summaryrefslogtreecommitdiff
path: root/src
diff options
context:
space:
mode:
authorJim Meyering <meyering@redhat.com>2012-09-16 22:31:04 +0200
committerJim Meyering <meyering@redhat.com>2012-10-04 22:06:40 +0200
commit759ebcb57db73449b5670204f85931d34881b7d2 (patch)
tree0c72d5266451db1dca993ed5034d8b323a73cf1b /src
parent49f5c21fff9241c195d74101a334fdc2c8dc33e8 (diff)
downloadcoreutils-759ebcb57db73449b5670204f85931d34881b7d2.tar.xz
factor: merge with preexisting factor; integrate tests; avoid warnings
* src/factor.c: Renamed from factor-ng.c, with the following changes: Adjust copyright header to be consistent with others. Use xmalloc and xrealloc, to avoid segv upon OOM. Switch back to using readtokens to handle input. Diagnose invalid inputs. s/fprintf+exit/error/ (print_factors): Add comments. (strto2uintmax): Return strtol_error, not int. (read_item): Remove, no longer used. (main): Use atexit(close_stdout) so that we don't ignore failed write. * cfg.mk: Exempt src/longlong.h from several tests. Exempt run.sh from the test-list-consistency test. Exempt make-prime-list.c from numerous tests, since we won't be making it conform: it must not link with libcoreutils.a. Exempt factor-ng.c from the no-upper-case error message test. * AUTHORS (factor): Add Torbjörn and Niels. * tests/local.mk (factor_tests): Encode the 37 tests. ($(factor_tests)): Rule to generate a test script for each test. * tests/factor/run.sh: New script, marked as very expensive. * .gitignore: Ignore new generated files. * src/local.mk (src/primes.h): New rule. (noinst_PROGRAMS): Add make-prime-list. (noinst_HEADERS): Add longlong.h. Remove all wheel-related rules and files. * src/wheel-gen.pl: Remove file. maint: mark set-but-not-used variables with ATTRIBUTE_UNUSED * src/factor-ng.c (redcify, prime_p, isqrt2): Mark them, so we don't have to disable -Wunused-but-set-variable. maint: use __builtin_expect only if __GNUC__ * src/factor-ng.c (LIKELY, UNLIKELY) [__GNUC__]: Add #ifdef guard. build: avoid warning about unused macro * src/factor-ng.c (__GMP_DECLSPEC): Don't define here * src/longlong.h (__GMP_DECLSPEC): Define if not already defined.
Diffstat (limited to 'src')
-rw-r--r--src/.gitignore2
-rw-r--r--src/factor-ng.c2396
-rw-r--r--src/factor.c2463
-rw-r--r--src/local.mk31
-rw-r--r--src/longlong.h6
-rwxr-xr-xsrc/wheel-gen.pl114
6 files changed, 2190 insertions, 2822 deletions
diff --git a/src/.gitignore b/src/.gitignore
index 1c1edbbe1..18cccc1d7 100644
--- a/src/.gitignore
+++ b/src/.gitignore
@@ -109,8 +109,6 @@ uptime
users
vdir
wc
-wheel-size.h
-wheel.h
who
whoami
yes
diff --git a/src/factor-ng.c b/src/factor-ng.c
deleted file mode 100644
index 36be5e6fe..000000000
--- a/src/factor-ng.c
+++ /dev/null
@@ -1,2396 +0,0 @@
-/* Factoring of uintmax_t numbers.
-
- Contributed to the GNU project by Torbjörn Granlund and Niels Möller
- Contains code from GNU MP.
-
-Copyright 1995, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2005, 2009, 2012
-Free Software Foundation, Inc.
-
-This program is free software; you can redistribute it and/or modify it under
-the terms of the GNU General Public License as published by the Free Software
-Foundation; either version 3 of the License, or (at your option) any later
-version.
-
-This program is distributed in the hope that it will be useful, but WITHOUT ANY
-WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
-PARTICULAR PURPOSE. See the GNU General Public License for more details.
-
-You should have received a copy of the GNU General Public License along with
-this program. If not, see http://www.gnu.org/licenses/. */
-
-/* Efficiently factor numbers that fit in one or two words (word = uintmax_t),
- or, with GMP, numbers of any size.
-
- Code organisation:
-
- There are several variants of many functions, for handling one word, two
- words, and GMP's mpz_t type. If the one-word variant is called foo, the
- two-word variant will be foo2, and the one for mpz_t will be mp_foo. In
- some cases, the plain function variants will handle both one-word and
- two-word numbers, evidenced by function arguments.
-
- The factoring code for two words will fall into the code for one word when
- progress allows that.
-
- Using GMP is optional. Define HAVE_GMP to make this code include GMP
- factoring code. The GMP factoring code is based on GMP's demos/factorize.c
- (last synched 2012-09-07). The GMP-based factoring code will stay in GMP
- factoring code even if numbers get small enough for using the two-word
- code.
-
- Algorithm:
-
- (1) Perform trial division using a small primes table, but without hardware
- division since the primes table store inverses modulo the word base.
- (The GMP variant of this code doesn't make use of the precomputed
- inverses, but instead relies on GMP for fast divisibility testing.)
- (2) Check the nature of any non-factored part using Miller-Rabin for
- detecting composites, and Lucas for detecting primes.
- (3) Factor any remaining composite part using the Pollard-Brent rho
- algorithm or the SQUFOF algorithm, checking status of found factors
- again using Miller-Rabin and Lucas.
-
- We prefer using Hensel norm in the divisions, not the more familiar
- Euclidian norm, since the former leads to much faster code. In the
- Pollard-Brent rho code and the the prime testing code, we use Montgomery's
- trick of multiplying all n-residues by the word base, allowing cheap Hensel
- reductions mod n.
-
- Improvements:
-
- * Use modular inverses also for exact division in the Lucas code, and
- elsewhere. A problem is to locate the inverses not from an index, but
- from a prime. We might instead compute the inverse on-the-fly.
-
- * Tune trial division table size (not forgetting that this is a standalone
- program where the table will be read from disk for each invocation).
-
- * Implement less naive powm, using k-ary exponentiation for k = 3 or
- perhaps k = 4.
-
- * Try to speed trial division code for single uintmax_t numbers, i.e., the
- code using DIVBLOCK. It currently runs at 2 cycles per prime (Intel SBR,
- IBR), 3 cycles per prime (AMD Stars) and 5 cycles per prime (AMD BD) when
- using gcc 4.6 and 4.7. Some software pipelining should help; 1, 2, and 4
- respectively cycles ought to be possible.
-
- * The redcify function could be vastly improved by using (plain Euclidian)
- pre-inversion (such as GMP's invert_limb) and udiv_qrnnd_preinv (from
- GMP's gmp-impl.h). The redcify2 function could be vastly improved using
- similar methoods. These functions currently dominate run time when using
- the -w option.
-*/
-
-#include <config.h>
-
-#include <stdlib.h>
-#include <stdio.h>
-#include <inttypes.h>
-#include <errno.h>
-#include <assert.h>
-#include <ctype.h>
-#include <string.h> /* for memmove */
-#include <unistd.h> /* for getopt */
-#include <stdbool.h>
-
-#include "system.h"
-
-#if HAVE_GMP
-# include <gmp.h>
-#endif
-
-#ifndef STAT_SQUFOF
-# define STAT_SQUFOF 0
-#endif
-
-#ifndef USE_LONGLONG_H
-# define USE_LONGLONG_H 1
-#endif
-
-#if USE_LONGLONG_H
-
-/* Make definitions for longlong.h to make it do what it can do for us */
-# define W_TYPE_SIZE 64 /* bitcount for uintmax_t */
-# define UWtype uintmax_t
-# define UHWtype unsigned long int
-# undef UDWtype
-# if HAVE_ATTRIBUTE_MODE
-typedef unsigned int UQItype __attribute__ ((mode (QI)));
-typedef int SItype __attribute__ ((mode (SI)));
-typedef unsigned int USItype __attribute__ ((mode (SI)));
-typedef int DItype __attribute__ ((mode (DI)));
-typedef unsigned int UDItype __attribute__ ((mode (DI)));
-# else
-typedef unsigned char UQItype;
-typedef long SItype;
-typedef unsigned long int USItype;
-# if HAVE_LONG_LONG
-typedef long long int DItype;
-typedef unsigned long long int UDItype;
-# else /* Assume `long' gives us a wide enough type. Needed for hppa2.0w. */
-typedef long int DItype;
-typedef unsigned long int UDItype;
-# endif
-# endif
-# define LONGLONG_STANDALONE /* Don't require GMP's longlong.h mdep files */
-# define ASSERT(x) /* FIXME make longlong.h really standalone */
-# define __GMP_DECLSPEC /* FIXME make longlong.h really standalone */
