diff options
author | Niels Martin Hansen <nielsm@indvikleren.dk> | 2019-02-18 14:16:03 +0100 |
---|---|---|
committer | Niels Martin Hansen <nielsm@indvikleren.dk> | 2019-03-09 20:27:11 +0100 |
commit | d7522e5e8ffa8a922668e8f6f99e1fecbab11dbe (patch) | |
tree | 3b83b7aa072831906dc657d7e90d58629a9ff0d6 /src/core | |
parent | 3a54c7104122e8c092949fbcedda7a35ea8a84e3 (diff) | |
download | openttd-d7522e5e8ffa8a922668e8f6f99e1fecbab11dbe.tar.xz |
Codechange: Add a k-d tree generic data structure
Diffstat (limited to 'src/core')
-rw-r--r-- | src/core/kdtree.hpp | 473 |
1 files changed, 473 insertions, 0 deletions
diff --git a/src/core/kdtree.hpp b/src/core/kdtree.hpp new file mode 100644 index 000000000..154f27fc5 --- /dev/null +++ b/src/core/kdtree.hpp @@ -0,0 +1,473 @@ +/* + * This file is part of OpenTTD. + * OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2. + * OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. + * See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>. + */ + +/** @file kdtree.hpp K-d tree template specialised for 2-dimensional Manhattan geometry */ + +#ifndef KDTREE_HPP +#define KDTREE_HPP + +#include "../stdafx.h" +#include <vector> +#include <algorithm> +#include <limits> + +/** + * K-dimensional tree, specialised for 2-dimensional space. + * This is not intended as a primary storage of data, but as an index into existing data. + * Usually the type stored by this tree should be an index into an existing array. + * + * This implementation assumes Manhattan distances are used. + * + * Be careful when using this in game code, depending on usage pattern, the tree shape may + * end up different for different clients in multiplayer, causing iteration order to differ + * and possibly having elements returned in different order. The using code should be designed + * to produce the same result regardless of iteration order. + * + * The element type T must be less-than comparable for FindNearest to work. + * + * @tparam T Type stored in the tree, should be cheap to copy. + * @tparam TxyFunc Functor type to extract coordinate from a T value and dimension index (0 or 1). + * @tparam CoordT Type of coordinate values extracted via TxyFunc. + * @tparam DistT Type to use for representing distance values. + */ +template <typename T, typename TxyFunc, typename CoordT, typename DistT> +class Kdtree { + /** Type of a node in the tree */ + struct node { + T element; ///< Element stored at node + size_t left; ///< Index of node to the left, INVALID_NODE if none + size_t right; ///< Index of node to the right, INVALID_NODE if none + + node(T element) : element(element), left(INVALID_NODE), right(INVALID_NODE) { } + }; + + static const size_t INVALID_NODE = SIZE_MAX; ///< Index value indicating no-such-node + + std::vector<node> nodes; ///< Pool of all nodes in the tree + std::vector<size_t> free_list; ///< List of dead indices in the nodes vector + size_t root; ///< Index of root node + TxyFunc xyfunc; ///< Functor to extract a coordinate from an element + size_t unbalanced; ///< Number approximating how unbalanced the tree might be + + /** Create one new node in the tree, return its index in the pool */ + size_t AddNode(const T &element) + { + if (this->free_list.size() == 0) { + this->nodes.emplace_back(element); + return this->nodes.size() - 1; + } else { + size_t newidx = this->free_list.back(); + this->free_list.pop_back(); + this->nodes[newidx] = node{ element }; + return newidx; + } + } + + /** Find a coordinate value to split a range of elements at */ + template <typename It> + CoordT SelectSplitCoord(It begin, It end, int level) + { + It mid = begin + (end - begin) / 2; + std::nth_element(begin, mid, end, [&](T a, T b) { return this->xyfunc(a, level % 2) < this->xyfunc(b, level % 2); }); + return this->xyfunc(*mid, level % 2); + } + + /** Construct a subtree from elements between begin and end iterators, return index of root */ + template <typename It> + size_t BuildSubtree(It begin, It end, int level) + { + ptrdiff_t count = end - begin; + + if (count == 0) { + return INVALID_NODE; + } else if (count == 1) { + return this->AddNode(*begin); + } else if (count > 1) { + CoordT split_coord = SelectSplitCoord(begin, end, level); + It split = std::partition(begin, end, [&](T v) { return this->xyfunc(v, level % 2) < split_coord; }); + size_t newidx = this->AddNode(*split); + this->nodes[newidx].left = this->BuildSubtree(begin, split, level + 1); + this->nodes[newidx].right = this->BuildSubtree(split + 1, end, level + 1); + return newidx; + } else { + NOT_REACHED(); + } + } + + /** Rebuild the tree with all existing elements, optionally adding or removing one more */ + bool Rebuild(const T *include_element, const T *exclude_element) + { + size_t initial_count = this->Count(); + if (initial_count < 8) return false; // arbitrary value for "not worth rebalancing" + + T root_element = this->nodes[this->root].element; + std::vector<T> elements = this->FreeSubtree(this->root); + elements.push_back(root_element); + + if (include_element != NULL) { + elements.push_back(*include_element); + initial_count++; + } + if (exclude_element != NULL) { + typename std::vector<T>::iterator removed = std::remove(elements.begin(), elements.end(), *exclude_element); + elements.erase(removed, elements.end()); + initial_count--; + } + + this->Build(elements.begin(), elements.end()); + assert(initial_count == this->Count()); + return true; + } + + /** Insert one element in the tree somewhere below node_idx */ + void InsertRecursive(const T &element, size_t node_idx, int level) + { + /* Dimension index of current level */ + int dim = level % 2; + /* Node reference */ + node &n = this->nodes[node_idx]; + + /* Coordinate of element splitting at this node */ + CoordT nc = this->xyfunc(n.element, dim); + /* Coordinate of the new element */ + CoordT ec = this->xyfunc(element, dim); + /* Which side to insert on */ + size_t &next = (ec < nc) ? n.left : n.right; + + if (next == INVALID_NODE) { + /* New leaf */ + size_t newidx = this->AddNode(element); + /* Vector may have been reallocated at this point, n and next are invalid */ + node &nn = this->nodes[node_idx]; + if (ec < nc) nn.left = newidx; else nn.right = newidx; + } else { + this->InsertRecursive(element, next, level + 1); + } + } + + /** + * Free all children of the given node + * @return Collection of elements that were removed from tree. + */ + std::vector<T> FreeSubtree(size_t node_idx) + { + std::vector<T> subtree_elements; + node &n = this->nodes[node_idx]; + + /* We'll be appending items to the free_list, get index of our first item */ + size_t first_free = this->free_list.size(); + /* Prepare the descent with our children */ + if (n.left != INVALID_NODE) this->free_list.push_back(n.left); + if (n.right != INVALID_NODE) this->free_list.push_back(n.right); + n.left = n.right = INVALID_NODE; + + /* Recursively free the nodes being collected */ + for (size_t i = first_free; i < this->free_list.size(); i++) { + node &fn = this->nodes[this->free_list[i]]; + subtree_elements.push_back(fn.element); + if (fn.left != INVALID_NODE) this->free_list.push_back(fn.left); + if (fn.right != INVALID_NODE) this->free_list.push_back(fn.right); + fn.left = fn.right = INVALID_NODE; + } + + return subtree_elements; + } + + /** + * Find and remove one element from the tree. + * @param element The element to search for + * @param node_idx Sub-tree to search in + * @param level Current depth in the tree + * @return New root node index of the sub-tree processed + */ + size_t RemoveRecursive(const T &element, size_t node_idx, int level) + { + /* Node reference */ + node &n = this->nodes[node_idx]; + + if (n.element == element) { + /* Remove this one */ + this->free_list.push_back(node_idx); + if (n.left == INVALID_NODE && n.right == INVALID_NODE) { + /* Simple case, leaf, new child node for parent is "none" */ + return INVALID_NODE; + } else { + /* Complex case, rebuild the sub-tree */ + std::vector<T> subtree_elements = this->FreeSubtree(node_idx); + return this->BuildSubtree(subtree_elements.begin(), subtree_elements.end(), level);; + } + } else { + /* Search in a sub-tree */ + /* Dimension index of current level */ + int dim = level % 2; + /* Coordinate of element splitting at this node */ + CoordT nc = this->xyfunc(n.element, dim); + /* Coordinate of the element being removed */ + CoordT ec = this->xyfunc(element, dim); + /* Which side to remove from */ + size_t next = (ec < nc) ? n.left : n.right; + assert(next != INVALID_NODE); // node must exist somewhere and must be found before a leaf is reached + /* Descend */ + size_t new_branch = this->RemoveRecursive(element, next, level + 1); + if (new_branch != next) { + /* Vector may have been reallocated at this point, n