1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
|
<html><head><title>Anti-Grain Geometry - Demo Examples</title>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<link rel="stylesheet" type="text/css"
href="original_demos_files/agg.css">
</head><body><a name="PAGE_DEMO"><b></b></a>
<table style="margin: 0px;" height="1px" width="640px" border="0"
cellpadding="0" cellspacing="0">
<tbody><tr>
<td bgcolor="#583927"></td>
</tr>
</tbody></table>
<table style="margin: 0px;" width="640px" border="0" cellpadding="0"
cellspacing="0">
<tbody><tr>
<td>
<table style="margin: 0px;" width="170px" border="0" cellpadding="0"
cellspacing="0">
<tbody><tr><td><a href="http://www.antigrain.com/index.html"
class="mpmenu">Home/</a></td></tr>
<tr><td><a href="" class="mpmenu"></a></td></tr>
<tr><td><a href="" class="mpmenu"></a></td></tr>
<tr><td><a href="" class="mpmenu"></a></td></tr>
<tr><td><a href="" class="mpmenu"></a></td></tr>
<tr><td><a href="" class="mpmenu"></a></td></tr>
</tbody></table>
</td>
<td width="1px" bgcolor="#583927"></td>
<td style="text-align: right;" valign="top" width="450px">
<table style="margin: 0px;" border="0" cellpadding="0" cellspacing="0">
<tbody><tr>
<td><img src="original_demos_files/agg_logo.gif" border="0"></td>
</tr>
<tr>
<td>
<table style="margin: 0px;" border="0" cellpadding="0" cellspacing="0">
<tbody><tr height="15px">
<td> <a class="topmenu"
href="http://www.antigrain.com/news/index.html">News</a> </td>
<td width="1px" bgcolor="#8e521d"></td>
<td> <a class="topmenu"
href="http://www.antigrain.com/doc/index.html">Docs</a> </td>
<td width="1px" bgcolor="#8e521d"></td>
<td> <a class="topmenu"
href="http://www.antigrain.com/download/index.html">Download</a> </td>
<td width="1px" bgcolor="#8e521d"></td>
<td> <a class="topmenu"
href="http://www.antigrain.com/maillist/index.html">Mailing List</a> </td>
<td width="1px" bgcolor="#8e521d"></td>
<td> <a class="topmenu"
href="http://www.antigrain.com/cvs/index.html">CVS</a> </td>
</tr>
</tbody></table>
</td>
</tr>
</tbody></table>
</td>
</tr>
</tbody></table>
<table style="margin: 0px;" height="1px" width="640px" bgcolor="#583927"
border="0" cellpadding="0" cellspacing="0"><tbody><tr><td></td></tr></tbody></table>
<table width="640px"><tbody><tr><td style="text-align: justify;"><p></p></td></tr></tbody></table>
<table width="640px"><tbody><tr><td><h1>Demo Examples</h1></td></tr></tbody></table>
<table width="640px"><tbody><tr><td style="text-align: justify;"><p>All
the demo examples are in the distribution package, see <a
href="http://www.antigrain.com/download/index.html#PAGE_DOWNLOAD">Download</a>.
This page contains precompiled executables with screenshots and brief
explanations. It is safe to download and run the executables, there are
no viruses and no any trojan code. Also, there is nothing installed
on your computer, you just download, unpack, run, and see the examples.
However, it's always a good idea to double check everything with your
favorite anti-virus software before running.
If you don't trust it, you can download the sources
(see <a
href="http://www.antigrain.com/download/index.html#PAGE_DOWNLOAD">Download</a>),
compile and run the examples, and of course,
analyse the source code for any possible destructive subroutines.
I have no responsibility if your computer is infected with some
virus program.</p></td></tr></tbody></table>
<table width="640px"><tbody><tr><td style="text-align: justify;"><p>The
image examples require file <code>spheres.bmp</code> for Windows
executables,
and <code>spheres.ppm</code> for Linux ones. Download them from here:<br>
<a href="http://www.antigrain.com/spheres.bmp"><img
src="original_demos_files/download.gif" border="0"> (../spheres.bmp)</a><br>
<a href="http://www.antigrain.com/spheres.ppm"><img
src="original_demos_files/download.gif" border="0"> (../spheres.ppm)</a><br>
You can also use any other .BMP or .PPM file of about the same size.
The .BMP file must be of 24 bit TrueColor, the .PPM one must be of type
P6
(24 bit per pixel RGB). There are two ways to use your own files in
image
demo examples. You can simply call it <code>spheres.bmp</code> or <code>spheres.ppm</code>
and put them to the directory
where you run the examples, or indicate the name of the file in the
command line, for example,
<code>image_filters.exe my_image.bmp</code></p></td></tr></tbody></table>
<table class="tbl" width="640px" border="0" cellpadding="5px"
cellspacing="1px">
<tbody><tr><th>Screenshot</th><th>Source Code and Description</th><th>Executable</th>
</tr><tr><td><a href="http://www.antigrain.com/demo/examples.jpg"><img
src="original_demos_files/examples_s.jpg" title="Click to enlarge"
border="0"></a></td><td style="text-align: justify;"><b>All examples in
one package</b></td><td><a
href="http://www.antigrain.com/demo/examples.zip"><img
src="original_demos_files/dl_win32.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/examples.tar.gz"><img
src="original_demos_files/dl_linux.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/examples_sgi.tar.gz"><img
src="original_demos_files/dl_irix64.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/examples_sun.tar.gz"><img
src="original_demos_files/dl_sunos.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/examples_amiga.tar.gz"><img
src="original_demos_files/dl_amigaos.gif" border="0"></a><br></td></tr>
<tr><td><a href="http://www.antigrain.com/demo/lion.png"><img
src="original_demos_files/lion_s.png" title="Click to enlarge"
border="0"></a></td><td style="text-align: justify;"><a
name="PAGE_DEMO_lion"><b></b></a><code><a
href="http://www.antigrain.com/demo/lion.cpp.html">lion.cpp</a></code>
This is the first example I used to implement and debug the
scanline rasterizer, affine transformer, and basic renderers.
You can rotate and scale the “Lion” with the left mouse button.
Right mouse button adds “skewing” transformations, proportional
to the “X” coordinate. The image is drawn over the old one with
a cetrain opacity value. Change “Alpha” to draw funny looking
“lions”. Change window size to clear the window.</td><td><a
href="http://www.antigrain.com/demo/lion.zip"><img
src="original_demos_files/dl_win32.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/lion.tar.gz"><img
src="original_demos_files/dl_linux.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/lion_sgi.tar.gz"><img
src="original_demos_files/dl_irix64.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/lion_sun.tar.gz"><img
src="original_demos_files/dl_sunos.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/lion_amiga.gz"><img
src="original_demos_files/dl_amigaos.gif" border="0"></a><br></td></tr>
<tr><td><a href="http://www.antigrain.com/demo/idea.gif"><img
src="original_demos_files/idea_s.gif" title="Click to enlarge"
border="0"></a></td><td style="text-align: justify;"><a
name="PAGE_DEMO_idea"><b></b></a>
<code><a href="http://www.antigrain.com/demo/idea.cpp.html">idea.cpp</a></code>
The polygons for this “idea” were taken from the book
"Dynamic HTML in Action" by Eric Schurman. An example of using
Microsoft Direct Animation can be found here: <a
href="http://www.antigrain.com/demo/ideaDA.html"><img
src="original_demos_files/link.gif" border="0">ideaDA.html</a>.
If you use Microsoft Internet Explorer you can compare the quality
of rendering in <b>AGG</b> and Microsoft Direct Animation. Note that
even
when you click "Rotate with High Quality", you will see it “jitters”.
It's because there are actually no <b>Subpixel Accuracy</b> used in the
Microsoft Direct Animation.
In the <b>AGG</b> example, there's no jitter even in the “Draft” (low
quality) mode.
You can see the simulated jittering if you turn on the “Roundoff” mode,
in which there integer pixel coordinated are used. As for the
performance,
note, that the image in <b>AGG</b> is rotated with step of 0.01 degree
(initially),
while in the Direct Animation Example the angle step is 0.1 degree.</td><td><a
href="http://www.antigrain.com/demo/idea.zip"><img
src="original_demos_files/dl_win32.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/idea.tar.gz"><img
src="original_demos_files/dl_linux.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/idea_sgi.tar.gz"><img
src="original_demos_files/dl_irix64.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/idea_sun.tar.gz"><img
src="original_demos_files/dl_sunos.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/idea_amiga.gz"><img
src="original_demos_files/dl_amigaos.gif" border="0"></a><br></td></tr>
<tr><td><a href="http://www.antigrain.com/demo/lion_outline.gif"><img
src="original_demos_files/lion_outline_s.gif" title="Click to enlarge"
border="0"></a></td><td style="text-align: justify;"><a
name="PAGE_DEMO_lion_outline"><b></b></a>
<code><a href="http://www.antigrain.com/demo/lion_outline.cpp.html">lion_outline.cpp</a></code>
The example demonstrates my new algorithm of drawing <b>Anti-Aliased</b>
lines. The algorithm works about 2.5 times faster than the scanline
rasterizer but has some restrictions, particularly, line joins can
be only of the “miter” type, and when so called <b>miter limit</b> is
exceded, they are not as accurate as generated by the stroke
converter (<a
href="http://www.antigrain.com/__code/include/agg_conv_stroke.h.html#conv_stroke">conv_stroke</a>).
To see the difference, maximize the window
and try to rotate and scale the “lion” with and without using
the scanline rasterizer (a checkbox at the bottom). The difference
in performance is obvious.</td><td><a
href="http://www.antigrain.com/demo/lion_outline.zip"><img
src="original_demos_files/dl_win32.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/lion_outline.tar.gz"><img
src="original_demos_files/dl_linux.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/lion_outline_sgi.tar.gz"><img
src="original_demos_files/dl_irix64.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/lion_outline_sun.tar.gz"><img
src="original_demos_files/dl_sunos.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/lion_outline_amiga.gz"><img
src="original_demos_files/dl_amigaos.gif" border="0"></a><br></td></tr>
<tr><td><a href="http://www.antigrain.com/demo/aa_demo.gif"><img
src="original_demos_files/aa_demo_s.gif" title="Click to enlarge"
border="0"></a></td><td style="text-align: justify;"><a
name="PAGE_DEMO_aa_demo"><b></b></a>
<code><a href="http://www.antigrain.com/demo/aa_demo.cpp.html">aa_demo.cpp</a></code>
Demonstration of the <b><nobr>Anti-Aliasing</nobr></b> principle with <b>Subpixel
Accuracy</b>. The triangle is
rendered two times, with its “natural” size (at the bottom-left)
and enlarged. To draw the enlarged version there is a special scanline
renderer was written (see class renderer_enlarged in the source code).
