1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
|
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4 (Public License)
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Anti-Grain Geometry - Version 2.4 Release Milano 3 (AggPas 2.4 RM3)
// Pascal Port By: Milan Marusinec alias Milano
// milan@marusinec.sk
// http://www.aggpas.org
// Copyright (c) 2005-2006
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//
//----------------------------------------------------------------------------
// Bessel function (besj) was adapted for use in AGG library by Andy Wilk
// Contact: castor.vulgaris@gmail.com
//
// [Pascal Port History] -----------------------------------------------------
//
// 23.06.2006-Milano: ptrcomp adjustments
// 18.12.2005-Milano: Unit port establishment
//
{ agg_math.pas }
unit
agg_math ;
INTERFACE
{$I agg_mode.inc }
{$Q- }
{$R- }
uses
Math ,
agg_basics ,
agg_vertex_sequence ;
{ GLOBAL VARIABLES & CONSTANTS }
type
double_xy_ptr = ^double_xy;
double_xy = record
x ,y : double;
end;
poly_xy_ptr = ^poly_xy;
poly_xy = array[0..0 ] of double_xy;
storage_xy_ptr = ^storage_xy;
storage_xy = record
poly : poly_xy_ptr;
size : unsigned;
end;
const
intersection_epsilon : double = 1.0e-30;
// Tables for fast sqrt
const
g_sqrt_table : array[0..1023 ] of int16u = (0 ,
2048,2896,3547,4096,4579,5017,5418,5793,6144,6476,6792,7094,7384,7663,7932,8192,8444,
8689,8927,9159,9385,9606,9822,10033,10240,10443,10642,10837,11029,11217,11403,11585,
11765,11942,12116,12288,12457,12625,12790,12953,13114,13273,13430,13585,13738,13890,
14040,14189,14336,14482,14626,14768,14910,15050,15188,15326,15462,15597,15731,15864,
15995,16126,16255,16384,16512,16638,16764,16888,17012,17135,17257,17378,17498,17618,
17736,17854,17971,18087,18203,18318,18432,18545,18658,18770,18882,18992,19102,19212,
19321,19429,19537,19644,19750,19856,19961,20066,20170,20274,20377,20480,20582,20684,
20785,20886,20986,21085,21185,21283,21382,21480,21577,21674,21771,21867,21962,22058,
22153,22247,22341,22435,22528,22621,22713,22806,22897,22989,23080,23170,23261,23351,
23440,23530,23619,23707,23796,23884,23971,24059,24146,24232,24319,24405,24491,24576,
24661,24746,24831,24915,24999,25083,25166,25249,25332,25415,25497,25580,25661,25743,
25824,25905,25986,26067,26147,26227,26307,26387,26466,26545,26624,26703,26781,26859,
26937,27015,27092,27170,27247,27324,27400,27477,27553,27629,27705,27780,27856,27931,
28006,28081,28155,28230,28304,28378,28452,28525,28599,28672,28745,28818,28891,28963,
29035,29108,29180,29251,29323,29394,29466,29537,29608,29678,29749,29819,29890,29960,
30030,30099,30169,30238,30308,30377,30446,30515,30583,30652,30720,30788,30856,30924,
30992,31059,31127,31194,31261,31328,31395,31462,31529,31595,31661,31727,31794,31859,
31925,31991,32056,32122,32187,32252,32317,32382,32446,32511,32575,32640,32704,32768,
32832,32896,32959,33023,33086,33150,33213,33276,33339,33402,33465,33527,33590,33652,
33714,33776,33839,33900,33962,34024,34086,34147,34208,34270,34331,34392,34453,34514,
34574,34635,34695,34756,34816,34876,34936,34996,35056,35116,35176,35235,35295,35354,
35413,35472,35531,35590,35649,35708,35767,35825,35884,35942,36001,36059,36117,36175,
