diff options
author | truelight <truelight@openttd.org> | 2004-08-22 14:44:03 +0000 |
---|---|---|
committer | truelight <truelight@openttd.org> | 2004-08-22 14:44:03 +0000 |
commit | 99253905bb147f19142ab61172b22962f41c48bc (patch) | |
tree | 8ea6ee4ff7c6784296eeb0de5f8bed32811c9f81 | |
parent | a770903df78bd144151a544775cf903f27d9a0f4 (diff) | |
download | openttd-99253905bb147f19142ab61172b22962f41c48bc.tar.xz |
(svn r108) -Fix: anon-union problems on GCC2 compilers
-rw-r--r-- | queue.c | 158 | ||||
-rw-r--r-- | queue.h | 3 |
2 files changed, 81 insertions, 80 deletions
@@ -6,31 +6,31 @@ void Stack_Clear(Queue* q, bool free_values) { uint i; if (free_values) - for (i=0;i<q->stack.size;i++) - free(q->stack.elements[i]); - q->stack.size = 0; + for (i=0;i<q->data.stack.size;i++) + free(q->data.stack.elements[i]); + q->data.stack.size = 0; } void Stack_Free(Queue* q, bool free_values) { q->clear(q, free_values); - free(q->stack.elements); + free(q->data.stack.elements); if (q->freeq) free(q); } bool Stack_Push(Queue* q, void* item, int priority) { - if (q->stack.size == q->stack.max_size) + if (q->data.stack.size == q->data.stack.max_size) return false; - q->stack.elements[q->stack.size++] = item; + q->data.stack.elements[q->data.stack.size++] = item; return true; } void* Stack_Pop(Queue* q) { void* result; - if (q->stack.size == 0) + if (q->data.stack.size == 0) return NULL; - result = q->stack.elements[--q->stack.size]; + result = q->data.stack.elements[--q->data.stack.size]; return result; } @@ -46,9 +46,9 @@ Queue* init_stack(Queue* q, uint max_size) { q->del = Stack_Delete; q->clear = Stack_Clear; q->free = Stack_Free; - q->stack.max_size = max_size; - q->stack.size = 0; - q->stack.elements = malloc(max_size * sizeof(void*)); + q->data.stack.max_size = max_size; + q->data.stack.size = 0; + q->data.stack.elements = malloc(max_size * sizeof(void*)); q->freeq = false; return q; } @@ -69,43 +69,43 @@ void Fifo_Clear(Queue* q, bool free_values) { uint head, tail; if (free_values) { - head = q->fifo.head; - tail = q->fifo.tail; /* cache for speed */ + head = q->data.fifo.head; + tail = q->data.fifo.tail; /* cache for speed */ while (head != tail) { - free(q->fifo.elements[tail]); - tail = (tail + 1) % q->fifo.max_size; + free(q->data.fifo.elements[tail]); + tail = (tail + 1) % q->data.fifo.max_size; } } - q->fifo.head = q->fifo.tail = 0; + q->data.fifo.head = q->data.fifo.tail = 0; } void Fifo_Free(Queue* q, bool free_values) { q->clear(q, free_values); - free(q->fifo.elements); + free(q->data.fifo.elements); if (q->freeq) free(q); } bool Fifo_Push(Queue* q, void* item, int priority) { - uint next = (q->fifo.head + 1) % q->fifo.max_size; - if (next == q->fifo.tail) + uint next = (q->data.fifo.head + 1) % q->data.fifo.max_size; + if (next == q->data.fifo.tail) return false; - q->fifo.elements[q->fifo.head] = item; + q->data.fifo.elements[q->data.fifo.head] = item; - q->fifo.head = next; + q->data.fifo.head = next; return true; } void* Fifo_Pop(Queue* q) { void* result; - if (q->fifo.head == q->fifo.tail) + if (q->data.fifo.head == q->data.fifo.tail) return NULL; - result = q->fifo.elements[q->fifo.tail]; + result = q->data.fifo.elements[q->data.fifo.tail]; - q->fifo.tail = (q->fifo.tail + 1) % q->fifo.max_size; + q->data.fifo.tail = (q->data.fifo.tail + 1) % q->data.fifo.max_size; return result; } @@ -120,10 +120,10 @@ Queue* init_fifo(Queue* q, uint max_size) { q->del = Fifo_Delete; q->clear = Fifo_Clear; q->free = Fifo_Free; - q->fifo.max_size = max_size; - q->fifo.head = 0; - q->fifo.tail = 0; - q->fifo.elements = malloc(max_size * sizeof(void*)); + q->data.fifo.max_size = max_size; + q->data.fifo.head = 0; + q->data.fifo.tail = 0; + q->data.fifo.elements = malloc(max_size * sizeof(void*)); q->freeq = false; return q; } @@ -142,7 +142,7 @@ Queue* new_Fifo(uint max_size) */ void InsSort_Clear(Queue* q, bool free_values) { - InsSortNode* node = q->inssort.first; + InsSortNode* node = q->data.inssort.first; InsSortNode* prev; while (node != NULL) { if (free_values) @@ -152,7 +152,7 @@ void InsSort_Clear(Queue* q, bool free_values) { free(prev); } - q->inssort.first = NULL; + q->data.inssort.first = NULL; } void InsSort_Free(Queue* q, bool free_values) @@ -167,11 +167,11 @@ bool InsSort_Push(Queue* q, void* item, int priority) { if (newnode == NULL) return false; newnode->item = item; newnode->priority = priority; - if (q->inssort.first == NULL || q->inssort.first->priority >= priority) { - newnode->next = q->inssort.first; - q->inssort.first = newnode; + if (q->data.inssort.first == NULL || q->data.inssort.first->priority >= priority) { + newnode->next = q->data.inssort.first; + q->data.inssort.first = newnode; } else { - InsSortNode* node = q->inssort.first; + InsSortNode* node = q->data.inssort.first; while( node != NULL ) { if (node->next == NULL || node->next->priority >= priority) { newnode->next = node->next; @@ -185,14 +185,14 @@ bool InsSort_Push(Queue* q, void* item, int priority) { } void* InsSort_Pop(Queue* q) { - InsSortNode* node = q->inssort.first; + InsSortNode* node = q->data.inssort.first; void* result; if (node == NULL) return NULL; result = node->item; - q->inssort.first = q->inssort.first->next; - if (q->inssort.first) - assert(q->inssort.first->priority >= node->priority); + q->data.inssort.first = q->data.inssort.first->next; + if (q->data.inssort.first) + assert(q->data.inssort.first->priority >= node->priority); free(node); return result; } @@ -208,7 +208,7 @@ void init_InsSort(Queue* q) { q->del = InsSort_Delete; q->clear = InsSort_Clear; q->free = InsSort_Free; - q->inssort.first = NULL; + q->data.inssort.first = NULL; q->freeq = false; } @@ -231,16 +231,16 @@ Queue* new_InsSort() { // To make our life easy, we make the next define // Because Binary Heaps works with array from 1 to n, // and C with array from 0 to n-1, and we don't like typing -// q->binaryheap.elements[i-1] every time, we use this define. -#define BIN_HEAP_ARR(i) q->binaryheap.elements[((i)-1) >> BINARY_HEAP_BLOCKSIZE_BITS][((i)-1) & BINARY_HEAP_BLOCKSIZE_MASK] +// q->data.binaryheap.elements[i-1] every time, we use this define. +#define BIN_HEAP_ARR(i) q->data.binaryheap.elements[((i)-1) >> BINARY_HEAP_BLOCKSIZE_BITS][((i)-1) & BINARY_HEAP_BLOCKSIZE_MASK] void BinaryHeap_Clear(Queue* q, bool free_values) { /* Free all items if needed and free all but the first blocks of * memory */ uint i,j; - for (i=0;i<q->binaryheap.blocks;i++) { - if (q->binaryheap.elements[i] == NULL) { + for (i=0;i<q->data.binaryheap.blocks;i++) { + if (q->data.binaryheap.elements[i] == NULL) { /* No more allocated blocks */ break; } @@ -248,29 +248,29 @@ void BinaryHeap_Clear(Queue* q, bool free_values) if (free_values) for (j=0;j<(1<<BINARY_HEAP_BLOCKSIZE_BITS);j++) { /* For