-# define __clz_tab factor_clz_tab /* Rename to avoid glibc collision */
-# ifndef __GMP_GNUC_PREREQ
-# define __GMP_GNUC_PREREQ(a,b) 1
-# endif
-# if _ARCH_PPC
-# define HAVE_HOST_CPU_FAMILY_powerpc 1
-# endif
-# include "longlong.h"
-# ifdef COUNT_LEADING_ZEROS_NEED_CLZ_TAB
-const unsigned char factor_clz_tab[129] =
-{
- 1,2,3,3,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
- 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
- 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
- 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
- 9
-};
-# endif
-
-#else /* not USE_LONGLONG_H */
-
-# define W_TYPE_SIZE (8 * sizeof (uintmax_t))
-# define __ll_B ((uintmax_t) 1 << (W_TYPE_SIZE / 2))
-# define __ll_lowpart(t) ((uintmax_t) (t) & (__ll_B - 1))
-# define __ll_highpart(t) ((uintmax_t) (t) >> (W_TYPE_SIZE / 2))
-
-#endif
-
-enum alg_type { ALG_POLLARD_RHO = 1, ALG_SQUFOF = 2 };
-
-static enum alg_type alg;
-
-/* 2*3*5*7*11...*101 is 128 bits, and has 26 prime factors */
-#define MAX_NFACTS 26
-
-struct factors
-{
- uintmax_t plarge[2]; /* Can have a single large factor */
- uintmax_t p[MAX_NFACTS];
- unsigned char e[MAX_NFACTS];
- unsigned char nfactors;
-};
-
-#if HAVE_GMP
-struct mp_factors
-{
- mpz_t *p;
- unsigned long int *e;
- unsigned long int nfactors;
-};
-#endif
-
-static void factor (uintmax_t, uintmax_t, struct factors *);
-
-#ifndef umul_ppmm
-# define umul_ppmm(w1, w0, u, v) \
- do { \
- uintmax_t __x0, __x1, __x2, __x3; \
- unsigned long int __ul, __vl, __uh, __vh; \
- uintmax_t __u = (u), __v = (v); \
- \
- __ul = __ll_lowpart (__u); \
- __uh = __ll_highpart (__u); \
- __vl = __ll_lowpart (__v); \
- __vh = __ll_highpart (__v); \
- \
- __x0 = (uintmax_t) __ul * __vl; \
- __x1 = (uintmax_t) __ul * __vh; \
- __x2 = (uintmax_t) __uh * __vl; \
- __x3 = (uintmax_t) __uh * __vh; \
- \
- __x1 += __ll_highpart (__x0);/* this can't give carry */ \
- __x1 += __x2; /* but this indeed can */ \
- if (__x1 < __x2) /* did we get it? */ \
- __x3 += __ll_B; /* yes, add it in the proper pos. */ \
- \
- (w1) = __x3 + __ll_highpart (__x1); \
- (w0) = (__x1 << W_TYPE_SIZE / 2) + __ll_lowpart (__x0); \
- } while (0)
-#endif
-
-#if !defined(udiv_qrnnd) || defined(UDIV_NEEDS_NORMALIZATION)
-/* Define our own, not needing normalization. This function is
- currently not performance critical, so keep it simple. Similar to
- the mod macro below. */
-# undef udiv_qrnnd
-# define udiv_qrnnd(q, r, n1, n0, d) \
- do { \
- uintmax_t __d1, __d0, __q, __r1, __r0; \
- \
- assert ((n1) < (d)); \
- __d1 = (d); __d0 = 0; \
- __r1 = (n1); __r0 = (n0); \
- __q = 0; \
- for (unsigned int __i = W_TYPE_SIZE; __i > 0; __i--) \
- { \
- rsh2 (__d1, __d0, __d1, __d0, 1); \
- __q <<= 1; \
- if (ge2 (__r1, __r0, __d1, __d0)) \
- { \
- __q++; \
- sub_ddmmss (__r1, __r0, __r1, __r0, __d1, __d0); \
- } \
- } \
- (r) = __r0; \
- (q) = __q; \
- } while (0)
-#endif
-
-#if !defined (add_ssaaaa)
-# define add_ssaaaa(sh, sl, ah, al, bh, bl) \
- do { \
- uintmax_t _add_x; \
- _add_x = (al) + (bl); \
- (sh) = (ah) + (bh) + (_add_x < (al)); \
- (sl) = _add_x; \
- } while (0)
-#endif
-
-#define rsh2(rh, rl, ah, al, cnt) \
- do { \
- (rl) = ((ah) << (W_TYPE_SIZE - (cnt))) | ((al) >> (cnt)); \
- (rh) = (ah) >> (cnt); \
- } while (0)
-
-#define lsh2(rh, rl, ah, al, cnt) \
- do { \
- (rh) = ((ah) << cnt) | ((al) >> (W_TYPE_SIZE - (cnt))); \
- (rl) = (al) << (cnt); \
- } while (0)
-
-#define ge2(ah, al, bh, bl) \
- ((ah) > (bh) || ((ah) == (bh) && (al) >= (bl)))
-
-#define gt2(ah, al, bh, bl) \
- ((ah) > (bh) || ((ah) == (bh) && (al) > (bl)))
-
-#ifndef sub_ddmmss
-# define sub_ddmmss(rh, rl, ah, al, bh, bl) \
- do { \
- uintmax_t _cy; \
- _cy = (al) < (bl); \
- (rl) = (al) - (bl); \
- (rh) = (ah) - (bh) - _cy; \
- } while (0)
-#endif
-
-#ifndef count_leading_zeros
-# define count_leading_zeros(count, x) do { \
- uintmax_t __clz_x = (x); \
- unsigned int __clz_c; \
- for (__clz_c = 0; \
- (__clz_x & ((uintmax_t) 0xff << (W_TYPE_SIZE - 8))) == 0; \
- __clz_c += 8) \
- __clz_x <<= 8; \
- for (; (intmax_t)__clz_x >= 0; __clz_c++) \
- __clz_x <<= 1; \
- (count) = __clz_c; \
- } while (0)
-#endif
-
-#ifndef count_trailing_zeros
-# define count_trailing_zeros(count, x) do { \
- uintmax_t __ctz_x = (x); \
- unsigned int __ctz_c = 0; \
- while ((__ctz_x & 1) == 0) \
- { \
- __ctz_x >>= 1; \
- __ctz_c++; \
- } \
- (count) = __ctz_c; \
- } while (0)
-#endif
-
-/* Requires that a < n and b <= n */
-#define submod(r,a,b,n) \
- do { \
- uintmax_t _t = - (uintmax_t) (a < b); \
- (r) = ((n) & _t) + (a) - (b); \
- } while (0)
-
-#define addmod(r,a,b,n) \
- submod((r), (a), ((n) - (b)), (n))
-
-/* Modular two-word addition and subtraction. For performance reasons, the
- most significant bit of n1 must be clear. The destination variables must be
- distinct from the mod operand. */
-#define addmod2(r1, r0, a1, a0, b1, b0, n1, n0) \
- do { \
- add_ssaaaa ((r1), (r0), (a1), (a0), (b1), (b0)); \
- if (ge2 ((r1), (r0), (n1), (n0))) \
- sub_ddmmss ((r1), (r0), (r1), (r0), (n1), (n0)); \
- } while (0)
-#define submod2(r1, r0, a1, a0, b1, b0, n1, n0) \
- do { \
- sub_ddmmss ((r1), (r0), (a1), (a0), (b1), (b0)); \
- if ((intmax_t) (r1) < 0) \
- add_ssaaaa ((r1), (r0), (r1), (r0), (n1), (n0)); \
- } while (0)
-
-#define HIGHBIT_TO_MASK(x) \
- (((intmax_t)-1 >> 1) < 0 \
- ? (uintmax_t)((intmax_t)(x) >> (W_TYPE_SIZE - 1)) \
- : ((x) & ((uintmax_t) 1 << (W_TYPE_SIZE - 1)) \
- ? UINTMAX_MAX : (uintmax_t) 0))
-
-/* Compute r = a mod d, where r = <*t1,retval>, a = <a1,a0>, d = <d1,d0>.
- Requires that d1 != 0. */
-static uintmax_t
-mod2 (uintmax_t *r1, uintmax_t a1, uintmax_t a0, uintmax_t d1, uintmax_t d0)
-{
- int cntd, cnta;
-
- assert (d1 != 0);
-
- if (a1 == 0)
- {
- *r1 = 0;
- return a0;
- }
-
- count_leading_zeros (cntd, d1);
- count_leading_zeros (cnta, a1);
- int cnt = cntd - cnta;
- lsh2 (d1, d0, d1, d0, cnt);
- for (int i = 0; i < cnt; i++)
- {
- if (ge2 (a1, a0, d1, d0))
- sub_ddmmss (a1, a0, a1, a0, d1, d0);
- rsh2 (d1, d0, d1, d0, 1);
- }
-
- *r1 = a1;
- return a0;
-}
-
-static uintmax_t _GL_ATTRIBUTE_CONST
-gcd_odd (uintmax_t a, uintmax_t b)
-{
- if ( (b & 1) == 0)
- {
- uintmax_t t = b;
- b = a;
- a = t;
- }
- if (a == 0)
- return b;
-
- /* Take out least significant one bit, to make room for sign */
- b >>= 1;
-
- for (;;)
- {
- uintmax_t t;
- uintmax_t bgta;
-
- while ((a & 1) == 0)
- a >>= 1;
- a >>= 1;
-
- t = a - b;
- if (t == 0)
- return (a << 1) + 1;
-
- bgta = HIGHBIT_TO_MASK (t);
-
- /* b <-- min (a, b) */
- b += (bgta & t);
-
- /* a <-- |a - b| */
- a = (t ^ bgta) - bgta;
- }
-}
-
-static uintmax_t
-gcd2_odd (uintmax_t *r1, uintmax_t a1, uintmax_t a0, uintmax_t b1, uintmax_t b0)
-{
- while ((a0 & 1) == 0)
- rsh2 (a1, a0, a1, a0, 1);
- while ((b0 & 1) == 0)
- rsh2 (b1, b0, b1, b0, 1);
-
- for (;;)
- {
- if ((b1 | a1) == 0)
- {
- *r1 = 0;
- return gcd_odd (b0, a0);
- }
-
- if (gt2 (a1, a0, b1, b0))
- {
- sub_ddmmss (a1, a0, a1, a0, b1, b0);
- do
- rsh2 (a1, a0, a1, a0, 1);
- while ((a0 & 1) == 0);
- }
- else if (gt2 (b1, b0, a1, a0))
- {
- sub_ddmmss (b1, b0, b1, b0, a1, a0);
- do
- rsh2 (b1, b0, b1, b0, 1);
- while ((b0 & 1) == 0);
- }
- else
- break;
- }
-
- *r1 = a1;
- return a0;
-}
-
-static void
-factor_insert_multiplicity (struct factors *factors,
- uintmax_t prime, unsigned int m)
-{
- unsigned int nfactors = factors->nfactors;
- uintmax_t *p = factors->p;
- unsigned char *e = factors->e;
-
- /* Locate position for insert new or increment e. */
- int i;
- for (i = nfactors - 1; i >= 0; i--)
- {
- if (p[i] <= prime)
- break;
- }
-
- if (i < 0 || p[i] != prime)
- {
- for (int j = nfactors - 1; j > i; j--)
- {
- p[j + 1] = p[j];
- e[j + 1] = e[j];
- }
- p[i + 1] = prime;
- e[i + 1] = m;
- factors->nfactors = nfactors + 1;
- }
- else
- {
- e[i] += m;
- }
-}
-
-#define factor_insert(f, p) factor_insert_multiplicity(f, p, 1)
-
-static void
-factor_insert_large (struct factors *factors,
- uintmax_t p1, uintmax_t p0)
-{
- if (p1 > 0)
- {
- assert (factors->plarge[1] == 0);
- factors->plarge[0] = p0;
- factors->plarge[1] = p1;
- }
- else
- factor_insert (factors, p0);
-}
-
-#if HAVE_GMP
-static void mp_factor (mpz_t, struct mp_factors *);
