summaryrefslogtreecommitdiff
path: root/src/core
diff options
context:
space:
mode:
authorNiels Martin Hansen <nielsm@indvikleren.dk>2019-02-18 14:16:03 +0100
committerNiels Martin Hansen <nielsm@indvikleren.dk>2019-03-09 20:27:11 +0100
commitd7522e5e8ffa8a922668e8f6f99e1fecbab11dbe (patch)
tree3b83b7aa072831906dc657d7e90d58629a9ff0d6 /src/core
parent3a54c7104122e8c092949fbcedda7a35ea8a84e3 (diff)
downloadopenttd-d7522e5e8ffa8a922668e8f6f99e1fecbab11dbe.tar.xz
Codechange: Add a k-d tree generic data structure
Diffstat (limited to 'src/core')
-rw-r--r--src/core/kdtree.hpp473
1 files changed, 473 insertions, 0 deletions
diff --git a/src/core/kdtree.hpp b/src/core/kdtree.hpp
new file mode 100644
index 000000000..154f27fc5
--- /dev/null
+++ b/src/core/kdtree.hpp
@@ -0,0 +1,473 @@
+/*
+ * This file is part of OpenTTD.
+ * OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
+ * OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
+ * See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+/** @file kdtree.hpp K-d tree template specialised for 2-dimensional Manhattan geometry */
+
+#ifndef KDTREE_HPP
+#define KDTREE_HPP
+
+#include "../stdafx.h"
+#include <vector>
+#include <algorithm>
+#include <limits>
+
+/**
+ * K-dimensional tree, specialised for 2-dimensional space.
+ * This is not intended as a primary storage of data, but as an index into existing data.
+ * Usually the type stored by this tree should be an index into an existing array.
+ *
+ * This implementation assumes Manhattan distances are used.
+ *
+ * Be careful when using this in game code, depending on usage pattern, the tree shape may
+ * end up different for different clients in multiplayer, causing iteration order to differ
+ * and possibly having elements returned in different order. The using code should be designed
+ * to produce the same result regardless of iteration order.
+ *
+ * The element type T must be less-than comparable for FindNearest to work.
+ *
+ * @tparam T Type stored in the tree, should be cheap to copy.
+ * @tparam TxyFunc Functor type to extract coordinate from a T value and dimension index (0 or 1).
+ * @tparam CoordT Type of coordinate values extracted via TxyFunc.
+ * @tparam DistT Type to use for representing distance values.
+ */
+template <typename T, typename TxyFunc, typename CoordT, typename DistT>
+class Kdtree {
+ /** Type of a node in the tree */
+ struct node {
+ T element; ///< Element stored at node
+ size_t left; ///< Index of node to the left, INVALID_NODE if none
+ size_t right; ///< Index of node to the right, INVALID_NODE if none
+
+ node(T element) : element(element), left(INVALID_NODE), right(INVALID_NODE) { }
+ };
+
+ static const size_t INVALID_NODE = SIZE_MAX; ///< Index value indicating no-such-node
+
+ std::vector<node> nodes; ///< Pool of all nodes in the tree
+ std::vector<size_t> free_list; ///< List of dead indices in the nodes vector
+ size_t root; ///< Index of root node
+ TxyFunc xyfunc; ///< Functor to extract a coordinate from an element
+ size_t unbalanced; ///< Number approximating how unbalanced the tree might be
+
+ /** Create one new node in the tree, return its index in the pool */
+ size_t AddNode(const T &element)
+ {
+ if (this->free_list.size() == 0) {
+ this->nodes.emplace_back(element);
+ return this->nodes.size() - 1;
+ } else {
+ size_t newidx = this->free_list.back();
+ this->free_list.pop_back();
+ this->nodes[newidx] = node{ element };
+ return newidx;
+ }
+ }
+
+ /** Find a coordinate value to split a range of elements at */
+ template <typename It>
+ CoordT SelectSplitCoord(It begin, It end, int level)
+ {
+ It mid = begin + (end - begin) / 2;