36233,36291,36348,36406,36464,36521,36578,36636,36693,36750,36807,36864,36921,36978,
37034,37091,37147,37204,37260,37316,37372,37429,37485,37540,37596,37652,37708,37763,
37819,37874,37929,37985,38040,38095,38150,38205,38260,38315,38369,38424,38478,38533,
38587,38642,38696,38750,38804,38858,38912,38966,39020,39073,39127,39181,39234,39287,
39341,39394,39447,39500,39553,39606,39659,39712,39765,39818,39870,39923,39975,40028,
40080,40132,40185,40237,40289,40341,40393,40445,40497,40548,40600,40652,40703,40755,
40806,40857,40909,40960,41011,41062,41113,41164,41215,41266,41317,41368,41418,41469,
41519,41570,41620,41671,41721,41771,41821,41871,41922,41972,42021,42071,42121,42171,
42221,42270,42320,42369,42419,42468,42518,42567,42616,42665,42714,42763,42813,42861,
42910,42959,43008,43057,43105,43154,43203,43251,43300,43348,43396,43445,43493,43541,
43589,43637,43685,43733,43781,43829,43877,43925,43972,44020,44068,44115,44163,44210,
44258,44305,44352,44400,44447,44494,44541,44588,44635,44682,44729,44776,44823,44869,
44916,44963,45009,45056,45103,45149,45195,45242,45288,45334,45381,45427,45473,45519,
45565,45611,45657,45703,45749,45795,45840,45886,45932,45977,46023,46069,46114,46160,
46205,46250,46296,46341,46386,46431,46477,46522,46567,46612,46657,46702,46746,46791,
46836,46881,46926,46970,47015,47059,47104,47149,47193,47237,47282,47326,47370,47415,
47459,47503,47547,47591,47635,47679,47723,47767,47811,47855,47899,47942,47986,48030,
48074,48117,48161,48204,48248,48291,48335,48378,48421,48465,48508,48551,48594,48637,
48680,48723,48766,48809,48852,48895,48938,48981,49024,49067,49109,49152,49195,49237,
49280,49322,49365,49407,49450,49492,49535,49577,49619,49661,49704,49746,49788,49830,
49872,49914,49956,49998,50040,50082,50124,50166,50207,50249,50291,50332,50374,50416,
50457,50499,50540,50582,50623,50665,50706,50747,50789,50830,50871,50912,50954,50995,
51036,51077,51118,51159,51200,51241,51282,51323,51364,51404,51445,51486,51527,51567,
51608,51649,51689,51730,51770,51811,51851,51892,51932,51972,52013,52053,52093,52134,
52174,52214,52254,52294,52334,52374,52414,52454,52494,52534,52574,52614,52654,52694,
52734,52773,52813,52853,52892,52932,52972,53011,53051,53090,53130,53169,53209,53248,
53287,53327,53366,53405,53445,53484,53523,53562,53601,53640,53679,53719,53758,53797,
53836,53874,53913,53952,53991,54030,54069,54108,54146,54185,54224,54262,54301,54340,
54378,54417,54455,54494,54532,54571,54609,54647,54686,54724,54762,54801,54839,54877,
54915,54954,54992,55030,55068,55106,55144,55182,55220,55258,55296,55334,55372,55410,
55447,55485,55523,55561,55599,55636,55674,55712,55749,55787,55824,55862,55900,55937,
55975,56012,56049,56087,56124,56162,56199,56236,56273,56311,56348,56385,56422,56459,
56497,56534,56571,56608,56645,56682,56719,56756,56793,56830,56867,56903,56940,56977,
57014,57051,57087,57124,57161,57198,57234,57271,57307,57344,57381,57417,57454,57490,
57527,57563,57599,57636,57672,57709,57745,57781,57817,57854,57890,57926,57962,57999,
58035,58071,58107,58143,58179,58215,58251,58287,58323,58359,58395,58431,58467,58503,
58538,58574,58610,58646,58682,58717,58753,58789,58824,58860,58896,58931,58967,59002,
59038,59073,59109,59144,59180,59215,59251,59286,59321,59357,59392,59427,59463,59498,