-
-static void
-mp_factor_init (struct mp_factors *factors)
-{
- factors->p = malloc (1);
- factors->e = malloc (1);
- factors->nfactors = 0;
-}
-
-static void
-mp_factor_clear (struct mp_factors *factors)
-{
- for (unsigned int i = 0; i < factors->nfactors; i++)
- mpz_clear (factors->p[i]);
-
- free (factors->p);
- free (factors->e);
-}
-
-static void
-mp_factor_insert (struct mp_factors *factors, mpz_t prime)
-{
- unsigned long int nfactors = factors->nfactors;
- mpz_t *p = factors->p;
- unsigned long int *e = factors->e;
- long i;
-
- /* Locate position for insert new or increment e. */
- for (i = nfactors - 1; i >= 0; i--)
- {
- if (mpz_cmp (p[i], prime) <= 0)
- break;
- }
-
- if (i < 0 || mpz_cmp (p[i], prime) != 0)
- {
- p = realloc (p, (nfactors + 1) * sizeof p[0]);
- e = realloc (e, (nfactors + 1) * sizeof e[0]);
-
- mpz_init (p[nfactors]);
- for (long j = nfactors - 1; j > i; j--)
- {
- mpz_set (p[j + 1], p[j]);
- e[j + 1] = e[j];
- }
- mpz_set (p[i + 1], prime);
- e[i + 1] = 1;
-
- factors->p = p;
- factors->e = e;
- factors->nfactors = nfactors + 1;
- }
- else
- {
- e[i] += 1;
- }
-}
-
-static void
-mp_factor_insert_ui (struct mp_factors *factors, unsigned long int prime)
-{
- mpz_t pz;
-
- mpz_init_set_ui (pz, prime);
- mp_factor_insert (factors, pz);
- mpz_clear (pz);
-}
-#endif /* HAVE_GMP */
-
-
-#define P(a,b,c,d) a,
-static const unsigned char primes_diff[] = {
-#include "primes.h"
-0,0,0,0,0,0,0 /* 7 sentinels for 8-way loop */
-};
-#undef P
-
-#define PRIMES_PTAB_ENTRIES (sizeof(primes_diff) / sizeof(primes_diff[0]) - 8 + 1)
-
-#define P(a,b,c,d) b,
-static const unsigned char primes_diff8[] = {
-#include "primes.h"
-0,0,0,0,0,0,0 /* 7 sentinels for 8-way loop */
-};
-#undef P
-
-struct primes_dtab
-{
- uintmax_t binv, lim;
-};
-
-#define P(a,b,c,d) {c,d},
-static const struct primes_dtab primes_dtab[] = {
-#include "primes.h"
-{1,0},{1,0},{1,0},{1,0},{1,0},{1,0},{1,0} /* 7 sentinels for 8-way loop */
-};
-#undef P
-
-/* This flag is honoured just in the GMP code. */
-static int flag_verbose = 0;
-
-/* Prove primality or run probabilistic tests. */
-static int flag_prove_primality = 1;
-
-/* Number of Miller-Rabin tests to run when not proving primality. */
-#define MR_REPS 25
-
-#define LIKELY(cond) __builtin_expect ((cond) != 0, 1)
-#define UNLIKELY(cond) __builtin_expect ((cond) != 0, 0)
-
-static void
-factor_insert_refind (struct factors *factors, uintmax_t p, unsigned int i,
- unsigned int off)
-{
- for (unsigned int j = 0; j < off; j++)
- p += primes_diff[i + j];
- factor_insert (factors, p);
-}
-
-/* Trial division with odd primes uses the following trick.
-
- Let p be an odd prime, and B = 2^{W_TYPE_SIZE}. For simplicity,
- consider the case t < B (this is the second loop below).
-
- From our tables we get
-
- binv = p^{-1} (mod B)
- lim = floor ( (B-1) / p ).
-
- First assume that t is a multiple of p, t = q * p. Then 0 <= q <=
- lim (and all quotients in this range occur for some t).
-
- Then t = q * p is true also (mod B), and p is invertible we get
-
- q = t * binv (mod B).
-
- Next, assume that t is *not* divisible by p. Since multiplication
- by binv (mod B) is a one-to-one mapping,
-
- t * binv (mod B) > lim,
-
- because all the smaller values are already taken.
-
- This can be summed up by saying that the function
-
- q(t) = binv * t (mod B)
-
- is a permutation of the range 0 <= t < B, with the curious property
- that it maps the multiples of p onto the range 0 <= q <= lim, in
- order, and the non-multiples of p onto the range lim < q < B.
- */
-
-static uintmax_t
-factor_using_division (uintmax_t *t1p, uintmax_t t1, uintmax_t t0,
- struct factors *factors)
-{
- if (t0 % 2 == 0)
- {
- unsigned int cnt;
-
- if (t0 == 0)
- {
- count_trailing_zeros (cnt, t1);
- t0 = t1 >> cnt;
- t1 = 0;
- cnt += W_TYPE_SIZE;
- }
- else
- {
- count_trailing_zeros (cnt, t0);
- rsh2 (t1, t0, t1, t0, cnt);
- }
-
- factor_insert_multiplicity (factors, 2, cnt);
- }
-
- uintmax_t p = 3;
- unsigned int i;
- for (i = 0; t1 > 0 && i < PRIMES_PTAB_ENTRIES; i++)
- {
- for (;;)
- {
- uintmax_t q1, q0, hi, lo;
-
- q0 = t0 * primes_dtab[i].binv;
- umul_ppmm (hi, lo, q0, p);
- if (hi > t1)
- break;
- hi = t1 - hi;
- q1 = hi * primes_dtab[i].binv;
- if (LIKELY (q1 > primes_dtab[i].lim))
- break;
- t1 = q1; t0 = q0;
- factor_insert (factors, p);
- }
- p += primes_diff[i + 1];
- }
- if (t1p)
- *t1p = t1;
-
-#define DIVBLOCK(I) \
- do { \
- for (;;) \
- { \
- q = t0 * pd[I].binv; \
- if (LIKELY (q > pd[I].lim)) \
- break; \
- t0 = q; \
- factor_insert_refind (factors, p, i + 1, I); \
- } \
- } while (0)
-
- for (; i < PRIMES_PTAB_ENTRIES; i += 8)
- {
- uintmax_t q;
- const struct primes_dtab *pd = &primes_dtab[i];
- DIVBLOCK (0);
- DIVBLOCK (1);
- DIVBLOCK (2);
- DIVBLOCK (3);
- DIVBLOCK (4);
- DIVBLOCK (5);
- DIVBLOCK (6);
- DIVBLOCK (7);
-
- p += primes_diff8[i];
- if (p * p > t0)
- break;
- }
-
- return t0;
-}
-
-#if HAVE_GMP
-static void
-mp_factor_using_division (mpz_t t, struct mp_factors *factors)
-{
- mpz_t q;
- unsigned long int p;
-
- if (flag_verbose > 0)
- {
- printf ("[trial division] ");
- }
-
- mpz_init (q);
-
- p = mpz_scan1 (t, 0);
- mpz_div_2exp (t, t, p);
- while (p)
- {
- mp_factor_insert_ui (factors, 2);
- --p;
- }
-
- p = 3;
- for (unsigned int i = 1; i <= PRIMES_PTAB_ENTRIES;)
- {
- if (! mpz_divisible_ui_p (t, p))
- {
- p += primes_diff[i++];
- if (mpz_cmp_ui (t, p * p) < 0)
- break;
- }
- else
- {
- mpz_tdiv_q_ui (t, t, p);
- mp_factor_insert_ui (factors, p);
- }
- }
-
- mpz_clear (q);
-}
-#endif
-
-/* Entry i contains (2i+1)^(-1) mod 2^8. */
-static const unsigned char binvert_table[128] =
-{
- 0x01, 0xAB, 0xCD, 0xB7, 0x39, 0xA3, 0xC5, 0xEF,
- 0xF1, 0x1B, 0x3D, 0xA7, 0x29, 0x13, 0x35, 0xDF,
- 0xE1, 0x8B, 0xAD, 0x97, 0x19, 0x83, 0xA5, 0xCF,
- 0xD1, 0xFB, 0x1D, 0x87, 0x09, 0xF3, 0x15, 0xBF,
- 0xC1, 0x6B, 0x8D, 0x77, 0xF9, 0x63, 0x85, 0xAF,
- 0xB1, 0xDB, 0xFD, 0x67, 0xE9, 0xD3, 0xF5, 0x9F,
- 0xA1, 0x4B, 0x6D, 0x57, 0xD9, 0x43, 0x65, 0x8F,
- 0x91, 0xBB, 0xDD, 0x47, 0xC9, 0xB3, 0xD5, 0x7F,
- 0x81, 0x2B, 0x4D, 0x37, 0xB9, 0x23, 0x45, 0x6F,
- 0x71, 0x9B, 0xBD, 0x27, 0xA9, 0x93, 0xB5, 0x5F,
- 0x61, 0x0B, 0x2D, 0x17, 0x99, 0x03, 0x25, 0x4F,
- 0x51, 0x7B, 0x9D, 0x07, 0x89, 0x73, 0x95, 0x3F,
- 0x41, 0xEB, 0x0D, 0xF7, 0x79, 0xE3, 0x05, 0x2F,
- 0x31, 0x5B, 0x7D, 0xE7, 0x69, 0x53, 0x75, 0x1F,
- 0x21, 0xCB, 0xED, 0xD7, 0x59, 0xC3, 0xE5, 0x0F,
- 0x11, 0x3B, 0x5D, 0xC7, 0x49, 0x33, 0x55, 0xFF
-};
-
-/* Compute n^(-1) mod B, using a Newton iteration. */
-#define binv(inv,n) \
- do { \
- uintmax_t __n = (n); \
- uintmax_t __inv; \
- \
- __inv = binvert_table[(__n / 2) & 0x7F]; /* 8 */ \
- if (W_TYPE_SIZE > 8) __inv = 2 * __inv - __inv * __inv * __n; \
- if (W_TYPE_SIZE > 16) __inv = 2 * __inv - __inv * __inv * __n; \
- if (W_TYPE_SIZE > 32) __inv = 2 * __inv - __inv * __inv * __n; \
- \
- if (W_TYPE_SIZE > 64) \
- { \
- int __invbits = 64; \
- do { \
- __inv = 2 * __inv - __inv * __inv * __n; \
- __invbits *= 2; \
- } while (__invbits < W_TYPE_SIZE); \
- } \
- \
- (inv) = __inv; \
- } while (0)
-
-/* q = u / d, assuming d|u. */
-#define divexact_21(q1, q0, u1, u0, d) \
- do { \
- uintmax_t _di, _q0; \
- binv (_di, (d)); \
- _q0 = (u0) * _di; \
- if ((u1) >= (d)) \
- { \
- uintmax_t _p1, _p0; \
- umul_ppmm (_p1, _p0, _q0, d); \
- (q1) = ((u1) - _p1) * _di; \
- (q0) = _q0; \
- } \
- else \
- { \
- (q0) = _q0; \
- (q1) = 0; \
- } \
- } while(0)
-
-/* x B (mod n). */
-#define redcify(r_prim, r, n) \
- do { \
- uintmax_t _redcify_q; \
- udiv_qrnnd (_redcify_q, r_prim, r, 0, n); \
- } while (0)
-
-/* x B^2 (mod n). Requires x > 0, n1 < B/2 */
-#define redcify2(r1, r0, x, n1, n0) \
- do { \
- uintmax_t _r1, _r0, _i; \
- if ((x) < (n1)) \
- { \
- _r1 = (x); _r0 = 0; \
- _i = W_TYPE_SIZE; \
- } \
- else \
- { \
- _r1 = 0; _r0 = (x); \
- _i = 2*W_TYPE_SIZE; \
- } \
- while (_i-- > 0) \
- { \
- lsh2 (_r1, _r0, _r1, _r0, 1); \
- if (ge2 (_r1, _r0, (n1), (n0))) \
- sub_ddmmss (_r1, _r0, _r1, _r0, (n1), (n0)); \
- } \
- (r1) = _r1; \
- (r0) = _r0; \
- } while (0)
-
-/* Modular two-word multiplication, r = a * b mod m, with mi = m^(-1) mod B.