You can drag the whole triangle as well as each vertex of it. Also
change “Gamma” to see how it affects the quality of <b><nobr>Anti-Aliasing</nobr></b>.</td><td><a
href="http://www.antigrain.com/demo/aa_demo.zip"><img
src="original_demos_files/dl_win32.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/aa_demo.tar.gz"><img
src="original_demos_files/dl_linux.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/aa_demo_sgi.tar.gz"><img
src="original_demos_files/dl_irix64.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/aa_demo_sun.tar.gz"><img
src="original_demos_files/dl_sunos.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/aa_demo_amiga.gz"><img
src="original_demos_files/dl_amigaos.gif" border="0"></a><br></td></tr>
<tr><td><a href="http://www.antigrain.com/demo/gamma_correction.gif"><img
src="original_demos_files/gamma_correction_s.gif" title="Click to
enlarge" border="0"></a></td><td style="text-align: justify;"><a
name="PAGE_DEMO_gamma_correction"><b></b></a>
<code><a href="http://www.antigrain.com/demo/gamma_correction.cpp.html">gamma_correction.cpp</a></code>
<b><nobr>Anti-Aliasing</nobr></b> is very tricky because everything
depends. Particularly,
having straight linear dependence <b>“pixel coverage”</b> <span
class="larger">→</span>
<b>“brightness”</b> may be not the best.
It depends on the type of display (CRT, LCD), contrast,
<nobr>black-on-white</nobr> vs <nobr>white-on-black</nobr>, it even
depends on your
personal vision. There are no linear dependencies in this World.
This example demonstrates the importance of so called <b>Gamma
Correction</b> in <b><nobr>Anti-Aliasing</nobr></b>. There a traditional
<b>power</b> function is used,
in terms of <b>C++</b> it's <code>brighness = pow(brighness, gamma)</code>.
Change
“Gamma” and see how the quality changes. Note, that if you improve
the quality on the white side, it becomes worse on the black side and
vice versa.</td><td><a
href="http://www.antigrain.com/demo/gamma_correction.zip"><img
src="original_demos_files/dl_win32.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/gamma_correction.tar.gz"><img
src="original_demos_files/dl_linux.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/gamma_correction_sgi.tar.gz"><img
src="original_demos_files/dl_irix64.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/gamma_correction_sun.tar.gz"><img
src="original_demos_files/dl_sunos.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/gamma_correction_amiga.gz"><img
src="original_demos_files/dl_amigaos.gif" border="0"></a><br></td></tr>
<tr><td><a href="http://www.antigrain.com/demo/gamma_ctrl.gif"><img
src="original_demos_files/gamma_ctrl_s.gif" title="Click to enlarge"
border="0"></a></td><td style="text-align: justify;"><a
name="PAGE_DEMO_gamma_ctrl"><b></b></a>
<code><a href="http://www.antigrain.com/demo/gamma_ctrl.cpp.html">gamma_ctrl.cpp</a></code>
This is another experiment with gamma correction.
See also <a
href="http://www.antigrain.com/research/gamma_correction/index.html#PAGE_GAMMA_CORRECTION">Gamma
Correction</a>. I presumed that we can do better
than with a traditional power function. So, I created a
special control to have an arbitrary gamma function. The conclusion
is that we can really achieve a better visual result with this control,
but still, in practice, the traditional <b>power function</b> is good
enough
too.</td><td><a href="http://www.antigrain.com/demo/gamma_ctrl.zip"><img
src="original_demos_files/dl_win32.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/gamma_ctrl.tar.gz"><img
src="original_demos_files/dl_linux.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/gamma_ctrl_sgi.tar.gz"><img
src="original_demos_files/dl_irix64.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/gamma_ctrl_sun.tar.gz"><img
src="original_demos_files/dl_sunos.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/gamma_ctrl_amiga.gz"><img
src="original_demos_files/dl_amigaos.gif" border="0"></a><br></td></tr>
<tr><td><a href="http://www.antigrain.com/demo/rounded_rect.gif"><img
src="original_demos_files/rounded_rect_s.gif" title="Click to enlarge"
border="0"></a></td><td style="text-align: justify;"><a
name="PAGE_DEMO_rounded_rect"><b></b></a>
<code><a href="http://www.antigrain.com/demo/rounded_rect.cpp.html">rounded_rect.cpp</a></code>
Yet another example dedicated to Gamma Correction.
If you have a CRT monitor: The rectangle looks bad - the rounded corners
are
thicker than its side lines. First try to drag the <b>“subpixel offset”</b>
control — it simply adds some fractional value to the coordinates. When
dragging
you will see that the rectangle is "blinking". Then increase <b>“Gamma”</b>
to about 1.5. The result will look almost perfect — the visual thickness
of
the rectangle remains the same. That's good, but turn the checkbox
<b>“White on black”</b> on — what do we see? Our rounded rectangle looks
terrible.
Drag the <b>“subpixel offset”</b> slider — it's blinking as hell.
Now decrease "Gamma" to about 0.6. What do we see now? Perfect result!
If you use an LCD monitor, the good value of gamma will be closer to 1.0
in
both cases — black on white or white on black. There's no perfection in
this
world, but at least you can control Gamma in <b><nobr>Anti-Grain</nobr>
Geometry</b> :-)</td><td><a
href="http://www.antigrain.com/demo/rounded_rect.zip"><img
src="original_demos_files/dl_win32.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/rounded_rect.tar.gz"><img
src="original_demos_files/dl_linux.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/rounded_rect_sgi.tar.gz"><img
src="original_demos_files/dl_irix64.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/rounded_rect_sun.tar.gz"><img
src="original_demos_files/dl_sunos.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/rounded_rect_amiga.gz"><img
src="original_demos_files/dl_amigaos.gif" border="0"></a><br></td></tr>
<tr><td><a href="http://www.antigrain.com/demo/gamma_tuner.png"><img
src="original_demos_files/gamma_tuner_s.png" title="Click to enlarge"
border="0"></a></td><td style="text-align: justify;"><a
name="PAGE_DEMO_gamma_tuner"><b></b></a>
<code><a href="http://www.antigrain.com/demo/gamma_tuner.cpp.html">gamma_tuner.cpp</a></code>
Yet another gamma tuner. Set gamma value with the slider, and then
try to tune your monitor so that the vertical strips would be
almost invisible.</td><td><a
href="http://www.antigrain.com/demo/gamma_tuner.zip"><img
src="original_demos_files/dl_win32.gif" border="0"></a><br></td></tr>
<tr><td><a href="http://www.antigrain.com/demo/rasterizers.gif"><img
src="original_demos_files/rasterizers_s.gif" title="Click to enlarge"
border="0"></a></td><td style="text-align: justify;"><a
name="PAGE_DEMO_rasterizers"><b></b></a>
<code><a href="http://www.antigrain.com/demo/rasterizers.cpp.html">rasterizers.cpp</a></code>
It's a very simple example that was written to compare the performance
between Anti-Aliased and regular polygon filling. It appears that the
most
expensive operation is rendering of horizontal scanlines. So that,
we can use the very same rasterization algorithm to draw regular,
aliased
polygons. Of course, it's possible to write a special version of the
rasterizer
that will work faster, but won't calculate the pixel coverage values.
But
on the other hand, the existing version of the <a
href="http://www.antigrain.com/__code/include/agg_rasterizer_scanline_aa.h.html#rasterizer_scanline_aa">rasterizer_scanline_aa</a>
allows
you to change gamma, and to "dilate" or "shrink" the polygons in range
of <span class="larger">±</span> 1
pixel. As usual, you can drag the triangles as well as the vertices of
them.
Compare the performance with different shapes and opacity.</td><td><a
href="http://www.antigrain.com/demo/rasterizers.zip"><img
src="original_demos_files/dl_win32.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/rasterizers.tar.gz"><img
src="original_demos_files/dl_linux.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/rasterizers_sgi.tar.gz"><img
src="original_demos_files/dl_irix64.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/rasterizers_sun.tar.gz"><img
src="original_demos_files/dl_sunos.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/rasterizers_amiga.gz"><img
src="original_demos_files/dl_amigaos.gif" border="0"></a><br></td></tr>
<tr><td><a href="http://www.antigrain.com/demo/rasterizers2.gif"><img
src="original_demos_files/rasterizers2_s.gif" title="Click to enlarge"
border="0"></a></td><td style="text-align: justify;"><a
name="PAGE_DEMO_rasterizers2"><b></b></a>
<code><a href="http://www.antigrain.com/demo/rasterizers2.cpp.html">rasterizers2.cpp</a></code>
More complex example demostrating different rasterizers. Here you can
see how the
<b>outline</b> rasterizer works, and how to use an image as the line
pattern. This
capability can be very useful to draw geographical maps.</td><td><a
href="http://www.antigrain.com/demo/rasterizers2.zip"><img
src="original_demos_files/dl_win32.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/rasterizers2.tar.gz"><img
src="original_demos_files/dl_linux.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/rasterizers2_sgi.tar.gz"><img
src="original_demos_files/dl_irix64.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/rasterizers2_sun.tar.gz"><img
src="original_demos_files/dl_sunos.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/rasterizers2_amiga.gz"><img
src="original_demos_files/dl_amigaos.gif" border="0"></a><br></td></tr>
<tr><td><a href="http://www.antigrain.com/demo/component_rendering.gif"><img
src="original_demos_files/component_rendering_s.gif" title="Click to
enlarge" border="0"></a></td><td style="text-align: justify;"><a
name="PAGE_DEMO_component_rendering"><b></b></a>
<code><a
href="http://www.antigrain.com/demo/component_rendering.cpp.html">component_rendering.cpp</a></code>
<b>AGG</b> has a gray-scale renderer that can use any 8-bit color
channel of an
RGB or RGBA frame buffer. Most likely it will be used to draw gray-scale
images directly in the alpha-channel.</td><td><a
href="http://www.antigrain.com/demo/component_rendering.zip"><img
src="original_demos_files/dl_win32.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/component_rendering.tar.gz"><img
src="original_demos_files/dl_linux.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/component_rendering_sgi.tar.gz"><img
src="original_demos_files/dl_irix64.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/component_rendering_sun.tar.gz"><img
src="original_demos_files/dl_sunos.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/component_rendering_amiga.gz"><img
src="original_demos_files/dl_amigaos.gif" border="0"></a><br></td></tr>
<tr><td><a href="http://www.antigrain.com/demo/polymorphic_renderer.gif"><img
src="original_demos_files/polymorphic_renderer_s.gif" title="Click to
enlarge" border="0"></a></td><td style="text-align: justify;"><a
name="PAGE_DEMO_polymorphic_renderer"><b></b></a>
<code><a
href="http://www.antigrain.com/demo/polymorphic_renderer.cpp.html">polymorphic_renderer.cpp</a></code>
There's nothing looking effective. <b>AGG</b> has renderers for
different pixel formats
in memory, particularly, for different byte order (RGB or BGR).
