summaryrefslogtreecommitdiff
path: root/lib/hash.c
blob: 0e4f2d61c744020fe88e9c1b409614d6320957da (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
/* A generic hash table package.  */

#include <stdio.h>
#include <stdlib.h>
#include <assert.h>

#include "hash.h"

#ifdef USE_OBSTACK
# define ZALLOC(Ht, N) obstack_alloc (&(ht->ht_obstack), (N))
#else
# define ZALLOC(Ht, N) malloc ((N))
#endif

#define BUCKET_HEAD(ht, idx) ((ht)->hash_table[(idx)])

static int
is_prime (candidate)
     unsigned long candidate;
{
  /* No even number and none less than 10 will be passed here.  */
  unsigned long divn = 3;
  unsigned long sq = divn * divn;

  while (sq < candidate && (candidate % divn))
    {
      divn++;
      sq += 4 * divn;
      divn++;
    }

  return (candidate % divn);
}

/* Round a given number up to the nearest prime. */

static unsigned long
next_prime (candidate)
     unsigned long candidate;
{
  /* Make it definitely odd.  */
  candidate |= 1;

  while (!is_prime (candidate))
    candidate += 2;

  return candidate;
}

static void
hash_free_entry (HT *ht, HASH_ENT *e)
{
  e->key = NULL;
  e->next = ht->hash_free_entry_list;
  ht->hash_free_entry_list = e;
}

static HASH_ENT *
hash_allocate_entry (HT *ht)
{
  HASH_ENT *new;
  if (ht->hash_free_entry_list)
    {
      new = ht->hash_free_entry_list;
      ht->hash_free_entry_list = new->next;
    }
  else
    {
      new = (HASH_ENT *) ZALLOC (ht, sizeof (HASH_ENT));
    }
  return new;
}

unsigned int
hash_get_n_slots_used (const HT *ht)
{
  return ht->hash_n_slots_used;
}

/* Free all storage associated with HT that functions in this package
   have allocated.  If a key_freer function has been supplied (when HT
   was created), this function applies it to the key of each entry before
   freeing that entry. */

static void
hash_free_0 (HT *ht, int free_user_data)
{
  if (free_user_data && ht->hash_key_freer != NULL)
    {
      unsigned int i;

      for (i = 0; i < ht->hash_table_size; i++)
	{
	  HASH_ENT *p;
	  HASH_ENT *next;

	  for (p = BUCKET_HEAD (ht, i); p; p = next)
	    {
	      next = p->next;
	      ht->hash_key_freer (p->key);
	    }
	}
    }

#ifdef USE_OBSTACK
  obstack_free (&(ht->ht_obstack), NULL);
#else
  {
    unsigned int i;
    for (i = 0; i < ht->hash_table_size; i++)
      {
	HASH_ENT *p;
	HASH_ENT *next;

	for (p = BUCKET_HEAD (ht, i); p; p = next)
	  {
	    next = p->next;
	    free (p);
	  }
      }
  }
#endif
  ht->hash_free_entry_list = NULL;
  free (ht->hash_table);
}

/* FIXME-comment */

int
hash_rehash (HT *ht, unsigned int new_table_size)
{
  HT *ht_new;
  unsigned int i;

  if (ht->hash_table_size <= 0 || new_table_size == 0)
    return 1;

  ht_new = hash_initialize (new_table_size, ht->hash_key_freer,
			    ht->hash_hash, ht->hash_key_comparator);

  if (ht_new == NULL)
    return 1;

  for (i = 0; i < ht->hash_table_size; i++)
    {
      HASH_ENT *p = BUCKET_HEAD (ht, i);
      for ( /* empty */ ; p; p = p->next)
	{
	  int failed;
	  const void *already_in_table;
	  already_in_table = hash_insert_if_absent (ht_new, p->key, &failed);
	  assert (failed == 0 && already_in_table == 0);
	}
    }

  hash_free_0 (ht, 0);

#ifdef TESTING
  assert (hash_table_ok (ht_new));
#endif
  *ht = *ht_new;
  free (ht_new);