+ std::nth_element(begin, mid, end, [&](T a, T b) { return this->xyfunc(a, level % 2) < this->xyfunc(b, level % 2); });
+ return this->xyfunc(*mid, level % 2);
+ }
+
+ /** Construct a subtree from elements between begin and end iterators, return index of root */
+ template <typename It>
+ size_t BuildSubtree(It begin, It end, int level)
+ {
+ ptrdiff_t count = end - begin;
+
+ if (count == 0) {
+ return INVALID_NODE;
+ } else if (count == 1) {
+ return this->AddNode(*begin);
+ } else if (count > 1) {
+ CoordT split_coord = SelectSplitCoord(begin, end, level);
+ It split = std::partition(begin, end, [&](T v) { return this->xyfunc(v, level % 2) < split_coord; });
+ size_t newidx = this->AddNode(*split);
+ this->nodes[newidx].left = this->BuildSubtree(begin, split, level + 1);
+ this->nodes[newidx].right = this->BuildSubtree(split + 1, end, level + 1);
+ return newidx;
+ } else {
+ NOT_REACHED();
+ }
+ }
+
+ /** Rebuild the tree with all existing elements, optionally adding or removing one more */
+ bool Rebuild(const T *include_element, const T *exclude_element)
+ {
+ size_t initial_count = this->Count();
+ if (initial_count < 8) return false; // arbitrary value for "not worth rebalancing"
+
+ T root_element = this->nodes[this->root].element;
+ std::vector<T> elements = this->FreeSubtree(this->root);
+ elements.push_back(root_element);
+
+ if (include_element != NULL) {
+ elements.push_back(*include_element);
+ initial_count++;
+ }
+ if (exclude_element != NULL) {
+ typename std::vector<T>::iterator removed = std::remove(elements.begin(), elements.end(), *exclude_element);
+ elements.erase(removed, elements.end());
+ initial_count--;
+ }
+
+ this->Build(elements.begin(), elements.end());
+ assert(initial_count == this->Count());
+ return true;
+ }
+
+ /** Insert one element in the tree somewhere below node_idx */
+ void InsertRecursive(const T &element, size_t node_idx, int level)
+ {
+ /* Dimension index of current level */
+ int dim = level % 2;
+ /* Node reference */
+ node &n = this->nodes[node_idx];
+
+ /* Coordinate of element splitting at this node */
+ CoordT nc = this->xyfunc(n.element, dim);
+ /* Coordinate of the new element */
+ CoordT ec = this->xyfunc(element, dim);
+ /* Which side to insert on */
+ size_t &next = (ec < nc) ? n.left : n.right;
+
+ if (next == INVALID_NODE) {
+ /* New leaf */
+ size_t newidx = this->AddNode(element);
+ /* Vector may have been reallocated at this point, n and next are invalid */
+ node &nn = this->nodes[node_idx];
+ if (ec < nc) nn.left = newidx; else nn.right = newidx;
+ } else {
+ this->InsertRecursive(element, next, level + 1);
+ }
+ }
+
+ /**
+ * Free all children of the given node
+ * @return Collection of elements that were removed from tree.
+ */
+ std::vector<T> FreeSubtree(size_t node_idx)
+ {
+ std::vector<T> subtree_elements;
+ node &n = this->nodes[node_idx];
+
+ /* We'll be appending items to the free_list, get index of our first item */
+ size_t first_free = this->free_list.size();
+ /* Prepare the descent with our children */
+ if (n.left != INVALID_NODE) this->free_list.push_back(n.left);
+ if (n.right != INVALID_NODE) this->free_list.push_back(n.right);
+ n.left = n.right = INVALID_NODE;
+
+ /* Recursively free the nodes being collected */
+ for (size_t i = first_free; i < this->free_list.size(); i++) {
+ node &fn = this->nodes[this->free_list[i]];
+ subtree_elements.push_back(fn.element);
+ if (fn.left != INVALID_NODE) this->free_list.push_back(fn.left);
+ if (fn.right != INVALID_NODE) this->free_list.push_back(fn.right);
+ fn.left = fn.right = INVALID_NODE;
+ }
+
+ return subtree_elements;
+ }
+
+ /**
+ * Find and remove one element from the tree.