every element in the block */ - if ((q->binaryheap.size >> BINARY_HEAP_BLOCKSIZE_BITS) == i - && (q->binaryheap.size & BINARY_HEAP_BLOCKSIZE_MASK) == j) + if ((q->data.binaryheap.size >> BINARY_HEAP_BLOCKSIZE_BITS) == i + && (q->data.binaryheap.size & BINARY_HEAP_BLOCKSIZE_MASK) == j) break; /* We're past the last element */ - free(q->binaryheap.elements[i][j].item); + free(q->data.binaryheap.elements[i][j].item); } if (i != 0) { /* Leave the first block of memory alone */ - free(q->binaryheap.elements[i]); - q->binaryheap.elements[i] = NULL; + free(q->data.binaryheap.elements[i]); + q->data.binaryheap.elements[i] = NULL; } } - q->binaryheap.size = 0; - q->binaryheap.blocks = 1; + q->data.binaryheap.size = 0; + q->data.binaryheap.blocks = 1; } void BinaryHeap_Free(Queue* q, bool free_values) { uint i; q->clear(q, free_values); - for (i=0;i<q->binaryheap.blocks;i++) { - if (q->binaryheap.elements[i] == NULL) + for (i=0;i<q->data.binaryheap.blocks;i++) { + if (q->data.binaryheap.elements[i] == NULL) break; - free(q->binaryheap.elements[i]); + free(q->data.binaryheap.elements[i]); } if (q->freeq) free(q); @@ -278,33 +278,33 @@ void BinaryHeap_Free(Queue* q, bool free_values) bool BinaryHeap_Push(Queue* q, void* item, int priority) { #ifdef QUEUE_DEBUG - printf("[BinaryHeap] Pushing an element. There are %d elements left\n", q->binaryheap.size); + printf("[BinaryHeap] Pushing an element. There are %d elements left\n", q->data.binaryheap.size); #endif - if (q->binaryheap.size == q->binaryheap.max_size) + if (q->data.binaryheap.size == q->data.binaryheap.max_size) return false; - assert(q->binaryheap.size < q->binaryheap.max_size); + assert(q->data.binaryheap.size < q->data.binaryheap.max_size); - if (q->binaryheap.elements[q->binaryheap.size >> BINARY_HEAP_BLOCKSIZE_BITS] == NULL) { + if (q->data.binaryheap.elements[q->data.binaryheap.size >> BINARY_HEAP_BLOCKSIZE_BITS] == NULL) { /* The currently allocated blocks are full, allocate a new one */ - assert((q->binaryheap.size & BINARY_HEAP_BLOCKSIZE_MASK) == 0); - q->binaryheap.elements[q->binaryheap.size >> BINARY_HEAP_BLOCKSIZE_BITS] = malloc(BINARY_HEAP_BLOCKSIZE * sizeof(BinaryHeapNode)); - q->binaryheap.blocks++; + assert((q->data.binaryheap.size & BINARY_HEAP_BLOCKSIZE_MASK) == 0); + q->data.binaryheap.elements[q->data.binaryheap.size >> BINARY_HEAP_BLOCKSIZE_BITS] = malloc(BINARY_HEAP_BLOCKSIZE * sizeof(BinaryHeapNode)); + q->data.binaryheap.blocks++; #ifdef QUEUE_DEBUG - printf("[BinaryHeap] Increasing size of elements to %d nodes\n",q->binaryheap.blocks * BINARY_HEAP_BLOCKSIZE); + printf("[BinaryHeap] Increasing size of elements to %d nodes\n",q->data.binaryheap.blocks * BINARY_HEAP_BLOCKSIZE); #endif } // Add the item at the end of the array - BIN_HEAP_ARR(q->binaryheap.size+1).priority = priority; - BIN_HEAP_ARR(q->binaryheap.size+1).item = item; - q->binaryheap.size++; + BIN_HEAP_ARR(q->data.binaryheap.size+1).priority = priority; + BIN_HEAP_ARR(q->data.binaryheap.size+1).item = item; + q->data.binaryheap.size++; // Now we are going to check where it belongs. As long as the parent is // bigger, we switch with the parent { int i, j; BinaryHeapNode temp; - i = q->binaryheap.size; + i = q->data.binaryheap.size; while (i > 1) { // Get the parent of this object (divide by 2) j = i / 2; @@ -327,20 +327,20 @@ bool BinaryHeap_Push(Queue* q, void* item, int