summaryrefslogtreecommitdiff
path: root/lib/sha512.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/sha512.c')
-rw-r--r--lib/sha512.c600
1 files changed, 0 insertions, 600 deletions
diff --git a/lib/sha512.c b/lib/sha512.c
deleted file mode 100644
index e0109f80f..000000000
--- a/lib/sha512.c
+++ /dev/null
@@ -1,600 +0,0 @@
-/* sha512.c - Functions to compute SHA512 and SHA384 message digest of files or
- memory blocks according to the NIST specification FIPS-180-2.
-
- Copyright (C) 2005, 2006, 2008 Free Software Foundation, Inc.
-
- This program is free software: you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation, either version 3 of the License, or
- (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program. If not, see <http://www.gnu.org/licenses/>. */
-
-/* Written by David Madore, considerably copypasting from
- Scott G. Miller's sha1.c
-*/
-
-#include <config.h>
-
-#include "sha512.h"
-
-#include <stddef.h>
-#include <string.h>
-
-#if USE_UNLOCKED_IO
-# include "unlocked-io.h"
-#endif
-
-#ifdef WORDS_BIGENDIAN
-# define SWAP(n) (n)
-#else
-# define SWAP(n) \
- u64or (u64or (u64or (u64shl (n, 56), \
- u64shl (u64and (n, u64lo (0x0000ff00)), 40)), \
- u64or (u64shl (u64and (n, u64lo (0x00ff0000)), 24), \
- u64shl (u64and (n, u64lo (0xff000000)), 8))), \
- u64or (u64or (u64and (u64shr (n, 8), u64lo (0xff000000)), \
- u64and (u64shr (n, 24), u64lo (0x00ff0000))), \
- u64or (u64and (u64shr (n, 40), u64lo (0x0000ff00)), \
- u64shr (n, 56))))
-#endif
-
-#define BLOCKSIZE 4096
-#if BLOCKSIZE % 128 != 0
-# error "invalid BLOCKSIZE"
-#endif
-
-/* This array contains the bytes used to pad the buffer to the next
- 128-byte boundary. */
-static const unsigned char fillbuf[128] = { 0x80, 0 /* , 0, 0, ... */ };
-
-
-/*
- Takes a pointer to a 512 bit block of data (eight 64 bit ints) and
- intializes it to the start constants of the SHA512 algorithm. This
- must be called before using hash in the call to sha512_hash
-*/
-void
-sha512_init_ctx (struct sha512_ctx *ctx)
-{
- ctx->state[0] = u64hilo (0x6a09e667, 0xf3bcc908);
- ctx->state[1] = u64hilo (0xbb67ae85, 0x84caa73b);
- ctx->state[2] = u64hilo (0x3c6ef372, 0xfe94f82b);
- ctx->state[3] = u64hilo (0xa54ff53a, 0x5f1d36f1);
- ctx->state[4] = u64hilo (0x510e527f, 0xade682d1);
- ctx->state[5] = u64hilo (0x9b05688c, 0x2b3e6c1f);
- ctx->state[6] = u64hilo (0x1f83d9ab, 0xfb41bd6b);
- ctx->state[7] = u64hilo (0x5be0cd19, 0x137e2179);
-
- ctx->total[0] = ctx->total[1] = u64lo (0);
- ctx->buflen = 0;
-}
-
-void
-sha384_init_ctx (struct sha512_ctx *ctx)
-{
- ctx->state[0] = u64hilo (0xcbbb9d5d, 0xc1059ed8);
- ctx->state[1] = u64hilo (0x629a292a, 0x367cd507);
- ctx->state[2] = u64hilo (0x9159015a, 0x3070dd17);
- ctx->state[3] = u64hilo (0x152fecd8, 0xf70e5939);
- ctx->state[4] = u64hilo (0x67332667, 0xffc00b31);
- ctx->state[5] = u64hilo (0x8eb44a87, 0x68581511);
- ctx->state[6] = u64hilo (0xdb0c2e0d, 0x64f98fa7);
- ctx->state[7] = u64hilo (0x47b5481d, 0xbefa4fa4);
-
- ctx->total[0] = ctx->total[1] = u64lo (0);
- ctx->buflen = 0;
-}
-
-/* Copy the value from V into the memory location pointed to by *CP,
- If your architecture allows unaligned access, this is equivalent to
- * (__typeof__ (v) *) cp = v */
-static inline void
-set_uint64 (char *cp, u64 v)
-{
- memcpy (cp, &v, sizeof v);
-}
-
-/* Put result from CTX in first 64 bytes following RESBUF.