But the renderers are class templates, where byte order is defined
at the compile time. It's done for the sake of performance and in most
cases it fits all your needs. Still, if you need to switch between
different pixel formats dynamically, you can write a simple polymorphic
class wrapper, like the one in this example.</td><td><a
href="http://www.antigrain.com/demo/polymorphic_renderer.zip"><img
src="original_demos_files/dl_win32.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/polymorphic_renderer.tar.gz"><img
src="original_demos_files/dl_linux.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/polymorphic_renderer_sgi.tar.gz"><img
src="original_demos_files/dl_irix64.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/polymorphic_renderer_sun.tar.gz"><img
src="original_demos_files/dl_sunos.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/polymorphic_renderer_amiga.gz"><img
src="original_demos_files/dl_amigaos.gif" border="0"></a><br></td></tr>
<tr><td><a href="http://www.antigrain.com/demo/gouraud.png"><img
src="original_demos_files/gouraud_s.png" title="Click to enlarge"
border="0"></a></td><td style="text-align: justify;"><a
name="PAGE_DEMO_gouraud"><b></b></a>
<code><a href="http://www.antigrain.com/demo/gouraud.cpp.html">gouraud.cpp</a></code>
Gouraud shading. It's a simple method of interpolating colors in a
triangle.
There's no “cube” drawn, there're just 6 triangles.
You define a triangle and colors in its vertices. When rendering, the
colors will be linearly interpolated. But there's a problem that appears
when
drawing adjacent triangles with <b><nobr>Anti-Aliasing</nobr></b>.
Anti-Aliased polygons do not "dock" to
each other correctly, there visual artifacts at the edges appear. I call
it
“the problem of adjacent edges”. <b>AGG</b> has a simple mechanism that
allows you
to get rid of the artifacts, just dilating the polygons and/or changing
the gamma-correction value. But it's tricky, because the values depend
on the opacity of the polygons. In this example you can change the
opacity,
the dilation value and gamma. Also you can drag the Red, Green and Blue
corners of the “cube”.</td><td><a
href="http://www.antigrain.com/demo/gouraud.zip"><img
src="original_demos_files/dl_win32.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/gouraud.tar.gz"><img
src="original_demos_files/dl_linux.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/gouraud_sgi.tar.gz"><img
src="original_demos_files/dl_irix64.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/gouraud_sun.tar.gz"><img
src="original_demos_files/dl_sunos.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/gouraud_amiga.gz"><img
src="original_demos_files/dl_amigaos.gif" border="0"></a><br></td></tr>
<tr><td><a href="http://www.antigrain.com/demo/gradients.png"><img
src="original_demos_files/gradients_s.png" title="Click to enlarge"
border="0"></a></td><td style="text-align: justify;"><a
name="PAGE_DEMO_gradients"><b></b></a>
<code><a href="http://www.antigrain.com/demo/gradients.cpp.html">gradients.cpp</a></code>
This “sphere” is rendered with color gradients only. Initially there was
an idea
to compensate so called <a
href="http://www.cquest.utoronto.ca/psych/psy280f/ch3/mb/mb.html"><img
src="original_demos_files/link.gif" border="0">Mach Bands effect</a>. To
do so I added a gradient profile functor.
Then the concept was extended to set a color profile. As a result you
can
render simple geometrical objects in 2D looking like 3D ones.
In this example you can construct your own color profile and select the
gradient
function. There're not so many gradient functions in <b>AGG</b>, but you
can easily
add your own. Also, drag the “gradient” with the left mouse button,
scale and
rotate it with the right one.</td><td><a
href="http://www.antigrain.com/demo/gradients.zip"><img
src="original_demos_files/dl_win32.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/gradients.tar.gz"><img
src="original_demos_files/dl_linux.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/gradients_sgi.tar.gz"><img
src="original_demos_files/dl_irix64.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/gradients_sun.tar.gz"><img
src="original_demos_files/dl_sunos.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/gradients_amiga.gz"><img
src="original_demos_files/dl_amigaos.gif" border="0"></a><br></td></tr>
<tr><td><a href="http://www.antigrain.com/demo/gradient_focal.png"><img
src="original_demos_files/gradient_focal_s.png" title="Click to enlarge"
border="0"></a></td><td style="text-align: justify;"><a
name="PAGE_DEMO_gradient_focal"><b></b></a>
<code><a href="http://www.antigrain.com/demo/gradient_focal.cpp.html">gradient_focal.cpp</a></code>
This demo evolved from testing code and performance measurements.
In particular, it shows you how to calculate
the parameters of a radial gradient with a separate focal point,
considering
arbitrary affine transformations. In this example window resizing
transformations are taken into account. It also demonstrates the use
case
of <a
href="http://www.antigrain.com/__code/include/agg_gradient_lut.h.html#gradient_lut">gradient_lut</a>
and gamma correction.</td><td><a
href="http://www.antigrain.com/demo/gradient_focal.zip"><img
src="original_demos_files/dl_win32.gif" border="0"></a><br></td></tr>
<tr><td><a href="http://www.antigrain.com/demo/conv_contour.gif"><img
src="original_demos_files/conv_contour_s.gif" title="Click to enlarge"
border="0"></a></td><td style="text-align: justify;"><a
name="PAGE_DEMO_conv_contour"><b></b></a>
<code><a href="http://www.antigrain.com/demo/conv_contour.cpp.html">conv_contour.cpp</a></code>
One of the converters in <b>AGG</b> is <a
href="http://www.antigrain.com/__code/include/agg_conv_contour.h.html#conv_contour">conv_contour</a>.
It allows you to
extend or shrink polygons. Initially, it was implemented to eliminate
the “problem of adjacent edges” in the <a
href="http://www.antigrain.com/svg/index.html#PAGE_SVG">SVG Viewer</a>,
but it can be
very useful in many other applications, for example, to change
the font weight on the fly. The trick here is that the sign (dilation
or shrinking) depends on the vertex order - clockwise or
counterclockwise.
In the <a
href="http://www.antigrain.com/__code/include/agg_conv_contour.h.html#conv_contour">conv_contour</a>
you can control the behavior. Sometimes you need to
preserve the dilation regardless of the initial orientation, sometimes
it should depend on the orientation. The glyph ‘<b>a</b>’ has
a “hole” whose orientation differs from the main contour. To change
the “weight” correctly, you need to keep the orientation as it is
originally defined. If you turn “Autodetect orientation…” on,
the glyph will be extended or shrinked incorrectly. The radio buttons
control the orientation flad assigned to all polygons. “Close” doesn't
add the flag, “Close CW” and “Close CCW” add “clockwise” or
“counterclockwise” flag respectively. Note, that the actual order
of vertices remains the same, the flag is being added despite of the
real orientation. Try to play with it.</td><td><a
href="http://www.antigrain.com/demo/conv_contour.zip"><img
src="original_demos_files/dl_win32.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/conv_contour.tar.gz"><img
src="original_demos_files/dl_linux.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/conv_contour_sgi.tar.gz"><img
src="original_demos_files/dl_irix64.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/conv_contour_sun.tar.gz"><img
src="original_demos_files/dl_sunos.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/conv_contour_amiga.gz"><img
src="original_demos_files/dl_amigaos.gif" border="0"></a><br></td></tr>
<tr><td><a href="http://www.antigrain.com/demo/conv_dash_marker.gif"><img
src="original_demos_files/conv_dash_marker_s.gif" title="Click to
enlarge" border="0"></a></td><td style="text-align: justify;"><a
name="PAGE_DEMO_conv_dash_marker"><b></b></a>
<code><a href="http://www.antigrain.com/demo/conv_dash_marker.cpp.html">conv_dash_marker.cpp</a></code>
The example demonstrates rather a complex pipeline that consists of
diffrerent converters, particularly, of the dash generator, marker
generator, and of course, the stroke converter. There is also a
converter that allows you to draw smooth curves based on polygons,
see <a
href="http://www.antigrain.com/research/bezier_interpolation/index.html#PAGE_BEZIER_INTERPOLATION">Interpolation
with Bezier Curves</a>. You can drag the three vertices of
the “main” triangle.</td><td><a
href="http://www.antigrain.com/demo/conv_dash_marker.zip"><img
src="original_demos_files/dl_win32.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/conv_dash_marker.tar.gz"><img
src="original_demos_files/dl_linux.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/conv_dash_marker_sgi.tar.gz"><img
src="original_demos_files/dl_irix64.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/conv_dash_marker_sun.tar.gz"><img
src="original_demos_files/dl_sunos.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/conv_dash_marker_amiga.gz"><img
src="original_demos_files/dl_amigaos.gif" border="0"></a><br></td></tr>
<tr><td><a href="http://www.antigrain.com/demo/conv_stroke.gif"><img
src="original_demos_files/conv_stroke_s.gif" title="Click to enlarge"
border="0"></a></td><td style="text-align: justify;"><a
name="PAGE_DEMO_conv_stroke"><b></b></a>
<code><a href="http://www.antigrain.com/demo/conv_stroke.cpp.html">conv_stroke.cpp</a></code>
Another example that demonstrates the power of the custom pipeline
concept. First, we calculate a thick outline (stroke), then generate
dashes, and then, calculate the outlines (strokes) of the dashes
again. Drag the verices as in the previous example.</td><td><a
href="http://www.antigrain.com/demo/conv_stroke.zip"><img
src="original_demos_files/dl_win32.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/conv_stroke.tar.gz"><img
src="original_demos_files/dl_linux.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/conv_stroke_sgi.tar.gz"><img
src="original_demos_files/dl_irix64.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/conv_stroke_sun.tar.gz"><img
src="original_demos_files/dl_sunos.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/conv_stroke_amiga.gz"><img
src="original_demos_files/dl_amigaos.gif" border="0"></a><br></td></tr>
<tr><td><a href="http://www.antigrain.com/demo/mol_view.gif"><img
src="original_demos_files/mol_view_s.gif" title="Click to enlarge"
border="0"></a></td><td style="text-align: justify;"><a
name="PAGE_DEMO_mol_view"><b></b></a>
<code><a href="http://www.antigrain.com/demo/mol_view.cpp.html">mol_view.cpp</a></code>
This is rather a complex but effective example that renders
2D organic molecules from the popular MDL Molecule Format (SDF).