+ * @param element The element to search for
+ * @param node_idx Sub-tree to search in
+ * @param level Current depth in the tree
+ * @return New root node index of the sub-tree processed
+ */
+ size_t RemoveRecursive(const T &element, size_t node_idx, int level)
+ {
+ /* Node reference */
+ node &n = this->nodes[node_idx];
+
+ if (n.element == element) {
+ /* Remove this one */
+ this->free_list.push_back(node_idx);
+ if (n.left == INVALID_NODE && n.right == INVALID_NODE) {
+ /* Simple case, leaf, new child node for parent is "none" */
+ return INVALID_NODE;
+ } else {
+ /* Complex case, rebuild the sub-tree */
+ std::vector<T> subtree_elements = this->FreeSubtree(node_idx);
+ return this->BuildSubtree(subtree_elements.begin(), subtree_elements.end(), level);;
+ }
+ } else {
+ /* Search in a sub-tree */
+ /* Dimension index of current level */
+ int dim = level % 2;
+ /* Coordinate of element splitting at this node */
+ CoordT nc = this->xyfunc(n.element, dim);
+ /* Coordinate of the element being removed */
+ CoordT ec = this->xyfunc(element, dim);
+ /* Which side to remove from */
+ size_t next = (ec < nc) ? n.left : n.right;
+ assert(next != INVALID_NODE); // node must exist somewhere and must be found before a leaf is reached
+ /* Descend */
+ size_t new_branch = this->RemoveRecursive(element, next, level + 1);
+ if (new_branch != next) {
+ /* Vector may have been reallocated at this point, n and next are invalid */
+ node &nn = this->nodes[node_idx];
+ if (ec < nc) nn.left = new_branch; else nn.right = new_branch;
+ }
+ return node_idx;
+ }
+ }
+
+
+ DistT ManhattanDistance(const T &element, CoordT x, CoordT y) const
+ {
+ return abs((DistT)this->xyfunc(element, 0) - (DistT)x) + abs((DistT)this->xyfunc(element, 1) - (DistT)y);
+ }
+
+ /** A data element and its distance to a searched-for point */
+ using node_distance = std::pair<T, DistT>;
+ /** Ordering function for node_distance objects, elements with equal distance are ordered by less-than comparison */
+ static node_distance SelectNearestNodeDistance(const node_distance &a, const node_distance &b)
+ {
+ if (a.second < b.second) return a;
+ if (b.second < a.second) return b;
+ if (a.first < b.first) return a;
+ if (b.first < a.first) return b;
+ NOT_REACHED(); // a.first == b.first: same element must not be inserted twice
+ }
+ /** Search a sub-tree for the element nearest to a given point */
+ node_distance FindNearestRecursive(CoordT xy[2], size_t node_idx, int level) const
+ {
+ /* Dimension index of current level */
+ int dim = level % 2;
+ /* Node reference */
+ const node &n = this->nodes[node_idx];
+
+ /* Coordinate of element splitting at this node */
+ CoordT c = this->xyfunc(n.element, dim);
+ /* This node's distance to target */
+ DistT thisdist = ManhattanDistance(n.element, xy[0], xy[1]);
+ /* Assume this node is the best choice for now */
+ node_distance best = std::make_pair(n.element, thisdist);
+
+ /* Next node to visit */
+ size_t next = (xy[dim] < c) ? n.left : n.right;
+ if (next != INVALID_NODE) {
+ /* Check if there is a better node down the tree */
+ best = SelectNearestNodeDistance(best, this->FindNearestRecursive(xy, next, level + 1));
+ }
+
+ /* Check if the distance from current best is worse than distance from target to splitting line,
+ * if it is we also need to check the other side of the split. */