59533,59568,59603,59639,59674,59709,59744,59779,59814,59849,59884,59919,59954,59989,
60024,60059,60094,60129,60164,60199,60233,60268,60303,60338,60373,60407,60442,60477,
60511,60546,60581,60615,60650,60684,60719,60753,60788,60822,60857,60891,60926,60960,
60995,61029,61063,61098,61132,61166,61201,61235,61269,61303,61338,61372,61406,61440,
61474,61508,61542,61576,61610,61644,61678,61712,61746,61780,61814,61848,61882,61916,
61950,61984,62018,62051,62085,62119,62153,62186,62220,62254,62287,62321,62355,62388,
62422,62456,62489,62523,62556,62590,62623,62657,62690,62724,62757,62790,62824,62857,
62891,62924,62957,62991,63024,63057,63090,63124,63157,63190,63223,63256,63289,63323,
63356,63389,63422,63455,63488,63521,63554,63587,63620,63653,63686,63719,63752,63785,
63817,63850,63883,63916,63949,63982,64014,64047,64080,64113,64145,64178,64211,64243,
64276,64309,64341,64374,64406,64439,64471,64504,64536,64569,64601,64634,64666,64699,
64731,64763,64796,64828,64861,64893,64925,64957,64990,65022,65054,65086,65119,65151,
65183,65215,65247,65279,65312,65344,65376,65408,65440,65472,65504 );
g_elder_bit_table : array[0..255 ] of int8 = (
0,0,1,1,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7 );
{ GLOBAL PROCEDURES }
function calc_point_location(x1 ,y1 ,x2 ,y2 ,x ,y : double ) : double;
function point_in_triangle(x1 ,y1 ,x2 ,y2 ,x3 ,y3 ,x ,y : double ) : boolean;
function calc_distance(x1 ,y1 ,x2 ,y2 : double ) : double;
function calc_line_point_distance(x1 ,y1 ,x2 ,y2 ,x ,y : double ) : double;
function calc_intersection(ax ,ay ,bx ,by ,cx ,cy ,dx ,dy : double; x ,y : double_ptr ) : boolean;
function intersection_exists(x1 ,y1 ,x2 ,y2 ,x3 ,y3 ,x4 ,y4 : double ) : boolean;
procedure calc_orthogonal(thickness ,x1 ,y1 ,x2 ,y2 : double; x ,y : double_ptr );
procedure dilate_triangle(x1 ,y1 ,x2 ,y2 ,x3 ,y3 : double; x ,y : double_ptr; d : double );
function calc_triangle_area(x1 ,y1 ,x2 ,y2 ,x3 ,y3 : double ) : double;
function calc_polygon_area(st : storage_xy_ptr ) : double;
function calc_polygon_area_vs(st : vertex_sequence_ptr ) : double;
function fast_sqrt(val : unsigned ) : unsigned;
function besj(x : double; n : int ) : double;
function cross_product(x1 ,y1 ,x2 ,y2 ,x ,y : double ) : double;
IMPLEMENTATION
{ LOCAL VARIABLES & CONSTANTS }
{ UNIT IMPLEMENTATION }
{ calc_point_location }
function calc_point_location;
begin
result:=(x - x2 ) * (y2 - y1 ) - (y - y2 ) * (x2 - x1 );
end;
{ point_in_triangle }
function point_in_triangle;
var
cp1 ,cp2 ,cp3 : boolean;
begin
cp1:=calc_point_location(x1 ,y1 ,x2 ,y2 ,x ,y ) < 0.0;
cp2:=calc_point_location(x2 ,y2 ,x3 ,y3 ,x ,y ) < 0.0;
cp3:=calc_point_location(x3 ,y3 ,x1 ,y1 ,x ,y ) < 0.0;
result:=(cp1 = cp2 ) and (cp2 = cp3 ) and (cp3 = cp1 );
end;
{ calc_distance }
function calc_distance;
var
dx ,dy : double;
begin
dx:=x2 - x1;
dy:=y2 - y1;
result:=sqrt(dx * dx + dy * dy );
end;
{ calc_line_point_distance }
function calc_line_point_distance;
var
d ,
dx ,
dy : double;
begin
dx:=x2 - x1;
dy:=y2 - y1;
d :=sqrt(dx * dx + dy * dy );
if d < intersection_epsilon then
result:=calc_distance(x1 ,y1 ,x ,y )
else
result:=((x - x2 ) * dy - (y - y2 ) * dx) / d;
end;
{ calc_intersection }
function calc_intersection;
var
r ,
num ,