- The result must be in little endian byte order. */
-void *
-sha512_read_ctx (const struct sha512_ctx *ctx, void *resbuf)
-{
- int i;
- char *r = resbuf;
-
- for (i = 0; i < 8; i++)
- set_uint64 (r + i * sizeof ctx->state[0], SWAP (ctx->state[i]));
-
- return resbuf;
-}
-
-void *
-sha384_read_ctx (const struct sha512_ctx *ctx, void *resbuf)
-{
- int i;
- char *r = resbuf;
-
- for (i = 0; i < 6; i++)
- set_uint64 (r + i * sizeof ctx->state[0], SWAP (ctx->state[i]));
-
- return resbuf;
-}
-
-/* Process the remaining bytes in the internal buffer and the usual
- prolog according to the standard and write the result to RESBUF. */
-static void
-sha512_conclude_ctx (struct sha512_ctx *ctx)
-{
- /* Take yet unprocessed bytes into account. */
- size_t bytes = ctx->buflen;
- size_t size = (bytes < 112) ? 128 / 8 : 128 * 2 / 8;
-
- /* Now count remaining bytes. */
- ctx->total[0] = u64plus (ctx->total[0], u64lo (bytes));
- if (u64lt (ctx->total[0], u64lo (bytes)))
- ctx->total[1] = u64plus (ctx->total[1], u64lo (1));
-
- /* Put the 64-bit file length in *bits* at the end of the buffer. */
- ctx->buffer[size - 2] = SWAP (u64or (u64shl (ctx->total[1], 3),
- u64shr (ctx->total[0], 61)));
- ctx->buffer[size - 1] = SWAP (u64shl (ctx->total[0], 3));
-
- memcpy (&((char *) ctx->buffer)[bytes], fillbuf, (size - 2) * 8 - bytes);
-
- /* Process last bytes. */
- sha512_process_block (ctx->buffer, size * 8, ctx);
-}
-
-void *
-sha512_finish_ctx (struct sha512_ctx *ctx, void *resbuf)
-{
- sha512_conclude_ctx (ctx);
- return sha512_read_ctx (ctx, resbuf);
-}
-
-void *
-sha384_finish_ctx (struct sha512_ctx *ctx, void *resbuf)
-{
- sha512_conclude_ctx (ctx);
- return sha384_read_ctx (ctx, resbuf);
-}
-
-/* Compute SHA512 message digest for bytes read from STREAM. The
- resulting message digest number will be written into the 64 bytes
- beginning at RESBLOCK. */
-int
-sha512_stream (FILE *stream, void *resblock)
-{
- struct sha512_ctx ctx;
- char buffer[BLOCKSIZE + 72];
- size_t sum;
-
- /* Initialize the computation context. */
- sha512_init_ctx (&ctx);
-
- /* Iterate over full file contents. */
- while (1)
- {
- /* We read the file in blocks of BLOCKSIZE bytes. One call of the
- computation function processes the whole buffer so that with the
- next round of the loop another block can be read. */
- size_t n;
- sum = 0;
-
- /* Read block. Take care for partial reads. */
- while (1)
- {
- n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream);
-
- sum += n;
-
- if (sum == BLOCKSIZE)
- break;
-
- if (n == 0)
- {
- /* Check for the error flag IFF N == 0, so that we don't
- exit the loop after a partial read due to e.g., EAGAIN
- or EWOULDBLOCK. */
- if (ferror (stream))
- return 1;
- goto process_partial_block;
- }
-
- /* We've read at least one byte, so ignore errors. But always
- check for EOF, since feof may be true even though N > 0.