Press the left mouse button to rotate and scale the molecule,
and the right one to drag it. PageUp, PageDown keys switch
between the molecules in the file. Look at the performance,
and note, that the molecules are being drawn from scratch
every time you change anything.<br>
A little note for chemists. There's no ring perception
is done, so that, the double bonds in rings are drawn
incorrectly, but understandable. Also note, that
even very complex molecules with macrocycles,
drawn in limited space still remain consistent
and recognizable.</td><td><a
href="http://www.antigrain.com/demo/mol_view.zip"><img
src="original_demos_files/dl_win32.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/mol_view.tar.gz"><img
src="original_demos_files/dl_linux.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/mol_view_sgi.tar.gz"><img
src="original_demos_files/dl_irix64.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/mol_view_sun.tar.gz"><img
src="original_demos_files/dl_sunos.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/mol_view_amiga.gz"><img
src="original_demos_files/dl_amigaos.gif" border="0"></a><br></td></tr>
<tr><td><a href="http://www.antigrain.com/demo/alpha_mask.gif"><img
src="original_demos_files/alpha_mask_s.gif" title="Click to enlarge"
border="0"></a></td><td style="text-align: justify;"><a
name="PAGE_DEMO_alpha_mask"><b></b></a>
<code><a href="http://www.antigrain.com/demo/alpha_mask.cpp.html">alpha_mask.cpp</a></code>
Alpha-mask is a simple method of clipping and masking
polygons to a number of other arbitrary polygons. Alpha mask
is a buffer that is mixed to the scanline container and controls
the <b><nobr>Anti-Aliasing</nobr></b> values in it. It's not the perfect
mechanism of clipping,
but it allows you not only to clip the polygons, but also to
change the opacity in certain areas, i.e., the clipping can be
translucent. Press and drag the left mouse button to scale and
rotate the “lion”, resize the window to grnerate new alpha-mask.</td><td><a
href="http://www.antigrain.com/demo/alpha_mask.zip"><img
src="original_demos_files/dl_win32.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/alpha_mask.tar.gz"><img
src="original_demos_files/dl_linux.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/alpha_mask_sgi.tar.gz"><img
src="original_demos_files/dl_irix64.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/alpha_mask_sun.tar.gz"><img
src="original_demos_files/dl_sunos.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/alpha_mask_amiga.gz"><img
src="original_demos_files/dl_amigaos.gif" border="0"></a><br></td></tr>
<tr><td><a href="http://www.antigrain.com/demo/alpha_mask2.jpg"><img
src="original_demos_files/alpha_mask2_s.jpg" title="Click to enlarge"
border="0"></a></td><td style="text-align: justify;"><a
name="PAGE_DEMO_alpha_mask2"><b></b></a>
<code><a href="http://www.antigrain.com/demo/alpha_mask2.cpp.html">alpha_mask2.cpp</a></code>
Another example of alpha-masking. In the previous example
the alpha-mask is applied to the scan line container with
unpacked data (scanline_u), while in this one there a special
adapter of a pixel format renderer is used (<a
href="http://www.antigrain.com/doc/basic_renderers/basic_renderers.agdoc.html#pixfmt_amask_adaptor">pixfmt_amask_adaptor</a>).
It
allows you to use the alpha-mask with all possible primitives
and renderers. Besides, if the alpha-mask buffer is of the same
size as the main rendering buffer (usually it is) we don't have
to perform clipping for the alpha-mask, because all the primitives
are already clipped at the higher level, see class <a
href="http://www.antigrain.com/__code/include/agg_alpha_mask_u8.h.html#amask_no_clip_u8">amask_no_clip_u8</a>.
Press and drag the left mouse button to scale and rotate the “lion”
and generate a new set of other primitives, change the <b>“N”</b>
value to generate a new set of masking ellipses.</td><td><a
href="http://www.antigrain.com/demo/alpha_mask2.zip"><img
src="original_demos_files/dl_win32.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/alpha_mask2_amiga.gz"><img
src="original_demos_files/dl_amigaos.gif" border="0"></a><br></td></tr>
<tr><td><a href="http://www.antigrain.com/demo/alpha_mask3.gif"><img
src="original_demos_files/alpha_mask3_s.gif" title="Click to enlarge"
border="0"></a></td><td style="text-align: justify;"><a
name="PAGE_DEMO_alpha_mask3"><b></b></a>
<code><a href="http://www.antigrain.com/demo/alpha_mask3.cpp.html">alpha_mask3.cpp</a></code>
Yet another example of alpha-masking. It simulates arbitrary
polygon clipping similar to <a
href="http://www.antigrain.com/demo/gpc_test.cpp.html">gpc_test.cpp</a>.
Alpha-Masking
allows you to perform only the Intersection (AND) and
Difference (SUB) operations, but works much faster that
<a
href="http://www.antigrain.com/__code/include/agg_conv_gpc.h.html#conv_gpc">conv_gpc</a>.
Actually, there're different compexities and
different dependencies. The performance of <a
href="http://www.antigrain.com/__code/include/agg_conv_gpc.h.html#conv_gpc">conv_gpc</a>
depends on
the number of vertices, while Alpha-Masking depends on the
area of the rendered polygons. Still, with typical screen
resolutions, Alpha-Masking works much faster than <a
href="http://www.cs.man.ac.uk/aig/staff/alan/software/"><img
src="original_demos_files/link.gif" border="0"><b><nobr>General Polygon
Clipper</nobr></b></a>.
Compare the timings between <a
href="http://www.antigrain.com/demo/alpha_mask3.cpp.html">alpha_mask3.cpp</a>
and <a href="http://www.antigrain.com/demo/gpc_test.cpp.html">gpc_test.cpp</a>.</td><td><a
href="http://www.antigrain.com/demo/alpha_mask3.zip"><img
src="original_demos_files/dl_win32.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/alpha_mask3_amiga.gz"><img
src="original_demos_files/dl_amigaos.gif" border="0"></a><br></td></tr>
<tr><td><a href="http://www.antigrain.com/demo/circles.gif"><img
src="original_demos_files/circles_s.gif" title="Click to enlarge"
border="0"></a></td><td style="text-align: justify;"><a
name="PAGE_DEMO_circles"><b></b></a>
<code><a href="http://www.antigrain.com/demo/circles.cpp.html">circles.cpp</a></code>
This example just demonstrates that <b>AGG</b> can be used in different
scatter plot apllications. There's a number of small circles drawn. You
can
change the parameters of drawing, watching for the performance and
the number of circles simultaneously rendered. Press the left mouse
button
to generate a new set of points. Press the right mouse
button to make the points randomly change their coordinates. Note, that
the circles are drawn with high quality, possibly translucent, and
with subpixel accuracy.</td><td><a
href="http://www.antigrain.com/demo/circles.zip"><img
src="original_demos_files/dl_win32.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/circles.tar.gz"><img
src="original_demos_files/dl_linux.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/circles_sgi.tar.gz"><img
src="original_demos_files/dl_irix64.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/circles_sun.tar.gz"><img
src="original_demos_files/dl_sunos.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/circles_amiga.gz"><img
src="original_demos_files/dl_amigaos.gif" border="0"></a><br></td></tr>
<tr><td><a href="http://www.antigrain.com/demo/graph_test.gif"><img
src="original_demos_files/graph_test_s.gif" title="Click to enlarge"
border="0"></a></td><td style="text-align: justify;"><a
name="PAGE_DEMO_graph_test"><b></b></a>
<img src="original_demos_files/gdip_curves.gif" title=""
style="border-color: rgb(255, 255, 255);" align="right" border="4"><!---->
<code><a href="http://www.antigrain.com/demo/graph_test.cpp.html">graph_test.cpp</a></code>
Yet another example of the "general" kind. It was used mostly
to compare the performance of different steps of rendering in order
to see the weaknesses. The WIn GDI+ analog of it looks worse and
works slower. Try <a
href="http://www.antigrain.com/demo/GDI_graph_test.zip"><img
src="original_demos_files/download.gif" border="0"> (GDI_graph_test.zip)</a>
and compare it with
the <b>AGG</b> one. The most disappointing thing in GDI+ is that it
cannot draw Bezier curves correctly. Run the GDI+ example, choose
menu <b>Image/Bezier curves</b>, expand the window to about 1000x1000
pixels,
and then gradually change the size of the window. You will see that some
curves miss the destination points (the centers of the node circles).
That looks really ridiculous, so, I overcame my laziness and made an
animated
GIF of 5 screenshots.</td><td><a
href="http://www.antigrain.com/demo/graph_test.zip"><img
src="original_demos_files/dl_win32.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/graph_test.tar.gz"><img
src="original_demos_files/dl_linux.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/graph_test_sgi.tar.gz"><img
src="original_demos_files/dl_irix64.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/graph_test_sun.tar.gz"><img
src="original_demos_files/dl_sunos.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/graph_test_amiga.gz"><img
src="original_demos_files/dl_amigaos.gif" border="0"></a><br></td></tr>
<tr><td><a href="http://www.antigrain.com/demo/multi_clip.png"><img
src="original_demos_files/multi_clip_s.gif" title="Click to enlarge"
border="0"></a></td><td style="text-align: justify;"><a
name="PAGE_DEMO_multi_clip"><b></b></a>
<code><a href="http://www.antigrain.com/demo/multi_clip.cpp.html">multi_clip.cpp</a></code>
A testing example that demonstrates clipping to multiple rectangular
regions. It's a low-level (pixel) clipping that can be useful to
draw images clipped to a complex region with orthogonal boundaries.