  /* FIXME: fill in ht_new->n_slots_used and other statistics fields. */

  return 0;
}

/* FIXME-comment */

unsigned int
hash_get_max_chain_length (HT *ht)
{
  unsigned int i;
  unsigned int max_chain_length = 0;

  if (!ht->hash_dirty_max_chain_length)
    return ht->hash_max_chain_length;

  for (i = 0; i < ht->hash_table_size; i++)
    {
      unsigned int chain_length = 0;
      HASH_ENT *p = BUCKET_HEAD (ht, i);
      for ( /* empty */ ; p; p = p->next)
	++chain_length;
      if (chain_length > max_chain_length)
	max_chain_length = chain_length;
    }

  ht->hash_max_chain_length = max_chain_length;
  ht->hash_dirty_max_chain_length = 0;
  return ht->hash_max_chain_length;
}

unsigned int
hash_get_n_keys (const HT *ht)
{
  return ht->hash_n_keys;
}

unsigned int
hash_get_table_size (const HT *ht)
{
  return ht->hash_table_size;
}

/* CANDIDATE_TABLE_SIZE need not be prime.  If WHEN_TO_REHASH (FIXME: add
   this parameter) is positive, when that percentage of table entries have
   been used, the table size is increased;  then a new, larger table
   (GROW_FACTOR (FIXME: maybe add this parameter) times larger than the previous
   size) is allocated and all entries in the old table are rehashed into
   the new, larger one.  The old table is freed.  If WHEN_TO_REHASH is zero
   or negative, the table is never resized.

   The function returns non-zero
   - if CANDIDATE_TABLE_SIZE is zero or negative
   - if KEY_COMPARATOR or HASH is null
   - if it was unable to allocate sufficient storage for the hash table
   - if WHEN_TO_REHASH is zero or negative
   Otherwise it returns zero.  */

HT *
hash_initialize (unsigned int candidate_table_size,
		 Hash_key_freer_type key_freer,
		 unsigned int (*hash) (const void *, unsigned int),
		 int (*key_comparator) (const void *, const void *))
{
  HT *ht;
  unsigned int i;
  unsigned int table_size;

  if (candidate_table_size <= 0)
    return NULL;

  if (hash == NULL || key_comparator == NULL)
    return NULL;

  ht = (HT *) malloc (sizeof (HT));
  if (ht == NULL)
    return NULL;

  table_size = next_prime (candidate_table_size);
  ht->hash_table = (HASH_ENT **) malloc (table_size * sizeof (HASH_ENT *));
  if (ht->hash_table == NULL)
    return NULL;

  for (i = 0; i < table_size; i++)
    {
      BUCKET_HEAD (ht, i) = NULL;
    }

  ht->hash_free_entry_list = NULL;
  ht->hash_table_size = table_size;
  ht->hash_hash = hash;
  ht->hash_key_comparator = key_comparator;
  ht->hash_key_freer = key_freer;
  ht->hash_n_slots_used = 0;
  ht->hash_max_chain_length = 0;
  ht->hash_n_keys = 0;
  ht->hash_dirty_max_chain_length = 0;
#ifdef USE_OBSTACK
  obstack_init (&(ht->ht_obstack));
#endif

  return ht;
}

/* This private function is used to help with insertion and deletion.
   If E does *not* compare equal to the key of any entry in the table,
   return NULL.
   When E matches an entry in the table, return a pointer to the matching
   entry.  When DELETE is non-zero and E matches an entry in the table,
   unlink the matching entry.  Set *CHAIN_LENGTH to the number of keys
   that have hashed to the bucket E hashed to.  */

static HASH_ENT *
hash_find_entry (HT *ht, const void *e, unsigned int *table_idx,
		 unsigned int *chain_length, int delete)
{
  unsigned int idx;
  int found;
  HASH_ENT *p, *prev;

  idx = ht->hash_hash (e, ht->hash_table_size);
  assert (idx < ht->hash_table_size);

  *table_idx = idx;
  *chain_length = 0;

  prev = ht->hash_table[idx];

  if (prev == NULL)
    return NULL;