- Otherwise, we could end up calling fread after EOF. */
- if (feof (stream))
- goto process_partial_block;
- }
-
- /* Process buffer with BLOCKSIZE bytes. Note that
- BLOCKSIZE % 128 == 0
- */
- sha512_process_block (buffer, BLOCKSIZE, &ctx);
- }
-
- process_partial_block:;
-
- /* Process any remaining bytes. */
- if (sum > 0)
- sha512_process_bytes (buffer, sum, &ctx);
-
- /* Construct result in desired memory. */
- sha512_finish_ctx (&ctx, resblock);
- return 0;
-}
-
-/* FIXME: Avoid code duplication */
-int
-sha384_stream (FILE *stream, void *resblock)
-{
- struct sha512_ctx ctx;
- char buffer[BLOCKSIZE + 72];
- size_t sum;
-
- /* Initialize the computation context. */
- sha384_init_ctx (&ctx);
-
- /* Iterate over full file contents. */
- while (1)
- {
- /* We read the file in blocks of BLOCKSIZE bytes. One call of the
- computation function processes the whole buffer so that with the
- next round of the loop another block can be read. */
- size_t n;
- sum = 0;
-
- /* Read block. Take care for partial reads. */
- while (1)
- {
- n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream);
-
- sum += n;
-
- if (sum == BLOCKSIZE)
- break;
-
- if (n == 0)
- {
- /* Check for the error flag IFF N == 0, so that we don't
- exit the loop after a partial read due to e.g., EAGAIN
- or EWOULDBLOCK. */
- if (ferror (stream))
- return 1;
- goto process_partial_block;
- }
-
- /* We've read at least one byte, so ignore errors. But always
- check for EOF, since feof may be true even though N > 0.
- Otherwise, we could end up calling fread after EOF. */
- if (feof (stream))
- goto process_partial_block;
- }
-
- /* Process buffer with BLOCKSIZE bytes. Note that
- BLOCKSIZE % 128 == 0
- */
- sha512_process_block (buffer, BLOCKSIZE, &ctx);
- }
-
- process_partial_block:;
-
- /* Process any remaining bytes. */
- if (sum > 0)
- sha512_process_bytes (buffer, sum, &ctx);
-
- /* Construct result in desired memory. */
- sha384_finish_ctx (&ctx, resblock);
- return 0;
-}
-
-/* Compute SHA512 message digest for LEN bytes beginning at BUFFER. The
- result is always in little endian byte order, so that a byte-wise
- output yields to the wanted ASCII representation of the message
- digest. */
-void *
-sha512_buffer (const char *buffer, size_t len, void *resblock)
-{
- struct sha512_ctx ctx;
-
- /* Initialize the computation context. */
- sha512_init_ctx (&ctx);
-
- /* Process whole buffer but last len % 128 bytes. */
- sha512_process_bytes (buffer, len, &ctx);
-
- /* Put result in desired memory area. */
- return sha512_finish_ctx (&ctx, resblock);
-}
-
-void *
-sha384_buffer (const char *buffer, size_t len, void *resblock)