den : double;
begin
num:=(ay - cy ) * (dx - cx ) - (ax - cx ) * (dy - cy );
den:=(bx - ax ) * (dy - cy ) - (by - ay ) * (dx - cx );
if Abs(den ) < intersection_epsilon then
result:=false
else
begin
r :=num / den;
x^:=ax + r * (bx - ax );
y^:=ay + r * (by - ay );
result:=true;
end;
end;
{ intersection_exists }
function intersection_exists;
var
dx1 ,dy1 ,
dx2 ,dy2 : double;
begin
dx1:=x2 - x1;
dy1:=y2 - y1;
dx2:=x4 - x3;
dy2:=y4 - y3;
result:=
(((x3 - x2 ) * dy1 - (y3 - y2 ) * dx1 < 0.0 ) <>
((x4 - x2 ) * dy1 - (y4 - y2 ) * dx1 < 0.0 ) ) and
(((x1 - x4 ) * dy2 - (y1 - y4 ) * dx2 < 0.0 ) <>
((x2 - x4 ) * dy2 - (y2 - y4 ) * dx2 < 0.0 ) );
end;
{ calc_orthogonal }
procedure calc_orthogonal;
var
d ,dx ,dy : double;
begin
dx:=x2 - x1;
dy:=y2 - y1;
d :=sqrt(dx * dx + dy * dy );
x^:=thickness * dy / d;
y^:=thickness * dx / d;
end;
{ dilate_triangle }
procedure dilate_triangle;
var
loc ,
dx1 ,dy1 ,
dx2 ,dy2 ,
dx3 ,dy3 : double;
begin
dx1:=0.0;
dy1:=0.0;
dx2:=0.0;
dy2:=0.0;
dx3:=0.0;
dy3:=0.0;
loc:=calc_point_location(x1 ,y1 ,x2 ,y2 ,x3 ,y3 );
if Abs(loc ) > intersection_epsilon then
begin
if calc_point_location(x1 ,y1 ,x2 ,y2 ,x3 ,y3 ) > 0.0 then
d:=-d;
calc_orthogonal(d ,x1 ,y1 ,x2 ,y2 ,@dx1 ,@dy1 );
calc_orthogonal(d ,x2 ,y2 ,x3 ,y3 ,@dx2 ,@dy2 );
calc_orthogonal(d ,x3 ,y3 ,x1 ,y1 ,@dx3 ,@dy3 );
end;
x^:=x1 + dx1; inc(ptrcomp(x ) ,sizeof(double ) );
y^:=y1 - dy1; inc(ptrcomp(y ) ,sizeof(double ) );
x^:=x2 + dx1; inc(ptrcomp(x ) ,sizeof(double ) );
y^:=y2 - dy1; inc(ptrcomp(y ) ,sizeof(double ) );
x^:=x2 + dx2; inc(ptrcomp(x ) ,sizeof(double ) );
y^:=y2 - dy2; inc(ptrcomp(y ) ,sizeof(double ) );
x^:=x3 + dx2; inc(ptrcomp(x ) ,sizeof(double ) );
y^:=y3 - dy2; inc(ptrcomp(y ) ,sizeof(double ) );
x^:=x3 + dx3; inc(ptrcomp(x ) ,sizeof(double ) );
y^:=y3 - dy3; inc(ptrcomp(y ) ,sizeof(double ) );
x^:=x1 + dx3; inc(ptrcomp(x ) ,sizeof(double ) );
y^:=y1 - dy3; inc(ptrcomp(y ) ,sizeof(double ) );
end;
{ calc_triangle_area }
function calc_triangle_area;
begin
result:=(x1 * y2 - x2 * y1 + x2 * y3 - x3 * y2 + x3 * y1 - x1 * y3 ) * 0.5;
end;
{ calc_polygon_area }
function calc_polygon_area;
var
i : unsigned;
v : double_xy_ptr;
x ,y ,sum ,xs ,ys : double;
begin
sum:=0.0;
x :=st.poly[0 ].x;
y :=st.poly[0 ].y;
xs :=x;
ys :=y;
if st.size > 0 then
for i:=1 to st.size - 1 do
begin
v:=@st.poly[i ];
sum:=sum + (x * v.y - y * v.x );
x:=v.x;
y:=v.y;
end;
result:=(sum + x * ys - y * xs ) * 0.5;
end;
{ calc_polygon_area_vs }
function calc_polygon_area_vs;
var
i : unsigned;
v : vertex_dist_ptr;
x ,y ,sum ,xs ,ys : double;
begin
sum:=0.0;
x :=vertex_dist_ptr(st.array_operator(0 ) ).x;
y :=vertex_dist_ptr(st.array_operator(0 ) ).y;
xs :=x;
ys :=y;
if st.size > 0 then
for i:=1 to st.size - 1 do
begin
v:=st.array_operator(i );
sum:=sum + (x * v.y - y * v.x );
x:=v.x;
y:=v.y;
end;
result:=(sum + x * ys - y * xs ) * 0.5;
end;
{ fast_sqrt }
function fast_sqrt;
var
bit : int;
t ,shift : unsigned;
begin
t :=val;
bit:=0;
shift:=11;
//The following piece of code is just an emulation of the
//Ix86 assembler command "bsr" (see below). However on old
//Intels (like Intel MMX 233MHz) this code is about twice
//faster (sic!) then just one "bsr". On PIII and PIV the
//bsr is optimized quite well.