and next are invalid */ + node &nn = this->nodes[node_idx]; + if (ec < nc) nn.left = new_branch; else nn.right = new_branch; + } + return node_idx; + } + } + + + DistT ManhattanDistance(const T &element, CoordT x, CoordT y) const + { + return abs((DistT)this->xyfunc(element, 0) - (DistT)x) + abs((DistT)this->xyfunc(element, 1) - (DistT)y); + } + + /** A data element and its distance to a searched-for point */ + using node_distance = std::pair<T, DistT>; + /** Ordering function for node_distance objects, elements with equal distance are ordered by less-than comparison */ + static node_distance SelectNearestNodeDistance(const node_distance &a, const node_distance &b) + { + if (a.second < b.second) return a; + if (b.second < a.second) return b; + if (a.first < b.first) return a; + if (b.first < a.first) return b; + NOT_REACHED(); // a.first == b.first: same element must not be inserted twice + } + /** Search a sub-tree for the element nearest to a given point */ + node_distance FindNearestRecursive(CoordT xy[2], size_t node_idx, int level) const + { + /* Dimension index of current level */ + int dim = level % 2; + /* Node reference */ + const node &n = this->nodes[node_idx]; + + /* Coordinate of element splitting at this node */ + CoordT c = this->xyfunc(n.element, dim); + /* This node's distance to target */ + DistT thisdist = ManhattanDistance(n.element, xy[0], xy[1]); + /* Assume this node is the best choice for now */ + node_distance best = std::make_pair(n.element, thisdist); + + /* Next node to visit */ + size_t next = (xy[dim] < c) ? n.left : n.right; + if (next != INVALID_NODE) { + /* Check if there is a better node down the tree */ + best = SelectNearestNodeDistance(best, this->FindNearestRecursive(xy, next, level + 1)); + } + + /* Check if the distance from current best is worse than distance from target to splitting line, + * if it is we also need to check the other side of the split. */ + size_t opposite = (xy[dim] >= c) ? n.left : n.right; // reverse of above + if (opposite != INVALID_NODE && best.second >= abs((int)xy[dim] - (int)c)) { + node_distance other_candidate = this->FindNearestRecursive(xy, opposite, level + 1); + best = SelectNearestNodeDistance(best, other_candidate); + } + + return best; + } + + template <typename Outputter> + void FindContainedRecursive(CoordT p1[2], CoordT p2[2], size_t node_idx, int level, Outputter outputter) const + { + /* Dimension index of current level */ + int dim = level % 2; + /* Node reference */ + const node &n = this->nodes[node_idx]; + + /* Coordinate of element splitting at this node */ + CoordT ec = this->xyfunc(n.element, dim); + /* Opposite coordinate of element */ + CoordT oc = this->xyfunc(n.element, 1 - dim); + + /* Test if this element is within rectangle */ + if (ec >= p1[dim] && ec < p2[dim] && oc >= p1[1 - dim] && oc < p2[1 - dim]) outputter(n.element); + + /* Recurse left if part of rectangle is left of split */ + if (p1[dim] < ec && n.left != INVALID_NODE) this->FindContainedRecursive(p1, p2, n.left, level + 1, outputter); + + /* Recurse right if part of rectangle is right of split */ + if (p2[dim] > ec && n.right != INVALID_NODE) this->FindContainedRecursive(p1, p2, n.right, level + 1, outputter); + } + + /** Debugging function, counts number of occurrences of an element regardless of its correct position in the tree */ + size_t CountValue(const T &element, size_t node_idx) const + { + if (node_idx == INVALID_NODE) return 0; + const node &n = this->nodes[node_idx]; + return CountValue(element, n.left) + CountValue(element, n.right) + ((n.element == element) ? 1 : 0); + } + + void IncrementUnbalanced(size_t amount = 1) + { + this->unbalanced += amount; + } + + /** Check if the entire tree is in need of rebuilding */ + bool IsUnbalanced() + { + size_t count = this->Count(); + if (count < 8) return false; + return this->unbalanced > this->Count() / 4; + } + + /** Verify that the invariant is true for a sub-tree, assert if not */ + void CheckInvariant(size_t node_idx, int level, CoordT min_x, CoordT max_x, CoordT min_y, CoordT max_y) + { + if (node_idx == INVALID_NODE) return; + + const node &n = this->nodes[node_idx]; + CoordT cx = this->xyfunc(n.element, 0); + CoordT cy = this->xyfunc(n.element, 1); + + assert(cx >= min_x); + assert(cx < max_x); + assert(cy >= min_y); + assert(cy < max_y); + + if (level % 2 == 0) { + // split in