-{
- struct sha512_ctx ctx;
-
- /* Initialize the computation context. */
- sha384_init_ctx (&ctx);
-
- /* Process whole buffer but last len % 128 bytes. */
- sha512_process_bytes (buffer, len, &ctx);
-
- /* Put result in desired memory area. */
- return sha384_finish_ctx (&ctx, resblock);
-}
-
-void
-sha512_process_bytes (const void *buffer, size_t len, struct sha512_ctx *ctx)
-{
- /* When we already have some bits in our internal buffer concatenate
- both inputs first. */
- if (ctx->buflen != 0)
- {
- size_t left_over = ctx->buflen;
- size_t add = 256 - left_over > len ? len : 256 - left_over;
-
- memcpy (&((char *) ctx->buffer)[left_over], buffer, add);
- ctx->buflen += add;
-
- if (ctx->buflen > 128)
- {
- sha512_process_block (ctx->buffer, ctx->buflen & ~63, ctx);
-
- ctx->buflen &= 127;
- /* The regions in the following copy operation cannot overlap. */
- memcpy (ctx->buffer,
- &((char *) ctx->buffer)[(left_over + add) & ~127],
- ctx->buflen);
- }
-
- buffer = (const char *) buffer + add;
- len -= add;
- }
-
- /* Process available complete blocks. */
- if (len >= 128)
- {
-#if !_STRING_ARCH_unaligned
-# define alignof(type) offsetof (struct { char c; type x; }, x)
-# define UNALIGNED_P(p) (((size_t) p) % alignof (u64) != 0)
- if (UNALIGNED_P (buffer))
- while (len > 128)
- {
- sha512_process_block (memcpy (ctx->buffer, buffer, 128), 128, ctx);
- buffer = (const char *) buffer + 128;
- len -= 128;
- }
- else
-#endif
- {
- sha512_process_block (buffer, len & ~127, ctx);
- buffer = (const char *) buffer + (len & ~127);
- len &= 127;
- }
- }
-
- /* Move remaining bytes in internal buffer. */
- if (len > 0)
- {
- size_t left_over = ctx->buflen;
-
- memcpy (&((char *) ctx->buffer)[left_over], buffer, len);
- left_over += len;
- if (left_over >= 128)
- {
- sha512_process_block (ctx->buffer, 128, ctx);
- left_over -= 128;
- memcpy (ctx->buffer, &ctx->buffer[16], left_over);
- }
- ctx->buflen = left_over;
- }
-}
-
-/* --- Code below is the primary difference between sha1.c and sha512.c --- */
-
-/* SHA512 round constants */
-#define K(I) sha512_round_constants[I]
-static u64 const sha512_round_constants[80] = {
- u64init (0x428a2f98, 0xd728ae22), u64init (0x71374491, 0x23ef65cd),
- u64init (0xb5c0fbcf, 0xec4d3b2f), u64init (0xe9b5dba5, 0x8189dbbc),
- u64init (0x3956c25b, 0xf348b538), u64init (0x59f111f1, 0xb605d019),
- u64init (0x923f82a4, 0xaf194f9b), u64init (0xab1c5ed5, 0xda6d8118),
- u64init (0xd807aa98, 0xa3030242), u64init (0x12835b01, 0x45706fbe),
- u64init (0x243185be, 0x4ee4b28c), u64init (0x550c7dc3, 0xd5ffb4e2),
