) {
+ /* not found */
+ result = NULL;
+ } else if (prev == NULL) {
+ /* It is in the first node, we can't free that one, so we free
+ * the next one instead (if there is any)*/
+ /* Save the value */
+ result = node->value;
+ if (node->next != NULL) {
+ HashNode* next = node->next;
+ /* Copy the second to the first */
+ *node = *next;
+ /* Free the second */
+ #ifndef NOFREE
+ free(next);
+ #endif
+ } else {
+ /* This was the last in this bucket */
+ /* Mark it as empty */
+ uint hash = h->hash(key1, key2);
+ h->buckets_in_use[hash] = false;
+ }
+ } else {
+ /* It is in another node */
+ /* Save the value */
+ result = node->value;
+ /* Link previous and next nodes */
+ prev->next = node->next;
+ /* Free the node */
+ #ifndef NOFREE
+ free(node);
+ #endif
+ }
+ if (result != NULL)
+ h->size--;
+ return result;
+}
+
+
+void* Hash_Set(Hash* h, uint key1, uint key2, void* value) {
+ HashNode* prev;
+ HashNode* node = Hash_FindNode(h, key1, key2, &prev);
+ void* result = NULL;
+ if (node != NULL) {
+ /* Found it */
+ result = node->value;
+ node->value = value;
+ return result;
+ }
+ /* It is not yet present, let's add it */
+ if (prev == NULL) {
+ /* The bucket is still empty */
+ uint hash = h->hash(key1, key2);
+ h->buckets_in_use[hash] = true;
+ node = h->buckets + hash;
+ } else {
+ /* Add it after prev */
+ node = malloc(sizeof(HashNode));
+ prev->next = node;
+ }
+ node->next = NULL;
+ node->key1 = key1;
+ node->key2 = key2;
+ node->value = value;
+ h->size++;
+ return NULL;
+}
+
+void* Hash_Get(Hash* h, uint key1, uint key2) {
+ HashNode* node = Hash_FindNode(h, key1, key2, NULL);
+ #ifdef HASH_DEBUG
+ debug("Found node: %p", node);
+ #endif
+ if (node == NULL) {
+ /* Node not found */
+ return NULL;
+ } else {
+ return node->value;
+ }
+}
+
+uint Hash_Size(Hash* h) {
+ return h->size;
+}