  *chain_length = 1;
  if (ht->hash_key_comparator (e, prev->key) == 0)
    {
      if (delete)
	ht->hash_table[idx] = prev->next;
      return prev;
    }

  p = prev->next;
  found = 0;
  while (p)
    {
      ++(*chain_length);
      if (ht->hash_key_comparator (e, p->key) == 0)
	{
	  found = 1;
	  break;
	}
      prev = p;
      p = p->next;
    }

  if (!found)
    return NULL;

  assert (p != NULL);
  if (delete)
    prev->next = p->next;

  return p;
}

/* Return non-zero if E is already in the table, zero otherwise. */

int
hash_query_in_table (const HT *ht, const void *e)
{
  unsigned int idx;
  HASH_ENT *p;

  idx = ht->hash_hash (e, ht->hash_table_size);
  assert (idx < ht->hash_table_size);
  for (p = BUCKET_HEAD (ht, idx); p != NULL; p = p->next)
    if (ht->hash_key_comparator (e, p->key) == 0)
      return 1;
  return 0;
}

void *
hash_lookup (const HT *ht, const void *e)
{
  unsigned int idx;
  HASH_ENT *p;

  idx = ht->hash_hash (e, ht->hash_table_size);
  assert (idx < ht->hash_table_size);
  for (p = BUCKET_HEAD (ht, idx); p != NULL; p = p->next)
    if (ht->hash_key_comparator (e, p->key) == 0)
      return p->key;
  return NULL;
}

/* If E matches an entry already in the hash table, don't modify the
   table and return a pointer to the matched entry.  If E does not
   match any item in the table, insert E and return NULL.
   If the storage required for insertion cannot be allocated
   set *FAILED to non-zero and return NULL. */

void *
hash_insert_if_absent (HT *ht, const void *e, int *failed)
{
  const HASH_ENT *ent;
  HASH_ENT *new;
  unsigned int idx;
  unsigned int chain_length;

  assert (e != NULL);		/* Can't insert a NULL key. */

  *failed = 0;
  ent = hash_find_entry (ht, e, &idx, &chain_length, 0);
  if (ent != NULL)
    {
      /* E matches a key from an entry already in the table. */
      return ent->key;
    }

  new = hash_allocate_entry (ht);
  if (new == NULL)
    {
      *failed = 1;
      return NULL;
    }

  new->key = (void *) e;
  new->next = BUCKET_HEAD (ht, idx);
  BUCKET_HEAD (ht, idx) = new;

  if (chain_length == 0)
    ++(ht->hash_n_slots_used);

  /* The insertion has just increased chain_length by 1. */
  ++chain_length;

  if (chain_length > ht->hash_max_chain_length)
    ht->hash_max_chain_length = chain_length;

  ++(ht->hash_n_keys);
  if ((double) ht->hash_n_keys / ht->hash_table_size > 0.80)
    {
      unsigned int new_size;
      new_size = next_prime (2 * ht->hash_table_size + 1);
      *failed = hash_rehash (ht, new_size);
    }

#ifdef TESTING
  assert (hash_table_ok (ht));
#endif

  return NULL;
}

/* If E is already in the table, remove it and return a pointer to
   the just-deleted key (the user may want to deallocate its storage).
   If E is not in the table, don't modify the table and return NULL. */

void *
hash_delete_if_present (HT *ht, const void *e)
{
  HASH_ENT *ent;
  void *key;
  unsigned int idx;
  unsigned int chain_length;

  ent = hash_find_entry (ht, e, &idx, &chain_length, 1);
  if (ent == NULL)
    return NULL;

  if (ent->next == NULL && chain_length == 1)
    --(ht->hash_n_slots_used);

  key = ent->key;

  --(ht->hash_n_keys);
  ht->hash_dirty_max_chain_length = 1;
  if (ent->next == NULL && chain_length < ht->hash_max_chain_length)
    ht->hash_dirty_max_chain_length = 0;

  hash_free_entry (ht, ent);