It can be useful in some window interfaces that use a custom mechanism
to draw window content. The example uses all possible rendering
mechanisms.</td><td><a
href="http://www.antigrain.com/demo/multi_clip.zip"><img
src="original_demos_files/dl_win32.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/multi_clip.tar.gz"><img
src="original_demos_files/dl_linux.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/multi_clip_sgi.tar.gz"><img
src="original_demos_files/dl_irix64.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/multi_clip_sun.tar.gz"><img
src="original_demos_files/dl_sunos.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/multi_clip_amiga.gz"><img
src="original_demos_files/dl_amigaos.gif" border="0"></a><br></td></tr>
<tr><td><a href="http://www.antigrain.com/demo/perspective.gif"><img
src="original_demos_files/perspective_s.gif" title="Click to enlarge"
border="0"></a></td><td style="text-align: justify;"><a
name="PAGE_DEMO_perspective"><b></b></a>
<code><a href="http://www.antigrain.com/demo/perspective.cpp.html">perspective.cpp</a></code>
Perspective and bilinear transformations. In general,
these classes can transform an arbitrary quadrangle to another
arbitrary quadrangle (with some restrictions). The example
demonstrates how to transform a rectangle to a quadrangle defined
by 4 vertices. You can drag the 4 corners of the quadrangle, as well
as its boundaries. Note, that the perspective transformations don't
work correctly if the destination quadrangle is concave. Bilinear
thansformations give a different result, but remain valid with any
shape of the destination quadrangle.</td><td><a
href="http://www.antigrain.com/demo/perspective.zip"><img
src="original_demos_files/dl_win32.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/perspective.tar.gz"><img
src="original_demos_files/dl_linux.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/perspective_sgi.tar.gz"><img
src="original_demos_files/dl_irix64.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/perspective_sun.tar.gz"><img
src="original_demos_files/dl_sunos.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/perspective_amiga.gz"><img
src="original_demos_files/dl_amigaos.gif" border="0"></a><br></td></tr>
<tr><td><a href="http://www.antigrain.com/demo/simple_blur.gif"><img
src="original_demos_files/simple_blur_s.gif" title="Click to enlarge"
border="0"></a></td><td style="text-align: justify;"><a
name="PAGE_DEMO_simple_blur"><b></b></a>
<code><a href="http://www.antigrain.com/demo/simple_blur.cpp.html">simple_blur.cpp</a></code>
The example demonstrates how to write custom span generators. This one
just applies the simplest “blur” filter 3x3 to a prerendered image.
It calculates the average value of 9 neighbor pixels.
Just press the left mouse button and drag.</td><td><a
href="http://www.antigrain.com/demo/simple_blur.zip"><img
src="original_demos_files/dl_win32.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/simple_blur.tar.gz"><img
src="original_demos_files/dl_linux.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/simple_blur_sgi.tar.gz"><img
src="original_demos_files/dl_irix64.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/simple_blur_sun.tar.gz"><img
src="original_demos_files/dl_sunos.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/simple_blur_amiga.gz"><img
src="original_demos_files/dl_amigaos.gif" border="0"></a><br></td></tr>
<tr><td><a href="http://www.antigrain.com/demo/gpc_test.gif"><img
src="original_demos_files/gpc_test_s.gif" title="Click to enlarge"
border="0"></a></td><td style="text-align: justify;"><a
name="PAGE_DEMO_gpc_test"><b></b></a>
<code><a href="http://www.antigrain.com/demo/gpc_test.cpp.html">gpc_test.cpp</a></code>
<a href="http://www.cs.man.ac.uk/aig/staff/alan/software/"><img
src="original_demos_files/link.gif" border="0"><b><nobr>General Polygon
Clipper</nobr></b></a> by Alan Murta is the most reliable implementation
of the polygon
boolean algebra. It implements Bala R. Vatti's algorithm of arbitrary
polygon clipping and allows you to calculate the Union, Intersection,
Difference, and Exclusive OR between two poly-polygons (i.e., polygonal
areas consisted of several contours). <b>AGG</b> has a simple wrapper
class
that can be used in the coordinate conversion pipeline. The
implementation
by Alan Murta has restrictions of using it in commercial software, so
that,
please contact the author to settle the legal issues. The example
demonstrates the use of GPC. You can drag one polygon with the left
mouse button pressed. Note, that all operations are done in the
vectorial
representation of the contours before rendering.</td><td><a
href="http://www.antigrain.com/demo/gpc_test.zip"><img
src="original_demos_files/dl_win32.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/gpc_test.tar.gz"><img
src="original_demos_files/dl_linux.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/gpc_test_sgi.tar.gz"><img
src="original_demos_files/dl_irix64.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/gpc_test_sun.tar.gz"><img
src="original_demos_files/dl_sunos.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/gpc_test_amiga.gz"><img
src="original_demos_files/dl_amigaos.gif" border="0"></a><br></td></tr>
<tr><td><a href="http://www.antigrain.com/demo/pattern_fill.gif"><img
src="original_demos_files/pattern_fill_s.gif" title="Click to enlarge"
border="0"></a></td><td style="text-align: justify;"><a
name="PAGE_DEMO_pattern_fill"><b></b></a>
<code><a href="http://www.antigrain.com/demo/pattern_fill.cpp.html">pattern_fill.cpp</a></code>
The example demonstrates how to use arbitrary images as fill patterns.
This span generator is very simple, so, it doesn't allow you to apply
arbitrary transformations to the pattern, i.e., it cannot be used as a
texturing tool. But it works pretty fast and can be useful in some
applications.</td><td><a
href="http://www.antigrain.com/demo/pattern_fill.zip"><img
src="original_demos_files/dl_win32.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/pattern_fill.tar.gz"><img
src="original_demos_files/dl_linux.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/pattern_fill_sgi.tar.gz"><img
src="original_demos_files/dl_irix64.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/pattern_fill_sun.tar.gz"><img
src="original_demos_files/dl_sunos.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/pattern_fill_amiga.gz"><img
src="original_demos_files/dl_amigaos.gif" border="0"></a><br></td></tr>
<tr><td><a href="http://www.antigrain.com/demo/raster_text.gif"><img
src="original_demos_files/raster_text_s.gif" title="Click to enlarge"
border="0"></a></td><td style="text-align: justify;"><a
name="PAGE_DEMO_raster_text"><b></b></a>
<code><a href="http://www.antigrain.com/demo/raster_text.cpp.html">raster_text.cpp</a></code>
Classes that render raster text was added in <b>AGG</b> mostly
to prove the concept of the design. They can be used to
draw simple (aliased) raster text. The example demonstrates
how to use text as a custom scanline generator together
with any span generator (in this example it's gradient filling).
The font format is propriatory, but there are some predefined
fonts that are shown in the example.</td><td><a
href="http://www.antigrain.com/demo/raster_text.zip"><img
src="original_demos_files/dl_win32.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/raster_text.tar.gz"><img
src="original_demos_files/dl_linux.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/raster_text_sgi.tar.gz"><img
src="original_demos_files/dl_irix64.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/raster_text_sun.tar.gz"><img
src="original_demos_files/dl_sunos.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/raster_text_amiga.gz"><img
src="original_demos_files/dl_amigaos.gif" border="0"></a><br></td></tr>
<tr><td><a href="http://www.antigrain.com/demo/image1.jpg"><img
src="original_demos_files/image1_s.jpg" title="Click to enlarge"
border="0"></a></td><td style="text-align: justify;"><a
name="PAGE_DEMO_image1"><b></b></a>
<code><a href="http://www.antigrain.com/demo/image1.cpp.html">image1.cpp</a></code>
This is the first example with the new "reincarnation" of the image
transformation algorithms. The example allows you to rotate and scale
the image with respect to its center. Also, the image is scaled
when resizing the window.</td><td><a
href="http://www.antigrain.com/demo/image1.zip"><img
src="original_demos_files/dl_win32.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/image1.tar.gz"><img
src="original_demos_files/dl_linux.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/image1_sgi.tar.gz"><img
src="original_demos_files/dl_irix64.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/image1_sun.tar.gz"><img
src="original_demos_files/dl_sunos.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/image1_amiga.gz"><img
src="original_demos_files/dl_amigaos.gif" border="0"></a><br></td></tr>
<tr><td><a href="http://www.antigrain.com/demo/image_alpha.png"><img
src="original_demos_files/image_alpha_s.png" title="Click to enlarge"
border="0"></a></td><td style="text-align: justify;"><a
name="PAGE_DEMO_image_alpha"><b></b></a>
<code><a href="http://www.antigrain.com/demo/image_alpha.cpp.html">image_alpha.cpp</a></code>
A very powerful feature that allows you to simulate the alpha-channel
on the basis of some functioon. In this example it's brightness, but
it can be of any complexity. In the example you can form the brightness
function and watch for the translucency. Resize the windows to move the
image over the backgraund.</td><td><a
href="http://www.antigrain.com/demo/image_alpha.zip"><img
src="original_demos_files/dl_win32.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/image_alpha.tar.gz"><img
src="original_demos_files/dl_linux.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/image_alpha_sgi.tar.gz"><img
src="original_demos_files/dl_irix64.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/image_alpha_sun.tar.gz"><img
src="original_demos_files/dl_sunos.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/image_alpha_amiga.gz"><img
src="original_demos_files/dl_amigaos.gif" border="0"></a><br></td></tr>
<tr><td><a href="http://www.antigrain.com/demo/image_filters.jpg"><img
src="original_demos_files/image_filters_s.jpg" title="Click to enlarge"
border="0"></a></td><td style="text-align: justify;"><a
name="PAGE_DEMO_image_filters"><b></b></a>
<code><a href="http://www.antigrain.com/demo/image_filters.cpp.html">image_filters.cpp</a></code>
The image transformer algorithm can work with different interpolation
filters, such as Bilinear, Bicubic, Sinc, Blackman. The example
demonstrates the difference in quality between different filters.