- Both a and b must be in redc form, the result will be in redc form too. */
-static inline uintmax_t
-mulredc (uintmax_t a, uintmax_t b, uintmax_t m, uintmax_t mi)
-{
- uintmax_t rh, rl, q, th, tl, xh;
-
- umul_ppmm (rh, rl, a, b);
- q = rl * mi;
- umul_ppmm (th, tl, q, m);
- xh = rh - th;
- if (rh < th)
- xh += m;
-
- return xh;
-}
-
-/* Modular two-word multiplication, r = a * b mod m, with mi = m^(-1) mod B.
- Both a and b must be in redc form, the result will be in redc form too.
- For performance reasons, the most significant bit of m must be clear. */
-static uintmax_t
-mulredc2 (uintmax_t *r1p,
- uintmax_t a1, uintmax_t a0, uintmax_t b1, uintmax_t b0,
- uintmax_t m1, uintmax_t m0, uintmax_t mi)
-{
- uintmax_t r1, r0, q, p1, p0, t1, t0, s1, s0;
- mi = -mi;
- assert ( (a1 >> (W_TYPE_SIZE - 1)) == 0);
- assert ( (b1 >> (W_TYPE_SIZE - 1)) == 0);
- assert ( (m1 >> (W_TYPE_SIZE - 1)) == 0);
-
- /* First compute a0 * <b1, b0> B^{-1}
- +-----+
- |a0 b0|
- +--+--+--+
- |a0 b1|
- +--+--+--+
- |q0 m0|
- +--+--+--+
- |q0 m1|
- -+--+--+--+
- |r1|r0| 0|
- +--+--+--+
- */
- umul_ppmm (t1, t0, a0, b0);
- umul_ppmm (r1, r0, a0, b1);
- q = mi * t0;
- umul_ppmm (p1, p0, q, m0);
- umul_ppmm (s1, s0, q, m1);
- r0 += (t0 != 0); /* Carry */
- add_ssaaaa (r1, r0, r1, r0, 0, p1);
- add_ssaaaa (r1, r0, r1, r0, 0, t1);
- add_ssaaaa (r1, r0, r1, r0, s1, s0);
-
- /* Next, (a1 * <b1, b0> + <r1, r0> B^{-1}
- +-----+
- |a1 b0|
- +--+--+
- |r1|r0|
- +--+--+--+
- |a1 b1|
- +--+--+--+
- |q1 m0|
- +--+--+--+
- |q1 m1|
- -+--+--+--+
- |r1|r0| 0|
- +--+--+--+
- */
- umul_ppmm (t1, t0, a1, b0);
- umul_ppmm (s1, s0, a1, b1);
- add_ssaaaa (t1, t0, t1, t0, 0, r0);
- q = mi * t0;
- add_ssaaaa (r1, r0, s1, s0, 0, r1);
- umul_ppmm (p1, p0, q, m0);
- umul_ppmm (s1, s0, q, m1);
- r0 += (t0 != 0); /* Carry */
- add_ssaaaa (r1, r0, r1, r0, 0, p1);
- add_ssaaaa (r1, r0, r1, r0, 0, t1);
- add_ssaaaa (r1, r0, r1, r0, s1, s0);
-
- if (ge2 (r1, r0, m1, m0))
- sub_ddmmss (r1, r0, r1, r0, m1, m0);
-
- *r1p = r1;
- return r0;
-}
-
-static uintmax_t _GL_ATTRIBUTE_CONST
-powm (uintmax_t b, uintmax_t e, uintmax_t n, uintmax_t ni, uintmax_t one)
-{
- uintmax_t y = one;
-
- if (e & 1)
- y = b;
-
- while (e != 0)
- {
- b = mulredc (b, b, n, ni);
- e >>= 1;
-
- if (e & 1)
- y = mulredc (y, b, n, ni);
- }
-
- return y;
-}
-
-static uintmax_t
-powm2 (uintmax_t *r1m,
- const uintmax_t *bp, const uintmax_t *ep, const uintmax_t *np,
- uintmax_t ni, const uintmax_t *one)
-{
- uintmax_t r1, r0, b1, b0, n1, n0;
- unsigned int i;
- uintmax_t e;
-
- b0 = bp[0];
- b1 = bp[1];
- n0 = np[0];
- n1 = np[1];
-
- r0 = one[0];
- r1 = one[1];
-
- for (e = ep[0], i = W_TYPE_SIZE; i > 0; i--, e >>= 1)
- {
- if (e & 1)
- {
- r0 = mulredc2 (r1m, r1, r0, b1, b0, n1, n0, ni);
- r1 = *r1m;
- }
- b0 = mulredc2 (r1m, b1, b0, b1, b0, n1, n0, ni);
- b1 = *r1m;
- }
- for (e = ep[1]; e > 0; e >>= 1)
- {
- if (e & 1)
- {
- r0 = mulredc2 (r1m, r1, r0, b1, b0, n1, n0, ni);
- r1 = *r1m;
- }
- b0 = mulredc2 (r1m, b1, b0, b1, b0, n1, n0, ni);
- b1 = *r1m;
- }
- *r1m = r1;
- return r0;
-}
-
-static bool _GL_ATTRIBUTE_CONST
-millerrabin (uintmax_t n, uintmax_t ni, uintmax_t b, uintmax_t q,
- unsigned int k, uintmax_t one)
-{
- uintmax_t y = powm (b, q, n, ni, one);
-
- uintmax_t nm1 = n - one; /* -1, but in redc representation. */
-
- if (y == one || y == nm1)
- return true;
-
- for (unsigned int i = 1; i < k; i++)
- {
- y = mulredc (y, y, n, ni);
-
- if (y == nm1)
- return true;
- if (y == one)
- return false;
- }
- return false;
-}
-
-static bool
-millerrabin2 (const uintmax_t *np, uintmax_t ni, const uintmax_t *bp,
- const uintmax_t *qp, unsigned int k, const uintmax_t *one)
-{
- uintmax_t y1, y0, nm1_1, nm1_0, r1m;
-
- y0 = powm2 (&r1m, bp, qp, np, ni, one);
- y1 = r1m;
-
- if (y0 == one[0] && y1 == one[1])
- return true;
-
- sub_ddmmss (nm1_1, nm1_0, np[1], np[0], one[1], one[0]);
-
- if (y0 == nm1_0 && y1 == nm1_1)
- return true;
-
- for (unsigned int i = 1; i < k; i++)
- {
- y0 = mulredc2 (&r1m, y1, y0, y1, y0, np[1], np[0], ni);
- y1 = r1m;
-
- if (y0 == nm1_0 && y1 == nm1_1)
- return true;
- if (y0 == one[0] && y1 == one[1])
- return false;
- }
- return false;
-}
-
-#if HAVE_GMP
-static bool
-mp_millerrabin (mpz_srcptr n, mpz_srcptr nm1, mpz_ptr x, mpz_ptr y,
- mpz_srcptr q, unsigned long int k)
-{
- mpz_powm (y, x, q, n);
-
- if (mpz_cmp_ui (y, 1) == 0 || mpz_cmp (y, nm1) == 0)
- return true;
-
- for (unsigned long int i = 1; i < k; i++)
- {
- mpz_powm_ui (y, y, 2, n);
- if (mpz_cmp (y, nm1) == 0)
- return true;
- if (mpz_cmp_ui (y, 1) == 0)
- return false;
- }
- return false;
-}
-#endif
-
-/* Lucas' prime test. The number of iterations vary greatly, up to a few dozen
- have been observed. The average seem to be about 2. */
-static bool
-prime_p (uintmax_t n)
-{
- int k;
- bool is_prime;
- uintmax_t a_prim, one, ni;
- struct factors factors;
-
- if (n <= 1)
- return false;
-
- /* We have already casted out small primes. */
- if (n < (uintmax_t) FIRST_OMITTED_PRIME * FIRST_OMITTED_PRIME)
- return true;
-
- /* Precomputation for Miller-Rabin. */
- uintmax_t q = n - 1;
- for (k = 0; (q & 1) == 0; k++)
- q >>= 1;
-
- uintmax_t a = 2;
- binv (ni, n); /* ni <- 1/n mod B */
- redcify (one, 1, n);
- addmod (a_prim, one, one, n); /* i.e., redcify a = 2 */
-
- /* Perform a Miller-Rabin test, finds most composites quickly. */
- if (!millerrabin (n, ni, a_prim, q, k, one))
- return false;
-
- if (flag_prove_primality)
- {
- /* Factor n-1 for Lucas. */
- factor (0, n - 1, &factors);
- }
-
- /* Loop until Lucas proves our number prime, or Miller-Rabin proves our
- number composite. */
- for (unsigned int r = 0; r < PRIMES_PTAB_ENTRIES; r++)
- {
- if (flag_prove_primality)
- {
- is_prime = true;
- for (unsigned int i = 0; i < factors.nfactors && is_prime; i++)
- {
- is_prime = powm (a_prim, (n - 1) / factors.p[i], n, ni, one) != one;
- }
- }
- else
- {
- /* After enough Miller-Rabin runs, be content. */
- is_prime = (r == MR_REPS - 1);
- }
-
- if (is_prime)
- return true;
-
- a += primes_diff[r]; /* Establish new base. */
-
- /* The following is equivalent to redcify (a_prim, a, n). It runs faster
- on most processors, since it avoids udiv_qrnnd. If we go down the
- udiv_qrnnd_preinv path, this code should be replaced. */
- {
- uintmax_t dummy, s1, s0;
- umul_ppmm (s1, s0, one, a);
- if (LIKELY (s1 == 0))
- a_prim = s0 % n;
- else
- udiv_qrnnd (dummy, a_prim, s1, s0, n);
- }
-
- if (!millerrabin (n, ni, a_prim, q, k, one))
- return false;
- }
-
- fprintf (stderr, "Lucas prime test failure. This should not happen\n");
- abort ();
-}
-
-static bool
-prime2_p (uintmax_t n1, uintmax_t n0)
-{
- uintmax_t q[2], nm1[2];