dimension 0 = x + CheckInvariant(n.left, level + 1, min_x, cx, min_y, max_y); + CheckInvariant(n.right, level + 1, cx, max_x, min_y, max_y); + } else { + // split in dimension 1 = y + CheckInvariant(n.left, level + 1, min_x, max_x, min_y, cy); + CheckInvariant(n.right, level + 1, min_x, max_x, cy, max_y); + } + } + + /** Verify the invariant for the entire tree, does nothing unless KDTREE_DEBUG is defined */ + void CheckInvariant() + { +#ifdef KDTREE_DEBUG + CheckInvariant(this->root, 0, std::numeric_limits<CoordT>::min(), std::numeric_limits<CoordT>::max(), std::numeric_limits<CoordT>::min(), std::numeric_limits<CoordT>::max()); +#endif + } + +public: + /** Construct a new Kdtree with the given xyfunc */ + Kdtree(TxyFunc xyfunc) : root(INVALID_NODE), xyfunc(xyfunc), unbalanced(0) { } + + /** + * Clear and rebuild the tree from a new sequence of elements, + * @tparam It Iterator type for element sequence. + * @param begin First element in sequence. + * @param end One past last element in sequence. + */ + template <typename It> + void Build(It begin, It end) + { + this->nodes.clear(); + this->free_list.clear(); + this->unbalanced = 0; + if (begin == end) return; + this->nodes.reserve(end - begin); + + this->root = this->BuildSubtree(begin, end, 0); + CheckInvariant(); + } + + /** + * Reconstruct the tree with the same elements, letting it be fully balanced. + */ + void Rebuild() + { + this->Rebuild(NULL, NULL); + } + + /** + * Insert a single element in the tree. + * Repeatedly inserting single elements may cause the tree to become unbalanced. + * Undefined behaviour if the element already exists in the tree. + */ + void Insert(const T &element) + { + if (this->Count() == 0) { + this->root = this->AddNode(element); + } else { + if (!this->IsUnbalanced() || !this->Rebuild(&element, NULL)) { + this->InsertRecursive(element, this->root, 0); + this->IncrementUnbalanced(); + } + CheckInvariant(); + } + } + + /** + * Remove a single element from the tree, if it exists. + * Since elements are stored in interior nodes as well as leaf nodes, removing one may + * require a larger sub-tree to be re-built. Because of this, worst case run time is + * as bad as a full tree rebuild. + */ + void Remove(const T &element) + { + size_t count = this->Count(); + if (count == 0) return; + if (!this->IsUnbalanced() || !this->Rebuild(NULL, &element)) { + /* If the removed element is the root node, this modifies this->root */ + this->root = this->RemoveRecursive(element, this->root, 0); + this->IncrementUnbalanced(); + } + CheckInvariant(); + } + + /** Get number of elements stored in tree */ + size_t Count() const + { + assert(this->free_list.size() <= this->nodes.size()); + return this->nodes.size() - this->free_list.size(); + } + + /** + * Find the element closest to given coordinate, in Manhattan distance. + * For multiple elements with the same distance, the one comparing smaller with + * a less-than comparison is chosen. + */ + T FindNearest(CoordT x, CoordT y) const + { + assert(this->Count() > 0); + + CoordT xy[2] = { x, y }; + return this->FindNearestRecursive(xy, this->root, 0).first; + } + + /** + * Find all items contained within the given rectangle. + * @note Start coordinates are inclusive, end coordinates are exclusive. x1<x2 && y1<y2 is a precondition. + * @param x1 Start first coordinate, points found are greater or equals to this. + * @param y1 Start second coordinate, points found are greater or equals to this. + * @param x2 End first coordinate, points found are less than this. + * @param y2 End second coordinate, points found are less than this. + * @param outputter Callback used to return values from the search. + */ + template <typename Outputter> + void FindContained(CoordT x1, CoordT y1, CoordT x2, CoordT y2, Outputter outputter) const + { + assert(x1 < x2); + assert(y1 < y2); + + if (this->Count() == 0) return; + + CoordT p1[2] = { x1, y1 }; + CoordT p2[2] = { x2, y2 }; + this->FindContainedRecursive(p1, p2, this->root, 0, outputter); + } + + /** + * Find all items contained within the given rectangle. + * @note End coordinates are exclusive, x1<x2 && y1<y2 is a precondition. + */ + std::vector<T> FindContained(CoordT x1, CoordT y1, CoordT x2, CoordT y2) const + { + std::vector<T> result; + this->FindContained(x1, y1, x2, y2, [&result](T e) {result.push_back(e); }); + return result; + } +}; + +#endif |