When switch the “Run Test” on, the image starts rotating. But
at each step there is the previously rotated image taken, so
the quality degrades. This degradation as well as the performance
depend on the type of the interpolation filter.</td><td><a
href="http://www.antigrain.com/demo/image_filters.zip"><img
src="original_demos_files/dl_win32.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/image_filters.tar.gz"><img
src="original_demos_files/dl_linux.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/image_filters_sgi.tar.gz"><img
src="original_demos_files/dl_irix64.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/image_filters_sun.tar.gz"><img
src="original_demos_files/dl_sunos.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/image_filters_amiga.gz"><img
src="original_demos_files/dl_amigaos.gif" border="0"></a><br></td></tr>
<tr><td><a href="http://www.antigrain.com/demo/image_fltr_graph.gif"><img
src="original_demos_files/image_fltr_graph_s.gif" title="Click to
enlarge" border="0"></a></td><td style="text-align: justify;"><a
name="PAGE_DEMO_image_fltr_graph"><b></b></a>
<code><a href="http://www.antigrain.com/demo/image_fltr_graph.cpp.html">image_fltr_graph.cpp</a></code>
Demonstration of the shapes of different interpolation filters. Just
in case if you are curious.</td><td><a
href="http://www.antigrain.com/demo/image_fltr_graph.zip"><img
src="original_demos_files/dl_win32.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/image_fltr_graph.tar.gz"><img
src="original_demos_files/dl_linux.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/image_fltr_graph_sgi.tar.gz"><img
src="original_demos_files/dl_irix64.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/image_fltr_graph_sun.tar.gz"><img
src="original_demos_files/dl_sunos.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/image_fltr_graph_amiga.gz"><img
src="original_demos_files/dl_amigaos.gif" border="0"></a><br></td></tr>
<tr><td><a href="http://www.antigrain.com/demo/image_transforms.jpg"><img
src="original_demos_files/image_transforms_s.jpg" title="Click to
enlarge" border="0"></a></td><td style="text-align: justify;"><a
name="PAGE_DEMO_image_transforms"><b></b></a>
<code><a href="http://www.antigrain.com/demo/image_transforms.cpp.html">image_transforms.cpp</a></code>
Affine transformations of the images. The examples demonstrates
how to construct the affine transformer matrix for different
cases. See the “<code>readme!</code>” file for details. Now there are
methods in <a
href="http://www.antigrain.com/__code/include/agg_trans_affine.h.html#trans_affine">trans_affine</a>
that allow you to construct transformations
from an arbitrary parallelogram to another parallelogram. It's very
convenient and easy.</td><td><a
href="http://www.antigrain.com/demo/image_transforms.zip"><img
src="original_demos_files/dl_win32.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/image_transforms.tar.gz"><img
src="original_demos_files/dl_linux.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/image_transforms_sgi.tar.gz"><img
src="original_demos_files/dl_irix64.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/image_transforms_sun.tar.gz"><img
src="original_demos_files/dl_sunos.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/image_transforms_amiga.gz"><img
src="original_demos_files/dl_amigaos.gif" border="0"></a><br></td></tr>
<tr><td><a href="http://www.antigrain.com/demo/image_perspective.jpg"><img
src="original_demos_files/image_perspective_s.jpg" title="Click to
enlarge" border="0"></a></td><td style="text-align: justify;"><a
name="PAGE_DEMO_image_perspective"><b></b></a>
<code><a href="http://www.antigrain.com/demo/image_perspective.cpp.html">image_perspective.cpp</a></code>
Image perspective transformations. There are two types of arbitrary
quadrangle transformations, Perspective and Bilinear. The image
transformer always uses reverse transformations, and there is a problem.
The Perspective transformations are perfectly reversible, so they
work correctly with images, but the Bilinear transformer behave
somehow strange. It can transform a rectangle to a quadrangle, but
not vice versa. In this example you can see this effect, when
the edges of the image "sag". I'd highly appreciate if someone
could help me with math for transformations similar to Bilinear ones,
but correctly reversible (i.e., that can transform an arbitrary
quadrangle
to a rectangle). The bilinear transformations are simple, see
<a
href="http://www.antigrain.com/__code/include/agg_trans_bilinear.h.html">agg_trans_bilinear.h</a>
and <a
href="http://www.antigrain.com/__code/include/agg_simul_eq.h.html">agg_simul_eq.h</a></td><td><a
href="http://www.antigrain.com/demo/image_perspective.zip"><img
src="original_demos_files/dl_win32.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/image_perspective.tar.gz"><img
src="original_demos_files/dl_linux.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/image_perspective_sgi.tar.gz"><img
src="original_demos_files/dl_irix64.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/image_perspective_sun.tar.gz"><img
src="original_demos_files/dl_sunos.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/image_perspective_amiga.gz"><img
src="original_demos_files/dl_amigaos.gif" border="0"></a><br></td></tr>
<tr><td><a href="http://www.antigrain.com/demo/distortions.png"><img
src="original_demos_files/distortions_s.png" title="Click to enlarge"
border="0"></a></td><td style="text-align: justify;"><a
name="PAGE_DEMO_distortions"><b></b></a>
<code><a href="http://www.antigrain.com/demo/distortions.cpp.html">distortions.cpp</a></code>
To transform an image as well as to define a color gradient you have
to write several declarations. This approach can seem difficult to
handle
(compared with one function call), but it's very flexible. For example,
you can add an arbitrary distortion function. This mechanism is pretty
much
the same in image transformers and color gradients. Try to play with
this
example changing different parameters of the distortions.</td><td><a
href="http://www.antigrain.com/demo/distortions.zip"><img
src="original_demos_files/dl_win32.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/distortions.tar.gz"><img
src="original_demos_files/dl_linux.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/distortions_sgi.tar.gz"><img
src="original_demos_files/dl_irix64.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/distortions_sun.tar.gz"><img
src="original_demos_files/dl_sunos.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/distortions_amiga.gz"><img
src="original_demos_files/dl_amigaos.gif" border="0"></a><br></td></tr>
<tr><td><a href="http://www.antigrain.com/demo/lion_lens.gif"><img
src="original_demos_files/lion_lens_s.gif" title="Click to enlarge"
border="0"></a></td><td style="text-align: justify;"><a
name="PAGE_DEMO_lion_lens"><b></b></a>
<code><a href="http://www.antigrain.com/demo/lion_lens.cpp.html">lion_lens.cpp</a></code>
This example exhibits a non-linear transformer that “magnifies”
vertices that fall inside a circle and extends the rest (<a
href="http://www.antigrain.com/__code/include/agg_trans_warp_magnifier.h.html#trans_warp_magnifier">trans_warp_magnifier</a>).
Non-linear transformations are tricky because straight lines become
curves.
To achieve the correct result we need to divide long line segments into
short ones. The example also demonstrates the use of <a
href="http://www.antigrain.com/__code/include/agg_conv_segmentator.h.html#conv_segmentator">conv_segmentator</a>
that
does this division job.
Drag the center of the “lens” with the left mouse button and change
the “Scale” and “Radius”. The transformer can also shrink away
the image if the scaling value is less than 1. To watch for
an amazing effect, set the scale to the minimum (0.01), decrease
the radius to about 1 and drag the “lens”. You will see it behaves
like a black hole consuming space around it. Move the lens somewhere to
the
side of the window and change the radius. It looks like changing the
event horizon of the “black hole”. There are some more screenshots
of the poor lion:
<a href="http://www.antigrain.com/demo/lion_lens_sad.gif"><img
src="original_demos_files/link.gif" border="0"><b>Sad Lion</b></a>,
<a href="http://www.antigrain.com/demo/lion_lens_cyclop.gif"><img
src="original_demos_files/link.gif" border="0"><b>Cyclop Lion</b></a>,
<a href="http://www.antigrain.com/demo/lion_lens_black_hole.gif"><img
src="original_demos_files/link.gif" border="0"><b>Lion in Trouble</b>
(being eaten by the black hole),
an animated GIF</a>.</td><td><a
href="http://www.antigrain.com/demo/lion_lens.zip"><img
src="original_demos_files/dl_win32.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/lion_lens.tar.gz"><img
src="original_demos_files/dl_linux.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/lion_lens_sgi.tar.gz"><img
src="original_demos_files/dl_irix64.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/lion_lens_sun.tar.gz"><img
src="original_demos_files/dl_sunos.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/lion_lens_amiga.gz"><img
src="original_demos_files/dl_amigaos.gif" border="0"></a><br></td></tr>
<tr><td><a href="http://www.antigrain.com/demo/trans_polar.gif"><img
src="original_demos_files/trans_polar_s.gif" title="Click to enlarge"
border="0"></a></td><td style="text-align: justify;"><a
name="PAGE_DEMO_trans_polar"><b></b></a>
<code><a href="http://www.antigrain.com/demo/trans_polar.cpp.html">trans_polar.cpp</a></code>
Another example of non-linear transformations requested by one of my
friends.
Here we render a standard <b>AGG</b> control in its original form (the
slider
in the bottom) and after the transformation. The transformer itself is
not
a part of <b>AGG</b> and just demonstrates how to write custom
transformers (class
<code>trans_polar</code>). Note that because the transformer is
non-linear, we need to use
<a
href="http://www.antigrain.com/__code/include/agg_conv_segmentator.h.html#conv_segmentator">conv_segmentator</a>
first. Try to drag the value of the slider at the bottom
and watch how it's being synchronized in the polar coordinates. Also
change two other parameters (<b>Spiral</b> and <b>Base Y</b>) and
the size of the window.
Don't worry much about the <code>transformed_control</code> class, it's
just an
adaptor used to render the controls with additional transformations.
The use of <code>trans_polar</code> is quite standard: <br>
<pre>agg::trans_polar tr;
agg::<a href="http://www.antigrain.com/__code/include/agg_conv_transform.h.html#conv_transform">conv_transform</a><SomeVertexSource,
trans_polar> tp(some_source, tr);
</pre></td><td><a href="http://www.antigrain.com/demo/trans_polar.zip"><img
src="original_demos_files/dl_win32.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/trans_polar_amiga.gz"><img
src="original_demos_files/dl_amigaos.gif" border="0"></a><br></td></tr>
<tr><td><a href="http://www.antigrain.com/demo/scanline_boolean.gif"><img
src="original_demos_files/scanline_boolean_s.gif" title="Click to
enlarge" border="0"></a></td><td style="text-align: justify;"><a
name="PAGE_DEMO_scanline_boolean"><b></b></a>
<code><a href="http://www.antigrain.com/demo/scanline_boolean.cpp.html">scanline_boolean.cpp</a></code>
A new method to perform boolean operations on polygons (<b>Union</b>,
<b>Intersection</b>, <b>XOR</b>, and <b>Difference</b>). It uses the
scanline
approach and in typical screen resolutions works much faster
(about 10 times) than vectorial algorithms like <a
href="http://www.cs.man.ac.uk/aig/staff/alan/software/"><img
src="original_demos_files/link.gif" border="0"><b><nobr>General Polygon
Clipper</nobr></b></a>. It
preserves perfect <b><nobr>Anti-Aliasing</nobr></b> and besides, can
work with translucency.
There are two <b>XOR</b> operations, <b>Linear XOR</b> and
<b>Saddle XOR</b>. The only difference is in the formula
of XORing of the two cells with <b><nobr>Anti-Aliasing</nobr></b>. The
first one is:
<pre>cover = a+b; if(cover > 1) cover = 2.0 - cover;</pre>
<br>
The second uses the classical “Saddle” formula:
<pre>cover = 1.0 - (1.0 - a + a*b) * (1.0 - b + a*b);</pre>
The <b>Linear XOR</b> produces
more correct intersections and works constistently with the
scanline rasterizer algorithm. The <b>Saddle XOR</b> works better
with semi-transparent polygons.</td><td><a
href="http://www.antigrain.com/demo/scanline_boolean.zip"><img
src="original_demos_files/dl_win32.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/scanline_boolean_amiga.gz"><img
src="original_demos_files/dl_amigaos.gif" border="0"></a><br></td></tr>
<tr><td><a href="http://www.antigrain.com/demo/scanline_boolean2.gif"><img
src="original_demos_files/scanline_boolean2_s.gif" title="Click to
enlarge" border="0"></a></td><td style="text-align: justify;"><a
name="PAGE_DEMO_scanline_boolean2"><b></b></a>
<code><a href="http://www.antigrain.com/demo/scanline_boolean2.cpp.html">scanline_boolean2.cpp</a></code>
This is another example of using of the scanline boolean algebra.