- uintmax_t a_prim[2];
- uintmax_t one[2];
- uintmax_t na[2];
- uintmax_t ni;
- unsigned int k;
- struct factors factors;
-
- if (n1 == 0)
- return prime_p (n0);
-
- nm1[1] = n1 - (n0 == 0);
- nm1[0] = n0 - 1;
- if (nm1[0] == 0)
- {
- count_trailing_zeros (k, nm1[1]);
-
- q[0] = nm1[1] >> k;
- q[1] = 0;
- k += W_TYPE_SIZE;
- }
- else
- {
- count_trailing_zeros (k, nm1[0]);
- rsh2 (q[1], q[0], nm1[1], nm1[0], k);
- }
-
- uintmax_t a = 2;
- binv (ni, n0);
- redcify2 (one[1], one[0], 1, n1, n0);
- addmod2 (a_prim[1], a_prim[0], one[1], one[0], one[1], one[0], n1, n0);
-
- /* FIXME: Use scalars or pointers in arguments? Some consistency needed. */
- na[0] = n0;
- na[1] = n1;
-
- if (!millerrabin2 (na, ni, a_prim, q, k, one))
- return false;
-
- if (flag_prove_primality)
- {
- /* Factor n-1 for Lucas. */
- factor (nm1[1], nm1[0], &factors);
- }
-
- /* Loop until Lucas proves our number prime, or Miller-Rabin proves our
- number composite. */
- for (unsigned int r = 0; r < PRIMES_PTAB_ENTRIES; r++)
- {
- bool is_prime;
- uintmax_t e[2], y[2];
-
- if (flag_prove_primality)
- {
- is_prime = true;
- if (factors.plarge[1])
- {
- uintmax_t pi;
- binv (pi, factors.plarge[0]);
- e[0] = pi * nm1[0];
- e[1] = 0;
- y[0] = powm2 (&y[1], a_prim, e, na, ni, one);
- is_prime = (y[0] != one[0] || y[1] != one[1]);
- }
- for (unsigned int i = 0; i < factors.nfactors && is_prime; i++)
- {
- /* FIXME: We always have the factor 2. Do we really need to handle it
- here? We have done the same powering as part of millerrabin. */
- if (factors.p[i] == 2)
- rsh2 (e[1], e[0], nm1[1], nm1[0], 1);
- else
- divexact_21 (e[1], e[0], nm1[1], nm1[0], factors.p[i]);
- y[0] = powm2 (&y[1], a_prim, e, na, ni, one);
- is_prime = (y[0] != one[0] || y[1] != one[1]);
- }
- }
- else
- {
- /* After enough Miller-Rabin runs, be content. */
- is_prime = (r == MR_REPS - 1);
- }
-
- if (is_prime)
- return true;
-
- a += primes_diff[r]; /* Establish new base. */
- redcify2 (a_prim[1], a_prim[0], a, n1, n0);
-
- if (!millerrabin2 (na, ni, a_prim, q, k, one))
- return false;
- }
-
- fprintf (stderr, "Lucas prime test failure. This should not happen\n");
- abort ();
-}
-
-#if HAVE_GMP
-static bool
-mp_prime_p (mpz_t n)
-{
- bool is_prime;
- mpz_t q, a, nm1, tmp;
- struct mp_factors factors;
-
- if (mpz_cmp_ui (n, 1) <= 0)
- return false;
-
- /* We have already casted out small primes. */
- if (mpz_cmp_ui (n, (long) FIRST_OMITTED_PRIME * FIRST_OMITTED_PRIME) < 0)
- return true;
-
- mpz_inits (q, a, nm1, tmp, NULL);
-
- /* Precomputation for Miller-Rabin. */
- mpz_sub_ui (nm1, n, 1);
-
- /* Find q and k, where q is odd and n = 1 + 2**k * q. */
- unsigned long int k = mpz_scan1 (nm1, 0);
- mpz_tdiv_q_2exp (q, nm1, k);
-
- mpz_set_ui (a, 2);
-
- /* Perform a Miller-Rabin test, finds most composites quickly. */
- if (!mp_millerrabin (n, nm1, a, tmp, q, k))
- {
- is_prime = false;
- goto ret2;
- }
-
- if (flag_prove_primality)
- {
- /* Factor n-1 for Lucas. */
- mpz_set (tmp, nm1);
- mp_factor (tmp, &factors);
- }
-
- /* Loop until Lucas proves our number prime, or Miller-Rabin proves our
- number composite. */
- for (unsigned int r = 0; r < PRIMES_PTAB_ENTRIES; r++)
- {
- if (flag_prove_primality)
- {
- is_prime = true;
- for (unsigned long int i = 0; i < factors.nfactors && is_prime; i++)
- {
- mpz_divexact (tmp, nm1, factors.p[i]);
- mpz_powm (tmp, a, tmp, n);
- is_prime = mpz_cmp_ui (tmp, 1) != 0;
- }
- }
- else
- {
- /* After enough Miller-Rabin runs, be content. */
- is_prime = (r == MR_REPS - 1);
- }
-
- if (is_prime)
- goto ret1;
-
- mpz_add_ui (a, a, primes_diff[r]); /* Establish new base. */
-
- if (!mp_millerrabin (n, nm1, a, tmp, q, k))
- {
- is_prime = false;
- goto ret1;
- }
- }
-
- fprintf (stderr, "Lucas prime test failure. This should not happen\n");
- abort ();
-
- ret1:
- if (flag_prove_primality)
- mp_factor_clear (&factors);
- ret2:
- mpz_clears (q, a, nm1, tmp, NULL);
-
- return is_prime;
-}
-#endif
-
-static void
-factor_using_pollard_rho (uintmax_t n, unsigned long int a,
- struct factors *factors)
-{
- uintmax_t x, z, y, P, t, ni, g;
-
- unsigned long int k = 1;
- unsigned long int l = 1;
-
- redcify (P, 1, n);
- addmod (x, P, P, n); /* i.e., redcify(2) */
- y = z = x;
-
- while (n != 1)
- {
- assert (a < n);
-
- binv (ni, n); /* FIXME: when could we use old 'ni' value? */
-
- for (;;)
- {
- do
- {
- x = mulredc (x, x, n, ni);
- addmod (x, x, a, n);
-
- submod (t, z, x, n);
- P = mulredc (P, t, n, ni);
-
- if (k % 32 == 1)
- {
- if (gcd_odd (P, n) != 1)
- goto factor_found;
- y = x;
- }
- }
- while (--k != 0);
-
- z = x;
- k = l;
- l = 2 * l;
- for (unsigned long int i = 0; i < k; i++)
- {
- x = mulredc (x, x, n, ni);
- addmod (x, x, a, n);
- }
- y = x;
- }
-
- factor_found:
- do
- {
- y = mulredc (y, y, n, ni);
- addmod (y, y, a, n);
-
- submod (t, z, y, n);
- g = gcd_odd (t, n);
- }
- while (g == 1);
-
- n = n / g;
-
- if (!prime_p (g))
- factor_using_pollard_rho (g, a + 1, factors);
- else
- factor_insert (factors, g);
-
- if (prime_p (n))
- {
- factor_insert (factors, n);
- break;
- }
-
- x = x % n;
- z = z % n;
- y = y % n;
- }
-}
-
-static void
-factor_using_pollard_rho2 (uintmax_t n1, uintmax_t n0, unsigned long int a,
- struct factors *factors)
-{
- uintmax_t x1, x0, z1, z0, y1, y0, P1, P0, t1, t0, ni, g1, g0, r1m;
-
- unsigned long int k = 1;
- unsigned long int l = 1;
-
- redcify2 (P1, P0, 1, n1, n0);
- addmod2 (x1, x0, P1, P0, P1, P0, n1, n0); /* i.e., redcify(2) */
- y1 = z1 = x1;
- y0 = z0 = x0;
-
- while (n1 != 0 || n0 != 1)
- {
- binv (ni, n0);
-
- for (;;)
- {
- do
- {
- x0 = mulredc2 (&r1m, x1, x0, x1, x0, n1, n0, ni);
- x1 = r1m;
- addmod2 (x1, x0, x1, x0, 0, a, n1, n0);
-
- submod2 (t1, t0, z1, z0, x1, x0, n1, n0);
- P0 = mulredc2 (&r1m, P1, P0, t1, t0, n1, n0, ni);
- P1 = r1m;
-
- if (k % 32 == 1)
- {
- g0 = gcd2_odd (&g1, P1, P0, n1, n0);
- if (g1 != 0 || g0 != 1)
- goto factor_found;
- y1 = x1; y0 = x0;
- }
- }
- while (--k != 0);
-
- z1 = x1; z0 = x0;
- k = l;
- l = 2 * l;
- for (unsigned long int i = 0; i < k; i++)
- {
- x0 = mulredc2 (&r1m, x1, x0, x1, x0, n1, n0, ni);
- x1 = r1m;
- addmod2 (x1, x0, x1, x0, 0, a, n1, n0);
- }
- y1 = x1; y0 = x0;
- }
-
- factor_found:
- do
- {
- y0 = mulredc2 (&r1m, y1, y0, y1, y0, n1, n0, ni);
- y1 = r1m;
- addmod2 (y1, y0, y1, y0, 0, a, n1, n0);
-
- submod2 (t1, t0, z1, z0, y1, y0, n1, n0);
- g0 = gcd2_odd (&g1, t1, t0, n1, n0);
- }
- while (g1 == 0 && g0 == 1);
-
- if (g1 == 0)
- {
- /* The found factor is one word. */
- divexact_21 (n1, n0, n1, n0, g0); /* n = n / g */
-
- if (!prime_p (g0))
- factor_using_pollard_rho (g0, a + 1, factors);
- else
- factor_insert (factors, g0);
- }
- else