#ifdef TESTING
  assert (hash_table_ok (ht));
#endif
  return key;
}

void
hash_print_statistics (const HT *ht, FILE *stream)
{
  unsigned int n_slots_used;
  unsigned int n_keys;
  unsigned int max_chain_length;
  int err;

  err = hash_get_statistics (ht, &n_slots_used, &n_keys, &max_chain_length);
  assert (err == 0);
  fprintf (stream, "table size: %d\n", ht->hash_table_size);
  fprintf (stream, "# slots used: %u (%.2f%%)\n", n_slots_used,
	   (100.0 * n_slots_used) / ht->hash_table_size);
  fprintf (stream, "# keys: %u\n", n_keys);
  fprintf (stream, "max chain length: %u\n", max_chain_length);
}

/* If there is *NO* table (so, no meaningful stats) return non-zero
   and don't reference the argument pointers.  Otherwise compute the
   performance statistics and return non-zero. */

int
hash_get_statistics (const HT *ht,
		     unsigned int *n_slots_used,
		     unsigned int *n_keys,
		     unsigned int *max_chain_length)
{
  unsigned int i;

  if (ht == NULL || ht->hash_table == NULL)
    return 1;

  *max_chain_length = 0;
  *n_slots_used = 0;
  *n_keys = 0;

  for (i = 0; i < ht->hash_table_size; i++)
    {
      unsigned int chain_length = 0;
      HASH_ENT *p;

      p = BUCKET_HEAD (ht, i);
      if (p != NULL)
	++(*n_slots_used);

      for (; p; p = p->next)
	++chain_length;

      *n_keys += chain_length;
      if (chain_length > *max_chain_length)
	*max_chain_length = chain_length;
    }
  return 0;
}

int
hash_table_ok (HT *ht)
{
  int code;
  unsigned int n_slots_used;
  unsigned int n_keys;
  unsigned int max_chain_length;

  if (ht == NULL || ht->hash_table == NULL)
    return 1;

  code = hash_get_statistics (ht, &n_slots_used, &n_keys,
			      &max_chain_length);

  if (code != 0
      || n_slots_used != ht->hash_n_slots_used
      || n_keys != ht->hash_n_keys
      || max_chain_length != hash_get_max_chain_length (ht))
    return 0;

  return 1;
}

/* See hash_do_for_each_2 (below) for a variant.  */

void
hash_do_for_each (HT *ht, void (*f) (void *e, void *aux), void *aux)
{
  unsigned int i;

#ifdef TESTING
  assert (hash_table_ok (ht));
#endif

  if (ht->hash_table == NULL)
    return;

  for (i = 0; i < ht->hash_table_size; i++)
    {
      HASH_ENT *p;
      for (p = BUCKET_HEAD (ht, i); p; p = p->next)
	{
	  (*f) (p->key, aux);
	}
    }
}

/* Just like hash_do_for_each, except that function F returns an int
   that can signal (when non-zero) we should return early.  */

int
hash_do_for_each_2 (HT *ht, int (*f) (void *e, void *aux), void *aux)
{
  unsigned int i;

#ifdef TESTING
  assert (hash_table_ok (ht));
#endif

  if (ht->hash_table == NULL)
    return 0;

  for (i = 0; i < ht->hash_table_size; i++)
    {
      HASH_ENT *p;
      for (p = BUCKET_HEAD (ht, i); p; p = p->next)
	{
	  int return_code;

	  return_code = (*f) (p->key, aux);
	  if (return_code != 0)
	    return return_code;
	}
    }
  return 0;
}

/* For each entry in the bucket addressed by BUCKET_KEY of the hash
   table HT, invoke the function F.  If F returns non-zero, stop
   iterating and return that value.  Otherwise, apply F to all entries
   in the selected bucket and return zero.  The AUX argument to this
   function is passed as the last argument in each invocation of F.
   The first argument to F is BUCKET_KEY, and the second is the key of
   an entry in the selected bucket. */

int
hash_do_for_each_in_selected_bucket (HT *ht, const void *bucket_key,
				     int (*f) (const void *bucket_key,
					       void *e, void *aux),
				     void *aux)
{
  int idx;
  HASH_ENT *p;