+ size_t opposite = (xy[dim] >= c) ? n.left : n.right; // reverse of above
+ if (opposite != INVALID_NODE && best.second >= abs((int)xy[dim] - (int)c)) {
+ node_distance other_candidate = this->FindNearestRecursive(xy, opposite, level + 1);
+ best = SelectNearestNodeDistance(best, other_candidate);
+ }
+
+ return best;
+ }
+
+ template <typename Outputter>
+ void FindContainedRecursive(CoordT p1[2], CoordT p2[2], size_t node_idx, int level, Outputter outputter) const
+ {
+ /* Dimension index of current level */
+ int dim = level % 2;
+ /* Node reference */
+ const node &n = this->nodes[node_idx];
+
+ /* Coordinate of element splitting at this node */
+ CoordT ec = this->xyfunc(n.element, dim);
+ /* Opposite coordinate of element */
+ CoordT oc = this->xyfunc(n.element, 1 - dim);
+
+ /* Test if this element is within rectangle */
+ if (ec >= p1[dim] && ec < p2[dim] && oc >= p1[1 - dim] && oc < p2[1 - dim]) outputter(n.element);
+
+ /* Recurse left if part of rectangle is left of split */
+ if (p1[dim] < ec && n.left != INVALID_NODE) this->FindContainedRecursive(p1, p2, n.left, level + 1, outputter);
+
+ /* Recurse right if part of rectangle is right of split */
+ if (p2[dim] > ec && n.right != INVALID_NODE) this->FindContainedRecursive(p1, p2, n.right, level + 1, outputter);
+ }
+
+ /** Debugging function, counts number of occurrences of an element regardless of its correct position in the tree */
+ size_t CountValue(const T &element, size_t node_idx) const
+ {
+ if (node_idx == INVALID_NODE) return 0;
+ const node &n = this->nodes[node_idx];
+ return CountValue(element, n.left) + CountValue(element, n.right) + ((n.element == element) ? 1 : 0);
+ }
+
+ void IncrementUnbalanced(size_t amount = 1)
+ {
+ this->unbalanced += amount;
+ }
+
+ /** Check if the entire tree is in need of rebuilding */
+ bool IsUnbalanced()
+ {
+ size_t count = this->Count();
+ if (count < 8) return false;
+ return this->unbalanced > this->Count() / 4;
+ }
+
+ /** Verify that the invariant is true for a sub-tree, assert if not */
+ void CheckInvariant(size_t node_idx, int level, CoordT min_x, CoordT max_x, CoordT min_y, CoordT max_y)
+ {
+ if (node_idx == INVALID_NODE) return;
+
+ const node &n = this->nodes[node_idx];
+ CoordT cx = this->xyfunc(n.element, 0);
+ CoordT cy = this->xyfunc(n.element, 1);
+
+ assert(cx >= min_x);
+ assert(cx < max_x);
+ assert(cy >= min_y);
+ assert(cy < max_y);
+
+ if (level % 2 == 0) {
+ // split in dimension 0 = x
+ CheckInvariant(n.left, level + 1, min_x, cx, min_y, max_y);
+ CheckInvariant(n.right, level + 1, cx, max_x, min_y, max_y);
+ } else {
+ // split in dimension 1 = y
+ CheckInvariant(n.left, level + 1, min_x, max_x, min_y, cy);
+ CheckInvariant(n.right, level + 1, min_x, max_x, cy, max_y);
+ }
+ }
+
+ /** Verify the invariant for the entire tree, does nothing unless KDTREE_DEBUG is defined */
+ void CheckInvariant()
+ {
+#ifdef KDTREE_DEBUG
+ CheckInvariant(this->root, 0, std::numeric_limits<CoordT>::min(), std::numeric_limits<CoordT>::max(), std::numeric_limits<CoordT>::min(), std::numeric_limits<CoordT>::max());
+#endif
+ }
+
+public:
+ /** Construct a new Kdtree with the given xyfunc */
+ Kdtree(TxyFunc xyfunc) : root(INVALID_NODE), xyfunc(xyfunc), unbalanced(0) { }
+
+ /**
+ * Clear and rebuild the tree from a new sequence of elements,
+ * @tparam It Iterator type for element sequence.