- {
- /* The found factor is two words. This is highly unlikely, thus hard
- to trigger. Please be careful before you change this code! */
- uintmax_t ginv;
-
- binv (ginv, g0); /* Compute n = n / g. Since the result will */
- n0 = ginv * n0; /* fit one word, we can compute the quotient */
- n1 = 0; /* modulo B, ignoring the high divisor word. */
-
- if (!prime2_p (g1, g0))
- factor_using_pollard_rho2 (g1, g0, a + 1, factors);
- else
- factor_insert_large (factors, g1, g0);
- }
-
- if (n1 == 0)
- {
- if (prime_p (n0))
- {
- factor_insert (factors, n0);
- break;
- }
-
- factor_using_pollard_rho (n0, a, factors);
- return;
- }
-
- if (prime2_p (n1, n0))
- {
- factor_insert_large (factors, n1, n0);
- break;
- }
-
- x0 = mod2 (&x1, x1, x0, n1, n0);
- z0 = mod2 (&z1, z1, z0, n1, n0);
- y0 = mod2 (&y1, y1, y0, n1, n0);
- }
-}
-
-#if HAVE_GMP
-static void
-mp_factor_using_pollard_rho (mpz_t n, unsigned long int a,
- struct mp_factors *factors)
-{
- mpz_t x, z, y, P;
- mpz_t t, t2;
- unsigned long long int k, l;
-
- if (flag_verbose > 0)
- {
- printf ("[pollard-rho (%lu)] ", a);
- }
-
- mpz_inits (t, t2, NULL);
- mpz_init_set_si (y, 2);
- mpz_init_set_si (x, 2);
- mpz_init_set_si (z, 2);
- mpz_init_set_ui (P, 1);
- k = 1;
- l = 1;
-
- while (mpz_cmp_ui (n, 1) != 0)
- {
- for (;;)
- {
- do
- {
- mpz_mul (t, x, x);
- mpz_mod (x, t, n);
- mpz_add_ui (x, x, a);
-
- mpz_sub (t, z, x);
- mpz_mul (t2, P, t);
- mpz_mod (P, t2, n);
-
- if (k % 32 == 1)
- {
- mpz_gcd (t, P, n);
- if (mpz_cmp_ui (t, 1) != 0)
- goto factor_found;
- mpz_set (y, x);
- }
- }
- while (--k != 0);
-
- mpz_set (z, x);
- k = l;
- l = 2 * l;
- for (unsigned long long int i = 0; i < k; i++)
- {
- mpz_mul (t, x, x);
- mpz_mod (x, t, n);
- mpz_add_ui (x, x, a);
- }
- mpz_set (y, x);
- }
-
- factor_found:
- do
- {
- mpz_mul (t, y, y);
- mpz_mod (y, t, n);
- mpz_add_ui (y, y, a);
-
- mpz_sub (t, z, y);
- mpz_gcd (t, t, n);
- }
- while (mpz_cmp_ui (t, 1) == 0);
-
- mpz_divexact (n, n, t); /* divide by t, before t is overwritten */
-
- if (!mp_prime_p (t))
- {
- if (flag_verbose > 0)
- {
- printf ("[composite factor--restarting pollard-rho] ");
- }
- mp_factor_using_pollard_rho (t, a + 1, factors);
- }
- else
- {
- mp_factor_insert (factors, t);
- }
-
- if (mp_prime_p (n))
- {
- mp_factor_insert (factors, n);
- break;
- }
-
- mpz_mod (x, x, n);
- mpz_mod (z, z, n);
- mpz_mod (y, y, n);
- }
-
- mpz_clears (P, t2, t, z, x, y, NULL);
-}
-#endif
-
-/* FIXME: Maybe better to use an iteration converging to 1/sqrt(n)? If
- algorithm is replaced, consider also returning the remainder. */
-static uintmax_t _GL_ATTRIBUTE_CONST
-isqrt (uintmax_t n)
-{
- uintmax_t x;
- unsigned c;
- if (n == 0)
- return 0;
-
- count_leading_zeros (c, n);
-
- /* Make x > sqrt(n). This will be invariant through the loop. */
- x = (uintmax_t) 1 << ((W_TYPE_SIZE + 1 - c) / 2);
-
- for (;;)
- {
- uintmax_t y = (x + n/x) / 2;
- if (y >= x)
- return x;
-
- x = y;
- }
-}
-
-static uintmax_t _GL_ATTRIBUTE_CONST
-isqrt2 (uintmax_t nh, uintmax_t nl)
-{
- unsigned int shift;
- uintmax_t x;
-
- /* Ensures the remainder fits in an uintmax_t. */
- assert (nh < ((uintmax_t) 1 << (W_TYPE_SIZE - 2)));
-
- if (nh == 0)
- return isqrt (nl);
-
- count_leading_zeros (shift, nh);
- shift &= ~1;
-
- /* Make x > sqrt(n) */
- x = isqrt ( (nh << shift) + (nl >> (W_TYPE_SIZE - shift))) + 1;
- x <<= (W_TYPE_SIZE - shift) / 2;
-
- /* Do we need more than one iteration? */
- for (;;)
- {
- uintmax_t q, r, y;
- udiv_qrnnd (q, r, nh, nl, x);
- y = (x + q) / 2;
-
- if (y >= x)
- {
- uintmax_t hi, lo;
- umul_ppmm (hi, lo, x + 1, x + 1);
- assert (gt2 (hi, lo, nh, nl));
-
- umul_ppmm (hi, lo, x, x);
- assert (ge2 (nh, nl, hi, lo));
- sub_ddmmss (hi, lo, nh, nl, hi, lo);
- assert (hi == 0);
-
- return x;
- }
-
- x = y;
- }
-}
-
-/* MAGIC[N] has a bit i set iff i is a quadratic residue mod N. */
-#define MAGIC64 ((uint64_t) 0x0202021202030213ULL)
-#define MAGIC63 ((uint64_t) 0x0402483012450293ULL)
-#define MAGIC65 ((uint64_t) 0x218a019866014613ULL)
-#define MAGIC11 0x23b
-
-/* Returns the square root if the input is a square, otherwise 0. */
-static uintmax_t _GL_ATTRIBUTE_CONST
-is_square (uintmax_t x)
-{
- /* Uses the tests suggested by Cohen. Excludes 99% of the non-squares before
- computing the square root. */
- if (((MAGIC64 >> (x & 63)) & 1)
- && ((MAGIC63 >> (x % 63)) & 1)
- /* Both 0 and 64 are squares mod (65) */
- && ((MAGIC65 >> ((x % 65) & 63)) & 1)
- && ((MAGIC11 >> (x % 11) & 1)))
- {
- uintmax_t r = isqrt (x);
- if (r*r == x)
- return r;
- }
- return 0;
-}
-
-/* invtab[i] = floor(0x10000 / (0x100 + i) */
-static const unsigned short invtab[0x81] =
- {
- 0x200,
- 0x1fc, 0x1f8, 0x1f4, 0x1f0, 0x1ec, 0x1e9, 0x1e5, 0x1e1,
- 0x1de, 0x1da, 0x1d7, 0x1d4, 0x1d0, 0x1cd, 0x1ca, 0x1c7,
- 0x1c3, 0x1c0, 0x1bd, 0x1ba, 0x1b7, 0x1b4, 0x1b2, 0x1af,
- 0x1ac, 0x1a9, 0x1a6, 0x1a4, 0x1a1, 0x19e, 0x19c, 0x199,
- 0x197, 0x194, 0x192, 0x18f, 0x18d, 0x18a, 0x188, 0x186,
- 0x183, 0x181, 0x17f, 0x17d, 0x17a, 0x178, 0x176, 0x174,
- 0x172, 0x170, 0x16e, 0x16c, 0x16a, 0x168, 0x166, 0x164,
- 0x162, 0x160, 0x15e, 0x15c, 0x15a, 0x158, 0x157, 0x155,
- 0x153, 0x151, 0x150, 0x14e, 0x14c, 0x14a, 0x149, 0x147,
- 0x146, 0x144, 0x142, 0x141, 0x13f, 0x13e, 0x13c, 0x13b,
- 0x139, 0x138, 0x136, 0x135, 0x133, 0x132, 0x130, 0x12f,
- 0x12e, 0x12c, 0x12b, 0x129, 0x128, 0x127, 0x125, 0x124,
- 0x123, 0x121, 0x120, 0x11f, 0x11e, 0x11c, 0x11b, 0x11a,
- 0x119, 0x118, 0x116, 0x115, 0x114, 0x113, 0x112, 0x111,
- 0x10f, 0x10e, 0x10d, 0x10c, 0x10b, 0x10a, 0x109, 0x108,
- 0x107, 0x106, 0x105, 0x104, 0x103, 0x102, 0x101, 0x100,
- };
-
-/* Compute q = [u/d], r = u mod d. Avoids slow hardware division for the case
- that q < 0x40; here it instead uses a table of (Euclidian) inverses. */
-#define div_smallq(q, r, u, d) \
- do { \
- if ((u) / 0x40 < (d)) \
- { \
- int _cnt; \
- uintmax_t _dinv, _mask, _q, _r; \
- count_leading_zeros (_cnt, (d)); \
- _r = (u); \
- if (UNLIKELY (_cnt > (W_TYPE_SIZE - 8))) \
- { \
- _dinv = invtab[((d) << (_cnt + 8 - W_TYPE_SIZE)) - 0x80]; \
- _q = _dinv * _r >> (8 + W_TYPE_SIZE - _cnt); \
- } \
- else \
- { \
- _dinv = invtab[((d) >> (W_TYPE_SIZE - 8 - _cnt)) - 0x7f]; \
- _q = _dinv * (_r >> (W_TYPE_SIZE - 3 - _cnt)) >> 11; \
- } \
- _r -= _q*(d); \
- \
- _mask = -(uintmax_t) (_r >= (d)); \
- (r) = _r - (_mask & (d)); \
- (q) = _q - _mask; \
- assert ( (q) * (d) + (r) == u); \
- } \
- else \
- { \
- uintmax_t _q = (u) / (d); \
- (r) = (u) - _q * (d); \
- (q) = _q; \
- } \
- } while (0)
-
-/* Notes: Example N = 22117019. After first phase we find Q1 = 6314, Q
- = 3025, P = 1737, representing F_{18} = (-6314, 2* 1737, 3025),
- with 3025 = 55^2.