#ifdef TESTING
  assert (hash_table_ok (ht));
#endif

  if (ht->hash_table == NULL)
    return 0;

  idx = ht->hash_hash (bucket_key, ht->hash_table_size);

  for (p = BUCKET_HEAD (ht, idx); p != NULL; p = p->next)
    {
      int return_code;

      return_code = (*f) (bucket_key, p->key, aux);
      if (return_code != 0)
	return return_code;
    }

  return 0;
}

/* Make all buckets empty, placing any chained entries on the free list.
   As with hash_free, apply the user-specified function key_freer
   (if it's not NULL) to the keys of any affected entries. */

void
hash_clear (HT *ht)
{
  unsigned int i;
  HASH_ENT *p;

  for (i = 0; i < ht->hash_table_size; i++)
    {
      HASH_ENT *tail = NULL;
      HASH_ENT *head = BUCKET_HEAD (ht, i);

      /* Free any keys and get tail pointer to last entry in chain. */
      for (p = head; p; p = p->next)
	{
	  if (ht->hash_key_freer != NULL)
	    ht->hash_key_freer (p->key);
	  p->key = NULL;	/* Make sure no one tries to use this key later. */
	  tail = p;
	}
      BUCKET_HEAD (ht, i) = NULL;

      /* If there's a chain in this bucket, tack it onto the
         beginning of the free list. */
      if (head != NULL)
	{
	  assert (tail != NULL && tail->next == NULL);
	  tail->next = ht->hash_free_entry_list;
	  ht->hash_free_entry_list = head;
	}
    }
  ht->hash_n_slots_used = 0;
  ht->hash_max_chain_length = 0;
  ht->hash_n_keys = 0;
  ht->hash_dirty_max_chain_length = 0;
}

void
hash_free (HT *ht)
{
  hash_free_0 (ht, 1);
  free (ht);
}

#ifdef TESTING

void
hash_print (const HT *ht)
{
  int i;

  for (i = 0; i < ht->hash_table_size; i++)
    {
      HASH_ENT *p;

      if (BUCKET_HEAD (ht, i) != NULL)
	printf ("%d:\n", i);

      for (p = BUCKET_HEAD (ht, i); p; p = p->next)
	{
	  char *s = (char *) p->key;
	  /* FIXME */
	  printf ("  %s\n", s);
	}
    }
}

#endif /* TESTING */

void
hash_get_key_list (const HT *ht, unsigned int bufsize, void **buf)
{
  unsigned int i;
  unsigned int c = 0;

  for (i = 0; i < ht->hash_table_size; i++)
    {
      HASH_ENT *p;

      for (p = BUCKET_HEAD (ht, i); p; p = p->next)
	{
	  if (c >= bufsize)
	    return;
	  buf[c++] = p->key;
	}
    }
}

/* Return the first key in the table.  If the table is empty, return NULL.  */

void *
hash_get_first (const HT *ht)
{
  unsigned int idx;
  HASH_ENT *p;

  if (ht->hash_n_keys == 0)
    return NULL;

  for (idx = 0; idx < ht->hash_table_size; idx++)
    {
      if ((p = BUCKET_HEAD (ht, idx)) != NULL)
	return p->key;
    }
  abort ();
}

/* Return the key in the entry following the entry whose key matches E.
   If there is the only one key in the table and that key matches E,
   return the matching key.  If E is not in the table, return NULL.  */

void *
hash_get_next (const HT *ht, const void *e)
{
  unsigned int idx;
  HASH_ENT *p;

  idx = ht->hash_hash (e, ht->hash_table_size);
  assert (idx < ht->hash_table_size);
  for (p = BUCKET_HEAD (ht, idx); p != NULL; p = p->next)
    {
      if (ht->hash_key_comparator (e, p->key) == 0)
	{
	  if (p->next != NULL)
	    {
	      return p->next->key;
	    }
	  else
	    {
	      unsigned int bucket;

	      /* E is the last or only key in the bucket chain.  */
	      if (ht->hash_n_keys == 1)
		{
		  /* There is only one key in the table, and it matches E.  */
		  return p->key;
		}
	      bucket = idx;
	      do
		{
		  idx = (idx + 1) % ht->hash_table_size;
		  if ((p = BUCKET_HEAD (ht, idx)) != NULL)
		    return p->key;
		}
	      while (idx != bucket);
	    }
	}
    }

  /* E is not in the table.  */
  return NULL;
}