The example is similar to <a
href="http://www.antigrain.com/demo/index.html#PAGE_DEMO_gpc_test">Demo
gpc_test.cpp</a>. Note that the cost
of the boolean operation with <b><nobr>Anti-Aliasing</nobr></b> is
comparable with rendering
(the rasterization time is not included). Also note that there is
a difference in timings between using of <code>scanline_u</code> and
<code>scanline_p</code>. Most often <code>scanline_u</code> works
faster, but it's
because of much less number of produced spans. Actually, when using
the <code>scanline_u</code> the complexity of the algorithm becomes
proportional
to the <b>area</b> of the polygons, while in <code>scanline_p</code>
it's
proportional to the <b>perimeter</b>. Of course, the binary variant
works much faster than the <b>Anti-Aliased</b> one.</td><td><a
href="http://www.antigrain.com/demo/scanline_boolean2.zip"><img
src="original_demos_files/dl_win32.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/scanline_boolean2_amiga.gz"><img
src="original_demos_files/dl_amigaos.gif" border="0"></a><br></td></tr>
<tr><td><a href="http://www.antigrain.com/demo/freetype_test.gif"><img
src="original_demos_files/freetype_test_s.gif" title="Click to enlarge"
border="0"></a></td><td style="text-align: justify;"><a
name="PAGE_DEMO_freetype_test"><b></b></a>
<code><a href="http://www.antigrain.com/demo/freetype_test.cpp.html">freetype_test.cpp</a></code>
This example demonstrates the use of the <a
href="http://www.freetype.org/"><img src="original_demos_files/link.gif"
border="0"><b>FreeType</b></a> font engine with cache.
Cache can keep three types of data, vector path, <b>Anti-Aliased</b>
scanline shape, and monochrome scanline shape. In case of caching
scanline shapes the speed is pretty good and comparable with
Windows hardware accelerated font rendering.</td><td><a
href="http://www.antigrain.com/demo/freetype_test.zip"><img
src="original_demos_files/dl_win32.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/freetype_test_amiga.gz"><img
src="original_demos_files/dl_amigaos.gif" border="0"></a><br></td></tr>
<tr><td><a href="http://www.antigrain.com/demo/freetype_test.gif"><img
src="original_demos_files/freetype_test_s.gif" title="Click to enlarge"
border="0"></a></td><td style="text-align: justify;"><a
name="PAGE_DEMO_truetype_test"><b></b></a>
<code><a href="http://www.antigrain.com/demo/truetype_test.cpp.html">truetype_test.cpp</a></code>
The same as the above, but with using Win32 API as the
font engine (<code>GetGlyphOutline()</code>).</td><td><a
href="http://www.antigrain.com/demo/truetype_test.zip"><img
src="original_demos_files/dl_win32.gif" border="0"></a><br></td></tr>
<tr><td><a href="http://www.antigrain.com/demo/trans_curve1.gif"><img
src="original_demos_files/trans_curve1_s.gif" title="Click to enlarge"
border="0"></a></td><td style="text-align: justify;"><a
name="PAGE_DEMO_trans_curve1"><b></b></a>
<code><a href="http://www.antigrain.com/demo/trans_curve1.cpp.html">trans_curve1.cpp</a></code>
This is a "kinda-cool-stuff" demo that performs non-linear
transformations and draws vector text along a curve.
Note that it's not just calculating of the glyph angles
and positions, they are transformed as if they were elastic.
The curve
is calculated as a bicubic spline. The option "Preserve X scale"
makes the converter distribute all the points uniformly along
the curve. If it's unchechked, the scale will be proportional
to the distance between the control points.</td><td><a
href="http://www.antigrain.com/demo/trans_curve1.zip"><img
src="original_demos_files/dl_win32.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/trans_curve1_ft_amiga.gz"><img
src="original_demos_files/dl_amigaos.gif" border="0"></a><br></td></tr>
<tr><td><a href="http://www.antigrain.com/demo/trans_curve2.gif"><img
src="original_demos_files/trans_curve2_s.gif" title="Click to enlarge"
border="0"></a></td><td style="text-align: justify;"><a
name="PAGE_DEMO_trans_curve2"><b></b></a>
<code><a href="http://www.antigrain.com/demo/trans_curve2.cpp.html">trans_curve2.cpp</a></code>
Similar to the previous demo, but here the transformer operates
with two arbitrary curves. It requires more calculations, but gives
you more freedom. In other words you will see :-).</td><td><a
href="http://www.antigrain.com/demo/trans_curve2.zip"><img
src="original_demos_files/dl_win32.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/trans_curve2_ft_amiga.gz"><img
src="original_demos_files/dl_amigaos.gif" border="0"></a><br></td></tr>
<tr><td><a href="http://www.antigrain.com/demo/aa_test.png"><img
src="original_demos_files/aa_test_s.png" title="Click to enlarge"
border="0"></a></td><td style="text-align: justify;"><a
name="PAGE_DEMO_aa_test"><b></b></a>
<code><a href="http://www.antigrain.com/demo/aa_test.cpp.html">aa_test.cpp</a></code>
A test of <b><nobr>Anti-Aliasing</nobr></b> the same as in <br>
<a href="http://homepage.mac.com/arekkusu/bugs/invariance"><img
src="original_demos_files/link.gif" border="0">http://homepage.mac.com/arekkusu/bugs/invariance</a><br>
The performance of <b>AGG</b> on a typical P-IV 2GHz is: <br>
Points: 37.46K/sec, Lines: 5.04K/sec, Triangles: 7.43K/sec</td><td><a
href="http://www.antigrain.com/demo/aa_test.zip"><img
src="original_demos_files/dl_win32.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/aa_test_amiga.gz"><img
src="original_demos_files/dl_amigaos.gif" border="0"></a><br></td></tr>
<tr><td><a href="http://www.antigrain.com/demo/alpha_gradient.png"><img
src="original_demos_files/alpha_gradient_s.png" title="Click to enlarge"
border="0"></a></td><td style="text-align: justify;"><a
name="PAGE_DEMO_alpha_gradient"><b></b></a>
<code><a href="http://www.antigrain.com/demo/alpha_gradient.cpp.html">alpha_gradient.cpp</a></code>
The demo shows how to combine any span generator with alpha-channel
gradient.</td><td><a
href="http://www.antigrain.com/demo/alpha_gradient.zip"><img
src="original_demos_files/dl_win32.gif" border="0"></a><br>
<a href="http://www.antigrain.com/demo/alpha_gradient_amiga.gz"><img
src="original_demos_files/dl_amigaos.gif" border="0"></a><br></td></tr>
<tr><td><a href="http://www.antigrain.com/demo/line_patterns.gif"><img
src="original_demos_files/line_patterns_s.gif" title="Click to enlarge"
border="0"></a></td><td style="text-align: justify;"><a
name="PAGE_DEMO_line_patterns"><b></b></a>
<code><a href="http://www.antigrain.com/demo/line_patterns.cpp.html">line_patterns.cpp</a></code>
The demo shows a very powerful mechanism of using arbitrary images as
line patterns.
The main point of it is that the images are drawn along the path. It
allows you
to draw very fancy looking lines quite easily and very useful in
GIS/cartography
applications. There the bilinear filtering is used, but it's also
possible
to add any other filtering methods, or just use the nearest neighbour
one for the
sake of speed. <br>
Before running this demo make sure that you have files <code>1.bmp</code>…<code>9.bmp</code>
for Win32,
MacOS, AmigaOS, and SDL platforms and <code>1.ppm</code>…<code>9.ppm</code>
for X11. <br>
In the demo you can drag the control points of the curves and observe
that the images are
transformed quite consistently and smoothly. You can also try to replace
the image files
(1…9) with your own. The BMP files must have 24bit colors (TrueColor),
the PPM ones
must be of type "P6". Also, the heigh should not exceed 64 pixels, and
the background
should be white or very close to white. Actually, the algorithm uses
32bit images
with alpha channel, but in this demo alpha is simulated in such a way
that wite
is transparent, black is opaque. The intermediate colors have
intermediate opacity
that is defined by the <code>brightness_to_alpha</code> array.</td><td><a
href="http://www.antigrain.com/demo/line_patterns.zip"><img
src="original_demos_files/dl_win32.gif" border="0"></a><br></td></tr>
<tr><td><a href="http://www.antigrain.com/demo/line_patterns_clip.png"><img
src="original_demos_files/line_patterns_clip_s.png" title="Click to
enlarge" border="0"></a></td><td style="text-align: justify;"><a
name="PAGE_DEMO_line_patterns_clip"><b></b></a>
<code><a
href="http://www.antigrain.com/demo/line_patterns_clip.cpp.html">line_patterns_clip.cpp</a></code>
Demonstrates the mechanism of clipping the polylines and/or polygons
with image patterns. Shows that the clipper maintains correct pattern
repetition along the line, considering clipped parts.</td><td><a
href="http://www.antigrain.com/demo/line_patterns_clip.zip"><img
src="original_demos_files/dl_win32.gif" border="0"></a><br></td></tr>
<tr><td><a href="http://www.antigrain.com/demo/pattern_perspective.jpg"><img
src="original_demos_files/pattern_perspective_s.jpg" title="Click to
enlarge" border="0"></a></td><td style="text-align: justify;"><a
name="PAGE_DEMO_pattern_perspective"><b></b></a>
<code><a
href="http://www.antigrain.com/demo/pattern_perspective.cpp.html">pattern_perspective.cpp</a></code>
Pattern perspective transformations. Essentially it's
the same as <a
href="http://www.antigrain.com/demo/index.html#PAGE_DEMO_image_perspective">Demo
image_perspective.cpp</a>, but working with a repeating pattern.