-
- Constructing the square root, we get Q1 = 55, Q = 8653, P = 4652,
- representing G_0 = (-55, 2*4652, 8653).
-
- In the notation of the paper:
-
- S_{-1} = 55, S_0 = 8653, R_0 = 4652
-
- Put
-
- t_0 = floor([q_0 + R_0] / S0) = 1
- R_1 = t_0 * S_0 - R_0 = 4001
- S_1 = S_{-1} +t_0 (R_0 - R_1) = 706
-*/
-
-/* Multipliers, in order of efficiency:
- 0.7268 3*5*7*11 = 1155 = 3 (mod 4)
- 0.7317 3*5*7 = 105 = 1
- 0.7820 3*5*11 = 165 = 1
- 0.7872 3*5 = 15 = 3
- 0.8101 3*7*11 = 231 = 3
- 0.8155 3*7 = 21 = 1
- 0.8284 5*7*11 = 385 = 1
- 0.8339 5*7 = 35 = 3
- 0.8716 3*11 = 33 = 1
- 0.8774 3 = 3 = 3
- 0.8913 5*11 = 55 = 3
- 0.8972 5 = 5 = 1
- 0.9233 7*11 = 77 = 1
- 0.9295 7 = 7 = 3
- 0.9934 11 = 11 = 3
-*/
-#define QUEUE_SIZE 50
-
-#if STAT_SQUFOF
-# define Q_FREQ_SIZE 50
-/* Element 0 keeps the total */
-static unsigned int q_freq[Q_FREQ_SIZE + 1];
-# define MIN(a,b) ((a) < (b) ? (a) : (b))
-#endif
-
-/* Return true on success. Expected to fail only for numbers
- >= 2^{2*W_TYPE_SIZE - 2}, or close to that limit. */
-static bool
-factor_using_squfof (uintmax_t n1, uintmax_t n0, struct factors *factors)
-{
- /* Uses algorithm and notation from
-
- SQUARE FORM FACTORIZATION
- JASON E. GOWER AND SAMUEL S. WAGSTAFF, JR.
-
- http://homes.cerias.purdue.edu/~ssw/squfof.pdf
- */
-
- static const unsigned int multipliers_1[] =
- { /* = 1 (mod 4) */
- 105, 165, 21, 385, 33, 5, 77, 1, 0
- };
- static const unsigned int multipliers_3[] =
- { /* = 3 (mod 4) */
- 1155, 15, 231, 35, 3, 55, 7, 11, 0
- };
-
- const unsigned int *m;
-
- struct { uintmax_t Q; uintmax_t P; } queue[QUEUE_SIZE];
-
- if (n1 >= ((uintmax_t) 1 << (W_TYPE_SIZE - 2)))
- return false;
-
- uintmax_t sqrt_n = isqrt2 (n1, n0);
-
- if (n0 == sqrt_n * sqrt_n)
- {
- uintmax_t p1, p0;
-
- umul_ppmm (p1, p0, sqrt_n, sqrt_n);
- assert (p0 == n0);
-
- if (n1 == p1)
- {
- if (prime_p (sqrt_n))
- factor_insert_multiplicity (factors, sqrt_n, 2);
- else
- {
- struct factors f;
-
- f.nfactors = 0;
- if (!factor_using_squfof (0, sqrt_n, &f))
- {
- /* Try pollard rho instead */
- factor_using_pollard_rho (sqrt_n, 1, &f);
- }
- /* Duplicate the new factors */
- for (unsigned int i = 0; i < f.nfactors; i++)
- factor_insert_multiplicity (factors, f.p[i], 2*f.e[i]);
- }
- return true;
- }
- }
-
- /* Select multipliers so we always get n * mu = 3 (mod 4) */
- for (m = (n0 % 4 == 1) ? multipliers_3 : multipliers_1;
- *m; m++)
- {
- uintmax_t S, Dh, Dl, Q1, Q, P, L, L1, B;
- unsigned int i;
- unsigned int mu = *m;
- unsigned int qpos = 0;
-
- assert (mu * n0 % 4 == 3);
-
- /* In the notation of the paper, with mu * n == 3 (mod 4), we
- get \Delta = 4 mu * n, and the paper's \mu is 2 mu. As far as
- I understand it, the necessary bound is 4 \mu^3 < n, or 32
- mu^3 < n.
-
- However, this seems insufficient: With n = 37243139 and mu =
- 105, we get a trivial factor, from the square 38809 = 197^2,
- without any corresponding Q earlier in the iteration.
-
- Requiring 64 mu^3 < n seems sufficient. */
- if (n1 == 0)
- {
- if ((uintmax_t) mu*mu*mu >= n0 / 64)
- continue;
- }
- else
- {
- if (n1 > ((uintmax_t) 1 << (W_TYPE_SIZE - 2)) / mu)
- continue;
- }
- umul_ppmm (Dh, Dl, n0, mu);
- Dh += n1 * mu;
-
- assert (Dl % 4 != 1);
- assert (Dh < (uintmax_t) 1 << (W_TYPE_SIZE - 2));
-
- S = isqrt2 (Dh, Dl);
-
- Q1 = 1;
- P = S;
-
- /* Square root remainder fits in one word, so ignore high part. */
- Q = Dl - P*P;
- /* FIXME: When can this differ from floor(sqrt(2 sqrt(D)))? */
- L = isqrt (2*S);
- B = 2*L;
- L1 = mu * 2 * L;
-
- /* The form is (+/- Q1, 2P, -/+ Q), of discriminant 4 (P^2 + Q Q1) =
- 4 D. */
-
- for (i = 0; i <= B; i++)
- {
- uintmax_t q, P1, t, rem;
-
- div_smallq (q, rem, S+P, Q);
- P1 = S - rem; /* P1 = q*Q - P */
-
-#if STAT_SQUFOF
- assert (q > 0);
- q_freq[0]++;
- q_freq[MIN(q, Q_FREQ_SIZE)]++;
-#endif
-
- if (Q <= L1)
- {
- uintmax_t g = Q;
-
- if ( (Q & 1) == 0)
- g /= 2;
-
- g /= gcd_odd (g, mu);
-
- if (g <= L)
- {
- if (qpos >= QUEUE_SIZE)
- {
- fprintf (stderr, "squfof queue overflow.\n");
- exit (EXIT_FAILURE);
- }
- queue[qpos].Q = g;
- queue[qpos].P = P % g;
- qpos++;
- }
- }
-
- /* I think the difference can be either sign, but mod
- 2^W_TYPE_SIZE arithmetic should be fine. */
- t = Q1 + q * (P - P1);
- Q1 = Q;
- Q = t;
- P = P1;
-
- if ( (i & 1) == 0)
- {
- uintmax_t r = is_square (Q);
- if (r)
- {
- unsigned int j;
-
- for (j = 0; j < qpos; j++)
- {
- if (queue[j].Q == r)
- {
- if (r == 1)
- /* Traversed entire cycle. */
- goto next_multiplier;
-
- /* Need the absolute value for divisibility test. */
- if (P >= queue[j].P)
- t = P - queue[j].P;
- else
- t = queue[j].P - P;
- if (t % r == 0)
- {
- /* Delete entries up to and including entry
- j, which matched. */
- memmove (queue, queue + j + 1,
- (qpos - j - 1) * sizeof (queue[0]));
- qpos -= (j + 1);
- }
- goto next_i;
- }
- }
-
- /* We have found a square form, which should give a
- factor. */
- Q1 = r;
- assert (S >= P); /* What signs are possible? */
- P += r * ((S - P) / r);
-
- /* Note: Paper says (N - P*P) / Q1, that seems incorrect
- for the case D = 2N. */
- /* Compute Q = (D - P*P) / Q1, but we need double
- precision. */
- uintmax_t hi, lo;
- umul_ppmm (hi, lo, P, P);
- sub_ddmmss (hi, lo, Dh, Dl, hi, lo);
- udiv_qrnnd (Q, rem, hi, lo, Q1);
- assert (rem == 0);
-
- for (;;)
- {
- /* Note: There appears to by a typo in the paper,
- Step 4a in the algorithm description says q <--
- floor([S+P]/\hat Q), but looking at the equations
- in Sec. 3.1, it should be q <-- floor([S+P] / Q).