bit:=t shr 24;
if bit <> 0 then
bit:=g_elder_bit_table[bit ] + 24
else
begin
bit:=(t shr 16 ) and $FF;
if bit <> 0 then
bit:=g_elder_bit_table[bit ] + 16
else
begin
bit:=(t shr 8 ) and $FF;
if bit <> 0 then
bit:=g_elder_bit_table[bit ] + 8
else
bit:=g_elder_bit_table[t ];
end;
end;
// This is calculation sqrt itself.
bit:=bit - 9;
if bit > 0 then
begin
bit :=(shr_int32(bit ,1 ) ) + (bit and 1 );
shift:=shift - bit;
val :=val shr (bit shl 1 );
end;
result:=g_sqrt_table[val ] shr shift;
end;
//--------------------------------------------------------------------besj
// Function BESJ calculates Bessel function of first kind of order n
// Arguments:
// n - an integer (>=0), the order
// x - value at which the Bessel function is required
//--------------------
// C++ Mathematical Library
// Convereted from equivalent FORTRAN library
// Converetd by Gareth Walker for use by course 392 computational project
// All functions tested and yield the same results as the corresponding
// FORTRAN versions.
//
// If you have any problems using these functions please report them to
// M.Muldoon@UMIST.ac.uk
//
// Documentation available on the web
// http://www.ma.umist.ac.uk/mrm/Teaching/392/libs/392.html
// Version 1.0 8/98
// 29 October, 1999
//--------------------
// Adapted for use in AGG library by Andy Wilk (castor.vulgaris@gmail.com)
//------------------------------------------------------------------------
{ besj }
function besj;
var
i ,m1 ,m2 ,m8 ,imax : int;
d ,b ,b1 ,c2 ,c3 ,c4 ,c6 : double;
begin
if n < 0 then
begin
result:=0;
exit;
end;
d:=1E-6;
b:=0;
if Abs(x ) <= d then
begin
if n <> 0 then
result:=0
else
result:=1;
exit;
end;
b1:=0; // b1 is the value from the previous iteration
// Set up a starting order for recurrence
m1:=trunc(Abs(x ) + 6 );
if Abs(x ) > 5 then
m1:=trunc(Abs(1.4 * x + 60 / x ) );
m2:=trunc(n + 2 + Abs(x ) / 4 );
if m1 > m2 then
m2:=m1;
// Apply recurrence down from curent max order
repeat
c3:=0;
c2:=1E-30;
c4:=0;
m8:=1;
if m2 div 2 * 2 = m2 then
m8:=-1;
imax:=m2 - 2;
for i:=1 to imax do
begin
c6:=2 * (m2 - i ) * c2 / x - c3;
c3:=c2;
c2:=c6;
if m2 - i - 1 = n then
b:=c6;
m8:=-1 * m8;
if m8 > 0 then
c4:=c4 + 2 * c6;
end;
c6:=2 * c2 / x - c3;
if n = 0 then
b:=c6;
c4:=c4 + c6;
b :=b / c4;
if Abs(b - b1 ) < d then
begin
result:=b;
exit;
end;
b1:=b;
inc(m2 ,3 );
until false;
end;
{ CROSS_PRODUCT }
function cross_product(x1 ,y1 ,x2 ,y2 ,x ,y : double ) : double;
begin
result:=(x - x2 ) * (y2 - y1 ) - (y - y2 ) * (x2 - x1 );
end;
END.
|