- u64init (0x72be5d74, 0xf27b896f), u64init (0x80deb1fe, 0x3b1696b1),
- u64init (0x9bdc06a7, 0x25c71235), u64init (0xc19bf174, 0xcf692694),
- u64init (0xe49b69c1, 0x9ef14ad2), u64init (0xefbe4786, 0x384f25e3),
- u64init (0x0fc19dc6, 0x8b8cd5b5), u64init (0x240ca1cc, 0x77ac9c65),
- u64init (0x2de92c6f, 0x592b0275), u64init (0x4a7484aa, 0x6ea6e483),
- u64init (0x5cb0a9dc, 0xbd41fbd4), u64init (0x76f988da, 0x831153b5),
- u64init (0x983e5152, 0xee66dfab), u64init (0xa831c66d, 0x2db43210),
- u64init (0xb00327c8, 0x98fb213f), u64init (0xbf597fc7, 0xbeef0ee4),
- u64init (0xc6e00bf3, 0x3da88fc2), u64init (0xd5a79147, 0x930aa725),
- u64init (0x06ca6351, 0xe003826f), u64init (0x14292967, 0x0a0e6e70),
- u64init (0x27b70a85, 0x46d22ffc), u64init (0x2e1b2138, 0x5c26c926),
- u64init (0x4d2c6dfc, 0x5ac42aed), u64init (0x53380d13, 0x9d95b3df),
- u64init (0x650a7354, 0x8baf63de), u64init (0x766a0abb, 0x3c77b2a8),
- u64init (0x81c2c92e, 0x47edaee6), u64init (0x92722c85, 0x1482353b),
- u64init (0xa2bfe8a1, 0x4cf10364), u64init (0xa81a664b, 0xbc423001),
- u64init (0xc24b8b70, 0xd0f89791), u64init (0xc76c51a3, 0x0654be30),
- u64init (0xd192e819, 0xd6ef5218), u64init (0xd6990624, 0x5565a910),
- u64init (0xf40e3585, 0x5771202a), u64init (0x106aa070, 0x32bbd1b8),
- u64init (0x19a4c116, 0xb8d2d0c8), u64init (0x1e376c08, 0x5141ab53),
- u64init (0x2748774c, 0xdf8eeb99), u64init (0x34b0bcb5, 0xe19b48a8),
- u64init (0x391c0cb3, 0xc5c95a63), u64init (0x4ed8aa4a, 0xe3418acb),
- u64init (0x5b9cca4f, 0x7763e373), u64init (0x682e6ff3, 0xd6b2b8a3),
- u64init (0x748f82ee, 0x5defb2fc), u64init (0x78a5636f, 0x43172f60),
- u64init (0x84c87814, 0xa1f0ab72), u64init (0x8cc70208, 0x1a6439ec),
- u64init (0x90befffa, 0x23631e28), u64init (0xa4506ceb, 0xde82bde9),
- u64init (0xbef9a3f7, 0xb2c67915), u64init (0xc67178f2, 0xe372532b),
- u64init (0xca273ece, 0xea26619c), u64init (0xd186b8c7, 0x21c0c207),
- u64init (0xeada7dd6, 0xcde0eb1e), u64init (0xf57d4f7f, 0xee6ed178),
- u64init (0x06f067aa, 0x72176fba), u64init (0x0a637dc5, 0xa2c898a6),
- u64init (0x113f9804, 0xbef90dae), u64init (0x1b710b35, 0x131c471b),
- u64init (0x28db77f5, 0x23047d84), u64init (0x32caab7b, 0x40c72493),
- u64init (0x3c9ebe0a, 0x15c9bebc), u64init (0x431d67c4, 0x9c100d4c),
- u64init (0x4cc5d4be, 0xcb3e42b6), u64init (0x597f299c, 0xfc657e2a),
- u64init (0x5fcb6fab, 0x3ad6faec), u64init (0x6c44198c, 0x4a475817),
-};
-
-/* Round functions. */
-#define F2(A, B, C) u64or (u64and (A, B), u64and (C, u64or (A, B)))
-#define F1(E, F, G) u64xor (G, u64and (E, u64xor (F, G)))
-
-/* Process LEN bytes of BUFFER, accumulating context into CTX.
- It is assumed that LEN % 128 == 0.