priority) { bool BinaryHeap_Delete(Queue* q, void* item, int priority) { #ifdef QUEUE_DEBUG - printf("[BinaryHeap] Deleting an element. There are %d elements left\n", q->binaryheap.size); + printf("[BinaryHeap] Deleting an element. There are %d elements left\n", q->data.binaryheap.size); #endif uint i = 0; // First, we try to find the item.. do { if (BIN_HEAP_ARR(i+1).item == item) break; i++; - } while (i < q->binaryheap.size); + } while (i < q->data.binaryheap.size); // We did not find the item, so we return false - if (i == q->binaryheap.size) return false; + if (i == q->data.binaryheap.size) return false; // Now we put the last item over the current item while decreasing the size of the elements - q->binaryheap.size--; - BIN_HEAP_ARR(i+1) = BIN_HEAP_ARR(q->binaryheap.size+1); + q->data.binaryheap.size--; + BIN_HEAP_ARR(i+1) = BIN_HEAP_ARR(q->data.binaryheap.size+1); // Now the only thing we have to do, is resort it.. // On place i there is the item to be sorted.. let's start there @@ -354,14 +354,14 @@ bool BinaryHeap_Delete(Queue* q, void* item, int priority) for (;;) { j = i; // Check if we have 2 childs - if (2*j+1 <= q->binaryheap.size) { + if (2*j+1 <= q->data.binaryheap.size) { // Is this child smaller then the parent? if (BIN_HEAP_ARR(j).priority >= BIN_HEAP_ARR(2*j).priority) {i = 2*j; } // Yes, we _need_ to use i here, not j, because we want to have the smallest child // This way we get that straight away! if (BIN_HEAP_ARR(i).priority >= BIN_HEAP_ARR(2*j+1).priority) { i = 2*j+1; } // Do we have one child? - } else if (2*j <= q->binaryheap.size) { + } else if (2*j <= q->data.binaryheap.size) { if (BIN_HEAP_ARR(j).priority >= BIN_HEAP_ARR(2*j).priority) { i = 2*j; } } @@ -382,10 +382,10 @@ bool BinaryHeap_Delete(Queue* q, void* item, int priority) void* BinaryHeap_Pop(Queue* q) { #ifdef QUEUE_DEBUG - printf("[BinaryHeap] Popping an element. There are %d elements left\n", q->binaryheap.size); + printf("[BinaryHeap] Popping an element. There are %d elements left\n", q->data.binaryheap.size); #endif void* result; - if (q->binaryheap.size == 0) + if (q->data.binaryheap.size == 0) return NULL; // The best item is always on top, so give that as result @@ -404,13 +404,13 @@ void init_BinaryHeap(Queue* q, uint max_size) q->del = BinaryHeap_Delete; q->clear = BinaryHeap_Clear; q->free = BinaryHeap_Free; - q->binaryheap.max_size = max_size; - q->binaryheap.size = 0; + q->data.binaryheap.max_size = max_size; + q->data.binaryheap.size = 0; // We malloc memory in block of BINARY_HEAP_BLOCKSIZE // It autosizes when it runs out of memory - q->binaryheap.elements = calloc(1, ((max_size - 1) / BINARY_HEAP_BLOCKSIZE) + 1); - q->binaryheap.elements[0] = malloc(BINARY_HEAP_BLOCKSIZE * sizeof(BinaryHeapNode)); - q->binaryheap.blocks = 1; + q->data.binaryheap.elements = calloc(1, ((max_size - 1) / BINARY_HEAP_BLOCKSIZE) + 1); + q->data.binaryheap.elements[0] = malloc(BINARY_HEAP_BLOCKSIZE * sizeof(BinaryHeapNode)); + q->data.binaryheap.blocks = 1; q->freeq = false; #ifdef QUEUE_DEBUG printf("[BinaryHeap] Initial size of elements is %d nodes\n",(1024)); @@ -76,7 +76,8 @@ struct Queue{ uint blocks; /* The amount of blocks for which space is reserved in elements */
BinaryHeapNode** elements;
} binaryheap;
- };
+ } data;
+
/* If true, this struct will be free'd when the
* Queue is deleted. */
bool freeq;
|