Can be used for texturing.</td><td><a
href="http://www.antigrain.com/demo/pattern_perspective.zip"><img
src="original_demos_files/dl_win32.gif" border="0"></a><br></td></tr>
<tr><td><a href="http://www.antigrain.com/demo/image_filters2.png"><img
src="original_demos_files/image_filters2_s.png" title="Click to enlarge"
border="0"></a></td><td style="text-align: justify;"><a
name="PAGE_DEMO_image_filters2"><b></b></a>
<code><a href="http://www.antigrain.com/demo/image_filters2.cpp.html">image_filters2.cpp</a></code>
Another example that demonstrates the difference of image filters. It
just
displays a simple 4x4 pixels image with huge zoom. You can see how
different
filters affect the result. Also see how gamma correction works.</td><td><a
href="http://www.antigrain.com/demo/image_filters2.zip"><img
src="original_demos_files/dl_win32.gif" border="0"></a><br></td></tr>
<tr><td><a href="http://www.antigrain.com/demo/image_resample.jpg"><img
src="original_demos_files/image_resample_s.jpg" title="Click to enlarge"
border="0"></a></td><td style="text-align: justify;"><a
name="PAGE_DEMO_image_resample"><b></b></a>
<code><a href="http://www.antigrain.com/demo/image_resample.cpp.html">image_resample.cpp</a></code>
The demonstration of image transformations with resampling. You can
see the difference in quality between regular image transformers and
the ones with resampling. Of course, image tranformations with
resampling
work slower because they provide the best possible quality.</td><td><a
href="http://www.antigrain.com/demo/image_resample.zip"><img
src="original_demos_files/dl_win32.gif" border="0"></a><br></td></tr>
<tr><td><a href="http://www.antigrain.com/demo/pattern_resample.jpg"><img
src="original_demos_files/pattern_resample_s.jpg" title="Click to
enlarge" border="0"></a></td><td style="text-align: justify;"><a
name="PAGE_DEMO_pattern_resample"><b></b></a>
<code><a href="http://www.antigrain.com/demo/image_resample.cpp.html">image_resample.cpp</a></code>
The demonstration of pattern transformations with resampling. The same
as
the above but with texturing patterns.</td><td><a
href="http://www.antigrain.com/demo/pattern_resample.zip"><img
src="original_demos_files/dl_win32.gif" border="0"></a><br></td></tr>
<tr><td><a href="http://www.antigrain.com/demo/compositing.png"><img
src="original_demos_files/compositing_s.png" title="Click to enlarge"
border="0"></a></td><td style="text-align: justify;"><a
name="PAGE_DEMO_compositing"><b></b></a>
<code><a href="http://www.antigrain.com/demo/compositing.cpp.html">compositing.cpp</a></code>
Extended compositing modes fully compatible with
<a
href="http://www.w3.org/TR/2004/WD-SVG12-20041027/rendering.html#comp-op-prop"><img
src="original_demos_files/link.gif" border="0">SVG 1.2</a></td><td><a
href="http://www.antigrain.com/demo/compositing.zip"><img
src="original_demos_files/dl_win32.gif" border="0"></a><br></td></tr>
<tr><td><a href="http://www.antigrain.com/demo/compositing2.png"><img
src="original_demos_files/compositing2_s.png" title="Click to enlarge"
border="0"></a></td><td style="text-align: justify;"><a
name="PAGE_DEMO_compositing2"><b></b></a>
<code><a href="http://www.antigrain.com/demo/compositing2.cpp.html">compositing2.cpp</a></code>
Another demo example with extended compositing modes.</td><td><a
href="http://www.antigrain.com/demo/compositing2.zip"><img
src="original_demos_files/dl_win32.gif" border="0"></a><br></td></tr>
<tr><td><a href="http://www.antigrain.com/demo/bezier_div.png"><img
src="original_demos_files/bezier_div_s.png" title="Click to enlarge"
border="0"></a></td><td style="text-align: justify;"><a
name="PAGE_DEMO_bezier_div"><b></b></a>
<code><a href="http://www.antigrain.com/demo/bezier_div.cpp.html">bezier_div.cpp</a></code>
Demonstration of new methods of Bezier curve approximation. You can
compare
the old, incremental method with adaptive De Casteljau's subdivion. The
new method uses two criteria to stop subdivision: estimation of distance
and
estimation of angle. It gives us perfectly smooth result even for very
sharp
turns and loops.</td><td><a
href="http://www.antigrain.com/demo/bezier_div.zip"><img
src="original_demos_files/dl_win32.gif" border="0"></a><br></td></tr>
<tr><td><a href="http://www.antigrain.com/demo/flash_rasterizer.png"><img
src="original_demos_files/flash_rasterizer_s.png" title="Click to
enlarge" border="0"></a></td><td style="text-align: justify;"><a
name="PAGE_DEMO_flash_rasterizer"><b></b></a>
<code><a href="http://www.antigrain.com/demo/flash_rasterizer.cpp.html">flash_rasterizer.cpp</a></code>
Demonstration of Flash compound shape rasterizer. The rasterizer
accepts vectorial data in a form of Flash paths, that is, with two
fill styles, fill on the left and fill on the right of the path.
Then it produces a number of scanlines with corresponding styles
and requests for the colors and/or gradients, images, etc. The
algorithm takes care of anti-aliasing and perfect stitching
between fill areas.</td><td><a
href="http://www.antigrain.com/demo/flash_rasterizer.zip"><img
src="original_demos_files/dl_win32.gif" border="0"></a><br></td></tr>
<tr><td><a href="http://www.antigrain.com/demo/flash_rasterizer2.png"><img
src="original_demos_files/flash_rasterizer2_s.png" title="Click to
enlarge" border="0"></a></td><td style="text-align: justify;"><a
name="PAGE_DEMO_flash_rasterizer2"><b></b></a>
<code><a href="http://www.antigrain.com/demo/flash_rasterizer2.cpp.html">flash_rasterizer2.cpp</a></code>
Another possible way to render Flash compound shapes. The idea behind
it is prety simple. You just use the regular rasterizer, but in a
mode when it doesn't automatically close the contours. Every compound
shape is decomposed into a number of single shapes that are rasterized
and rendered separately.</td><td><a
href="http://www.antigrain.com/demo/flash_rasterizer2.zip"><img
src="original_demos_files/dl_win32.gif" border="0"></a><br></td></tr>
<tr><td><a href="http://www.antigrain.com/demo/gouraud_mesh.png"><img
src="original_demos_files/gouraud_mesh_s.png" title="Click to enlarge"
border="0"></a></td><td style="text-align: justify;"><a
name="PAGE_DEMO_gouraud_mesh"><b></b></a>
<code><a href="http://www.antigrain.com/demo/gouraud_mesh.cpp.html">gouraud_mesh.cpp</a></code>
Yet another example that demonstrates the power of compound shape
rasterization.
Here we create a mesh of triangles and render them in one pass with
multiple
Gouraud shaders (<a
href="http://www.antigrain.com/__code/include/agg_span_gouraud_rgba.h.html#span_gouraud_rgba">span_gouraud_rgba</a>).
The example demonstrates perfect
<b><nobr>Anti-Aliasing</nobr></b> and perfect triangle stitching
(seamless edges) at the same time.</td><td><a
href="http://www.antigrain.com/demo/gouraud_mesh.zip"><img
src="original_demos_files/dl_win32.gif" border="0"></a><br></td></tr>
<tr><td><a href="http://www.antigrain.com/demo/rasterizer_compound.png"><img
src="original_demos_files/rasterizer_compound_s.png" title="Click to
enlarge" border="0"></a></td><td style="text-align: justify;"><a
name="PAGE_DEMO_rasterizer_compound"><b></b></a>
<code><a
href="http://www.antigrain.com/demo/rasterizer_compound.cpp.html">rasterizer_compound.cpp</a></code>
This simple example demonstrates a rather advanced technique of using
the compound rasterizer. The idea is you assign styles to the polygons
(left=style, right=-1) and rasterize this "multi-styled" compound shape
as a whole. If the polygons in the shape overlap, the greater styles
have
higher priority. That is, the result is as if greater styles were
painted
last, but the geometry is flattened before rendering. It means there are
no pixels will be painted twice. Then the style are associated with
colors,
gradients, images, etc. in a special style handler. It simulates
Constructive Solid Geometry so that, you can, for example draw a
translucent
fill plus translucent stroke without the overlapped part of the fill
being
visible through the stroke.</td><td><a
href="http://www.antigrain.com/demo/rasterizer_compound.zip"><img
src="original_demos_files/dl_win32.gif" border="0"></a><br></td></tr>
<tr><td><a href="http://www.antigrain.com/demo/blur.png"><img
src="original_demos_files/blur_s.png" title="Click to enlarge"
border="0"></a></td><td style="text-align: justify;"><a
name="PAGE_DEMO_blur"><b></b></a>
<code><a href="http://www.antigrain.com/demo/blur.cpp.html">blur.cpp</a></code>
Now you can blur rendered images rather fast! There two algorithms
are used: <a
href="http://incubator.quasimondo.com/processing/fast_blur_deluxe.php"><img
src="original_demos_files/link.gif" border="0">Stack Blur</a> by Mario
Klingemann and Fast Recursive Gaussian Filter, described
<a
href="http://www.ph.tn.tudelft.nl/Courses/FIP/noframes/fip-Smoothin.html"><img
src="original_demos_files/link.gif" border="0">here</a>
and <a
href="http://www.ph.tn.tudelft.nl/%7Elucas/publications/1995/SP95TYLV/SP95TYLV.pdf"><img
src="original_demos_files/link.gif" border="0">here (PDF)</a>. The
speed of both methods does not depend on the filter radius.
Mario's method works 3-5 times faster; it doesn't produce exactly
Gaussian
response, but pretty fair for most practical purposes. The recursive
filter
uses floating point arithmetic and works slower. But it is true Gaussian
filter,
with theoretically infinite impulse response. The radius (actually
2*sigma value)
can be fractional and the filter produces quite adequate result.</td><td><a
href="http://www.antigrain.com/demo/blur.zip"><img
src="original_demos_files/dl_win32.gif" border="0"></a><br></td></tr>
</tbody></table><font style="margin-left: 1em;"><i></i></font>
<table width="640px"><tbody><tr><td style="text-align: justify;"><p>…TO
BE CONTINUED
</p></td></tr></tbody></table><table style="margin: 0px;" height="1px"
width="640px" bgcolor="#583927" border="0" cellpadding="0"
cellspacing="0"><tbody><tr><td></td></tr></tbody></table>
<table width="640px" border="0" cellpadding="0" cellspacing="0">
<tbody><tr><td><center><span class="authors">
Copyright <span class="larger">©</span> 2002-2006
<a href="http://www.antigrain.com/mcseem/index.html"><b>Maxim Shemanarev</b></a>
</span></center></td></tr>
<tr><td><center><span class="authors">
Web Design and Programming
<a href="http://www.antigrain.com/mcseem/index.html"><b>Maxim Shemanarev</b></a>
</span></center></td></tr>
</tbody></table>
<br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br>
<br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br>
<br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br>
<br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br>
</body></html>
|