- Most of this code comes from GnuPG's cipher/sha1.c. */
-
-void
-sha512_process_block (const void *buffer, size_t len, struct sha512_ctx *ctx)
-{
- u64 const *words = buffer;
- u64 const *endp = words + len / sizeof (u64);
- u64 x[16];
- u64 a = ctx->state[0];
- u64 b = ctx->state[1];
- u64 c = ctx->state[2];
- u64 d = ctx->state[3];
- u64 e = ctx->state[4];
- u64 f = ctx->state[5];
- u64 g = ctx->state[6];
- u64 h = ctx->state[7];
-
- /* First increment the byte count. FIPS PUB 180-2 specifies the possible
- length of the file up to 2^128 bits. Here we only compute the
- number of bytes. Do a double word increment. */
- ctx->total[0] = u64plus (ctx->total[0], u64lo (len));
- if (u64lt (ctx->total[0], u64lo (len)))
- ctx->total[1] = u64plus (ctx->total[1], u64lo (1));
-
-#define S0(x) u64xor (u64rol(x, 63), u64xor (u64rol (x, 56), u64shr (x, 7)))
-#define S1(x) u64xor (u64rol (x, 45), u64xor (u64rol (x, 3), u64shr (x, 6)))
-#define SS0(x) u64xor (u64rol (x, 36), u64xor (u64rol (x, 30), u64rol (x, 25)))
-#define SS1(x) u64xor (u64rol(x, 50), u64xor (u64rol (x, 46), u64rol (x, 23)))
-
-#define M(I) (x[(I) & 15] \
- = u64plus (x[(I) & 15], \
- u64plus (S1 (x[((I) - 2) & 15]), \
- u64plus (x[((I) - 7) & 15], \
- S0 (x[((I) - 15) & 15])))))
-
-#define R(A, B, C, D, E, F, G, H, K, M) \
- do \
- { \
- u64 t0 = u64plus (SS0 (A), F2 (A, B, C)); \
- u64 t1 = \
- u64plus (H, u64plus (SS1 (E), \
- u64plus (F1 (E, F, G), u64plus (K, M)))); \
- D = u64plus (D, t1); \
- H = u64plus (t0, t1); \
- } \
- while (0)
-
- while (words < endp)
- {
- int t;
- /* FIXME: see sha1.c for a better implementation. */
- for (t = 0; t < 16; t++)
- {
- x[t] = SWAP (*words);
- words++;
- }
-
- R( a, b, c, d, e, f, g, h, K( 0), x[ 0] );
- R( h, a, b, c, d, e, f, g, K( 1), x[ 1] );
- R( g, h, a, b, c, d, e, f, K( 2), x[ 2] );
- R( f, g, h, a, b, c, d, e, K( 3), x[ 3] );
- R( e, f, g, h, a, b, c, d, K( 4), x[ 4] );
- R( d, e, f, g, h, a, b, c, K( 5), x[ 5] );
- R( c, d, e, f, g, h, a, b, K( 6), x[ 6] );
- R( b, c, d, e, f, g, h, a, K( 7), x[ 7] );
- R( a, b, c, d, e, f, g, h, K( 8), x[ 8] );
- R( h, a, b, c, d, e, f, g, K( 9), x[ 9] );
- R( g, h, a, b, c, d, e, f, K(10), x[10] );
- R( f, g, h, a, b, c, d, e, K(11), x[11] );
- R( e, f, g, h, a, b, c, d, K(12), x[12] );
- R( d, e, f, g, h, a, b, c, K(13), x[13] );
- R( c, d, e, f, g, h, a, b, K(14), x[14] );
- R( b, c, d, e, f, g, h, a, K(15), x[15] );
- R( a, b, c, d, e, f, g, h, K(16), M(16) );
- R( h, a, b, c, d, e, f, g, K(17), M(17) );
- R( g, h, a, b, c, d, e, f, K(18), M(18) );
- R( f, g, h, a, b, c, d, e, K(19), M(19) );
- R( e, f, g, h, a, b, c, d, K(20), M(20) );
- R( d, e, f, g, h, a, b, c, K(21), M(21) );
- R( c, d, e, f, g, h, a, b, K(22), M(22) );
- R( b, c, d, e, f, g, h, a, K(23), M(23) );
- R( a, b, c, d, e, f, g, h, K(24), M(24) );
- R( h, a, b, c, d, e, f, g, K(25), M(25) );