+ * @param begin First element in sequence.
+ * @param end One past last element in sequence.
+ */
+ template <typename It>
+ void Build(It begin, It end)
+ {
+ this->nodes.clear();
+ this->free_list.clear();
+ this->unbalanced = 0;
+ if (begin == end) return;
+ this->nodes.reserve(end - begin);
+
+ this->root = this->BuildSubtree(begin, end, 0);
+ CheckInvariant();
+ }
+
+ /**
+ * Reconstruct the tree with the same elements, letting it be fully balanced.
+ */
+ void Rebuild()
+ {
+ this->Rebuild(NULL, NULL);
+ }
+
+ /**
+ * Insert a single element in the tree.
+ * Repeatedly inserting single elements may cause the tree to become unbalanced.
+ * Undefined behaviour if the element already exists in the tree.
+ */
+ void Insert(const T &element)
+ {
+ if (this->Count() == 0) {
+ this->root = this->AddNode(element);
+ } else {
+ if (!this->IsUnbalanced() || !this->Rebuild(&element, NULL)) {
+ this->InsertRecursive(element, this->root, 0);
+ this->IncrementUnbalanced();
+ }
+ CheckInvariant();
+ }
+ }
+
+ /**
+ * Remove a single element from the tree, if it exists.
+ * Since elements are stored in interior nodes as well as leaf nodes, removing one may
+ * require a larger sub-tree to be re-built. Because of this, worst case run time is
+ * as bad as a full tree rebuild.
+ */
+ void Remove(const T &element)
+ {
+ size_t count = this->Count();
+ if (count == 0) return;
+ if (!this->IsUnbalanced() || !this->Rebuild(NULL, &element)) {
+ /* If the removed element is the root node, this modifies this->root */
+ this->root = this->RemoveRecursive(element, this->root, 0);
+ this->IncrementUnbalanced();
+ }
+ CheckInvariant();
+ }
+
+ /** Get number of elements stored in tree */
+ size_t Count() const
+ {
+ assert(this->free_list.size() <= this->nodes.size());
+ return this->nodes.size() - this->free_list.size();
+ }
+
+ /**
+ * Find the element closest to given coordinate, in Manhattan distance.
+ * For multiple elements with the same distance, the one comparing smaller with
+ * a less-than comparison is chosen.
+ */
+ T FindNearest(CoordT x, CoordT y) const
+ {
+ assert(this->Count() > 0);
+
+ CoordT xy[2] = { x, y };
+ return this->FindNearestRecursive(xy, this->root, 0).first;
+ }
+
+ /**
+ * Find all items contained within the given rectangle.
+ * @note Start coordinates are inclusive, end coordinates are exclusive. x1<x2 && y1<y2 is a precondition.
+ * @param x1 Start first coordinate, points found are greater or equals to this.
+ * @param y1 Start second coordinate, points found are greater or equals to this.
+ * @param x2 End first coordinate, points found are less than this.
+ * @param y2 End second coordinate, points found are less than this.
+ * @param outputter Callback used to return values from the search.
+ */
+ template <typename Outputter>
+ void FindContained(CoordT x1, CoordT y1, CoordT x2, CoordT y2, Outputter outputter) const
+ {
+ assert(x1 < x2);
+ assert(y1 < y2);
+
+ if (this->Count() == 0) return;
+
+ CoordT p1[2] = { x1, y1 };
+ CoordT p2[2] = { x2, y2 };
+ this->FindContainedRecursive(p1, p2, this->root, 0, outputter);
+ }
+
+ /**
+ * Find all items contained within the given rectangle.
+ * @note End coordinates are exclusive, x1<x2 && y1<y2 is a precondition.
+ */
+ std::vector<T> FindContained(CoordT x1, CoordT y1, CoordT x2, CoordT y2) const
+ {
+ std::vector<T> result;
+ this->FindContained(x1, y1, x2, y2, [&result](T e) {result.push_back(e); });
+ return result;
+ }
+};
+
+#endif