- R( g, h, a, b, c, d, e, f, K(26), M(26) );
- R( f, g, h, a, b, c, d, e, K(27), M(27) );
- R( e, f, g, h, a, b, c, d, K(28), M(28) );
- R( d, e, f, g, h, a, b, c, K(29), M(29) );
- R( c, d, e, f, g, h, a, b, K(30), M(30) );
- R( b, c, d, e, f, g, h, a, K(31), M(31) );
- R( a, b, c, d, e, f, g, h, K(32), M(32) );
- R( h, a, b, c, d, e, f, g, K(33), M(33) );
- R( g, h, a, b, c, d, e, f, K(34), M(34) );
- R( f, g, h, a, b, c, d, e, K(35), M(35) );
- R( e, f, g, h, a, b, c, d, K(36), M(36) );
- R( d, e, f, g, h, a, b, c, K(37), M(37) );
- R( c, d, e, f, g, h, a, b, K(38), M(38) );
- R( b, c, d, e, f, g, h, a, K(39), M(39) );
- R( a, b, c, d, e, f, g, h, K(40), M(40) );
- R( h, a, b, c, d, e, f, g, K(41), M(41) );
- R( g, h, a, b, c, d, e, f, K(42), M(42) );
- R( f, g, h, a, b, c, d, e, K(43), M(43) );
- R( e, f, g, h, a, b, c, d, K(44), M(44) );
- R( d, e, f, g, h, a, b, c, K(45), M(45) );
- R( c, d, e, f, g, h, a, b, K(46), M(46) );
- R( b, c, d, e, f, g, h, a, K(47), M(47) );
- R( a, b, c, d, e, f, g, h, K(48), M(48) );
- R( h, a, b, c, d, e, f, g, K(49), M(49) );
- R( g, h, a, b, c, d, e, f, K(50), M(50) );
- R( f, g, h, a, b, c, d, e, K(51), M(51) );
- R( e, f, g, h, a, b, c, d, K(52), M(52) );
- R( d, e, f, g, h, a, b, c, K(53), M(53) );
- R( c, d, e, f, g, h, a, b, K(54), M(54) );
- R( b, c, d, e, f, g, h, a, K(55), M(55) );
- R( a, b, c, d, e, f, g, h, K(56), M(56) );
- R( h, a, b, c, d, e, f, g, K(57), M(57) );
- R( g, h, a, b, c, d, e, f, K(58), M(58) );
- R( f, g, h, a, b, c, d, e, K(59), M(59) );
- R( e, f, g, h, a, b, c, d, K(60), M(60) );
- R( d, e, f, g, h, a, b, c, K(61), M(61) );
- R( c, d, e, f, g, h, a, b, K(62), M(62) );
- R( b, c, d, e, f, g, h, a, K(63), M(63) );
- R( a, b, c, d, e, f, g, h, K(64), M(64) );
- R( h, a, b, c, d, e, f, g, K(65), M(65) );
- R( g, h, a, b, c, d, e, f, K(66), M(66) );
- R( f, g, h, a, b, c, d, e, K(67), M(67) );
- R( e, f, g, h, a, b, c, d, K(68), M(68) );
- R( d, e, f, g, h, a, b, c, K(69), M(69) );
- R( c, d, e, f, g, h, a, b, K(70), M(70) );
- R( b, c, d, e, f, g, h, a, K(71), M(71) );
- R( a, b, c, d, e, f, g, h, K(72), M(72) );
- R( h, a, b, c, d, e, f, g, K(73), M(73) );
- R( g, h, a, b, c, d, e, f, K(74), M(74) );
- R( f, g, h, a, b, c, d, e, K(75), M(75) );
- R( e, f, g, h, a, b, c, d, K(76), M(76) );
- R( d, e, f, g, h, a, b, c, K(77), M(77) );
- R( c, d, e, f, g, h, a, b, K(78), M(78) );
- R( b, c, d, e, f, g, h, a, K(79), M(79) );
-
- a = ctx->state[0] = u64plus (ctx->state[0], a);
- b = ctx->state[1] = u64plus (ctx->state[1], b);
- c = ctx->state[2] = u64plus (ctx->state[2], c);
- d = ctx->state[3] = u64plus (ctx->state[3], d);
- e = ctx->state[4] = u64plus (ctx->state[4], e);
- f = ctx->state[5] = u64plus (ctx->state[5], f);
- g = ctx->state[6] = u64plus (ctx->state[6], g);
- h = ctx->state[7] = u64plus (ctx->state[7], h);
- }
-}