- (In this code, \hat Q is Q1). */
- div_smallq (q, rem, S+P, Q);
- P1 = S - rem; /* P1 = q*Q - P */
-
-#if STAT_SQUFOF
- q_freq[0]++;
- q_freq[MIN (q, Q_FREQ_SIZE)]++;
-#endif
- if (P == P1)
- break;
- t = Q1 + q * (P - P1);
- Q1 = Q;
- Q = t;
- P = P1;
- }
-
- if ( (Q & 1) == 0)
- Q /= 2;
- Q /= gcd_odd (Q, mu);
-
- assert (Q > 1 && (n1 || Q < n0));
-
- if (prime_p (Q))
- factor_insert (factors, Q);
- else if (!factor_using_squfof (0, Q, factors))
- factor_using_pollard_rho (Q, 2, factors);
-
- divexact_21 (n1, n0, n1, n0, Q);
-
- if (prime2_p (n1, n0))
- factor_insert_large (factors, n1, n0);
- else
- {
- if (!factor_using_squfof (n1, n0, factors))
- {
- if (n1 == 0)
- factor_using_pollard_rho (n0, 1, factors);
- else
- factor_using_pollard_rho2 (n1, n0, 1, factors);
- }
- }
-
- return true;
- }
- }
- next_i:
- ;
- }
- next_multiplier:
- ;
- }
- return false;
-}
-
-static void
-factor (uintmax_t t1, uintmax_t t0, struct factors *factors)
-{
- factors->nfactors = 0;
- factors->plarge[1] = 0;
-
- if (t1 == 0 && t0 < 2)
- return;
-
- t0 = factor_using_division (&t1, t1, t0, factors);
-
- if (t1 == 0 && t0 < 2)
- return;
-
- if (prime2_p (t1, t0))
- factor_insert_large (factors, t1, t0);
- else
- {
- if (alg == ALG_SQUFOF)
- if (factor_using_squfof (t1, t0, factors))
- return;
-
- if (t1 == 0)
- factor_using_pollard_rho (t0, 1, factors);
- else
- factor_using_pollard_rho2 (t1, t0, 1, factors);
- }
-}
-
-#if HAVE_GMP
-static void
-mp_factor (mpz_t t, struct mp_factors *factors)
-{
- mp_factor_init (factors);
-
- if (mpz_sgn (t) != 0)
- {
- mp_factor_using_division (t, factors);
-
- if (mpz_cmp_ui (t, 1) != 0)
- {
- if (flag_verbose > 0)
- {
- printf ("[is number prime?] ");
- }
- if (mp_prime_p (t))
- mp_factor_insert (factors, t);
- else
- mp_factor_using_pollard_rho (t, 1, factors);
- }
- }
-}
-#endif
-
-static int
-strto2uintmax (uintmax_t *hip, uintmax_t *lop, const char *s)
-{
- int errcode;
- unsigned int lo_carry;
- uintmax_t hi, lo;
-
- errcode = -1;
-
- hi = lo = 0;
- for (;;)
- {
- unsigned int c = *s++;
- if (c == 0)
- break;
-
- if (UNLIKELY (c < '0' || c > '9'))
- {
- errcode = -1;
- break;
- }
- c -= '0';
-
- errcode = 0; /* we've seen at least one valid digit */
-
- if (UNLIKELY (hi > ~(uintmax_t)0 / 10))
- {
- errcode = -1; /* overflow */
- break;
- }
- hi = 10 * hi;
-
- lo_carry = (lo >> (W_TYPE_SIZE - 3)) + (lo >> (W_TYPE_SIZE - 1));
- lo_carry += 10 * lo < 2 * lo;
-
- lo = 10 * lo;
- lo += c;
-
- lo_carry += lo < c;
- hi += lo_carry;
- if (UNLIKELY (hi < lo_carry))
- {
- errcode = -1; /* overflow */
- break;
- }
- }
-
- *hip = hi;
- *lop = lo;
-
- return errcode;
-}
-
-static void
-print_uintmaxes (uintmax_t t1, uintmax_t t0)
-{
- uintmax_t q, r;
-
- if (t1 == 0)
- printf ("%ju", t0);
- else
- {
- /* Use very plain code here since it seems hard to write fast code
- without assuming a specific word size. */
- q = t1 / 1000000000;
- r = t1 % 1000000000;
- udiv_qrnnd (t0, r, r, t0, 1000000000);
- print_uintmaxes (q, t0);
- printf ("%09u", (int) r);
- }
-}
-
-static void
-factor_one (const char *input)
-{
- uintmax_t t1, t0;
- int errcode;
-
- /* Try converting the number to one or two words. If it fails, use GMP or
- print an error message. The 2nd condition checks that the most
- significant bit of the two-word number is clear, in a typesize neutral
- way. */
- errcode = strto2uintmax (&t1, &t0, input);
- if (errcode == 0 && ((t1 << 1) >> 1) == t1)
- {
- struct factors factors;
-
- print_uintmaxes (t1, t0);
- printf (":");
-
- factor (t1, t0, &factors);
-
- for (unsigned int j = 0; j < factors.nfactors; j++)
- for (unsigned int k = 0; k < factors.e[j]; k++)
- printf (" %ju", factors.p[j]);
-
- if (factors.plarge[1])
- {
- printf (" ");
- print_uintmaxes (factors.plarge[1], factors.plarge[0]);
- }
- puts ("");
- }
- else
- {
-#if HAVE_GMP
- mpz_t t;
- struct mp_factors factors;
-
- mpz_init_set_str (t, input, 10);
-
- gmp_printf ("%Zd:", t);
- mp_factor (t, &factors);
-
- for (unsigned int j = 0; j < factors.nfactors; j++)
- for (unsigned int k = 0; k < factors.e[j]; k++)
- gmp_printf (" %Zd", factors.p[j]);
-
- mp_factor_clear (&factors);
- mpz_clear (t);
- puts ("");
-#else
- fprintf (stderr, "error: number %s not parsable or too large\n", input);
- exit (EXIT_FAILURE);
-#endif
- }
-}
-
-struct inbuf
-{
- char *buf;
- size_t alloc;
-};
-
-/* Read white-space delimited items. Return 1 on success, 0 on EOF.
- Exit on I/O errors. */
-int
-read_item (struct inbuf *bufstruct)
-{
- int c;
- size_t i;
- char *buf = bufstruct->buf;
-
- do
- c = getchar_unlocked ();
- while (isspace (c));
-
- for (i = 0; !isspace(c); i++)
- {
- if (c < 0)
- {
- if (ferror (stdin))
- {
- fprintf (stderr, "read error on stdin: %s\n", strerror(errno));
- exit (EXIT_FAILURE);
- }
- if (i == 0)
- return 0;
- else
- break;
- }
-
- if (UNLIKELY (bufstruct->alloc <= i + 1)) /* +1 byte for terminating NUL */
- {
- bufstruct->alloc = bufstruct->alloc * 5 / 4 + 1;
- bufstruct->buf = realloc (bufstruct->buf, bufstruct->alloc);
- buf = bufstruct->buf;
- }
-
- buf[i] = c;
- c = getchar_unlocked ();
- }
-
- buf[i] = '\0';
- return 1;
-}
-
-int
-main (int argc, char *argv[])
-{
- int c;
-
- alg = ALG_POLLARD_RHO; /* Default to Pollard rho */
-
- while ( (c = getopt(argc, argv, "svw")) != -1)
- switch (c)
- {
- case 's':
- alg = ALG_SQUFOF;
- break;
- case 'v':
- flag_verbose = 1;
- break;
- case 'w':
- flag_prove_primality = 0;
- break;
- case '?':
- printf ("Usage: %s [-s] number ...\n", argv[0]);
- return EXIT_FAILURE;
- }
-#if STAT_SQUFOF
- if (alg == ALG_SQUFOF)
- memset (q_freq, 0, sizeof (q_freq));
-#endif
-
- if (optind < argc)
- for (int i = optind; i < argc; i++)
- factor_one (argv[i]);
- else
- {
- struct inbuf bufstruct;
- bufstruct.alloc = 50; /* enough unless HAVE_GMP */
- bufstruct.buf = malloc (bufstruct.alloc);
- while (read_item (&bufstruct))
- factor_one (bufstruct.buf);
- }
-
-#if STAT_SQUFOF
- if (alg == ALG_SQUFOF && q_freq[0] > 0)
- {
- double acc_f;
- printf ("q freq. cum. freq.(total: %d)\n", q_freq[0]);
- for (unsigned int i = 1, acc_f = 0.0; i <= Q_FREQ_SIZE; i++)
- {
- double f = (double) q_freq[i] / q_freq[0];
- acc_f += f;
- printf ("%s%d %.2f%% %.2f%%\n", i == Q_FREQ_SIZE ? ">=" : "", i,
- 100.0 * f, 100.0 * acc_f);
- }
- }
-#endif
-
- exit (EXIT_SUCCESS);
-}
diff --git a/src/factor.c b/src/factor.c
index e63e0e01d..84d9721c4 100644
--- a/src/factor.c
+++ b/src/factor.c
@@ -14,17 +14,79 @@
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
-/* Written by Paul Rubin <phr@ocf.berkeley.edu>.
+/* Originally written by Paul Rubin <phr@ocf.berkeley.edu>.
Adapted for GNU, fixed to factor UINT_MAX by Jim Meyering.
Arbitrary-precision code adapted by James Youngman from Torbjörn
Granlund's factorize.c, from GNU MP version 4.2.2.
+ In 2012, the core was rewritten by Torbjörn Granlund and Niels Möller.
+ Contains code from GNU MP. */
+
+/* Efficiently factor numbers that fit in one or two words (word = uintmax_t),
+ or, with GMP, numbers of any size.
+
+ Code organisation:
+
+ There are several variants of many functions, for handling one word, two
+ words, and GMP's mpz_t type. If the one-word variant is called foo, the
+ two-word variant will be foo2, and the one for mpz_t will be mp_foo. In
+ some cases, the plain function variants will handle both one-word and
+ two-word numbers, evidenced by function arguments.
+
+ The factoring code for two words will fall into the code for one word when
+ progress allows that.
+
+ Using GMP is optional. Define HAVE_GMP to make this code include GMP
+ factoring code. The GMP factoring code is based on GMP's demos/factorize.c
+ (last synched 2012-09-07). The GMP-based factoring code will stay in GMP
+ factoring code even if numbers get small enough for using the two-word
+ code.
+
+ Algorithm:
+
+ (1) Perform trial division using a small primes table, but without hardware
+ division since the primes table store inverses modulo the word base.
+ (The GMP variant of this code doesn't make use of the precomputed
+ inverses, but instead relies on GMP for fast divisibility testing.)
+ (2) Check the nature of any non-factored part using Miller-Rabin for
+ detecting composites, and Lucas for detecting primes.
+ (3) Factor any remaining composite part using the Pollard-Brent rho
+ algorithm or the SQUFOF algorithm, checking status of found factors
+ again using Miller-Rabin and Lucas.
+
+ We prefer using Hensel norm in the divisions, not the more familiar
+ Euclidian norm, since the former leads to much faster code. In the
+ Pollard-Brent rho code and the prime testing code, we use Montgomery's
+ trick of multiplying all n-residues by the word base, allowing cheap Hensel
+ reductions mod n.
+
+ Improvements:
+
+ * Use modular inverses also for exact division in the Lucas code, and
+ elsewhere. A problem is to locate the inverses not from an index, but
+ from a prime. We might instead compute the inverse on-the-fly.
+
+ * Tune trial division table size (not forgetting that this is a standalone
+ program where the table will be read from disk for each invocation).
+
+ * Implement less naive powm, using k-ary exponentiation for k = 3 or
+ perhaps k = 4.
+
+ * Try to speed trial division code for single uintmax_t numbers, i.e., the
+ code using DIVBLOCK. It currently runs at 2 cycles per prime (Intel SBR,
+ IBR), 3 cycles per prime (AMD Stars) and 5 cycles per prime (AMD BD) when
+ using gcc 4.6 and 4.7. Some software pipelining should help; 1, 2, and 4
+ respectively cycles ought to be possible.
+
+ * The redcify function could be vastly improved by using (plain Euclidian)
+ pre-inversion (such as GMP's invert_limb) and udiv_qrnnd_preinv (from
+ GMP's gmp-impl.h). The redcify2 function could be vastly improved using
+ similar methoods. These functions currently dominate run time when using
+ the -w option.
*/
#include <config.h>
#include <getopt.h>
-#include <stdarg.h>
#include <stdio.h>
-#include <sys/types.h>
#if HAVE_GMP
# include <gmp.h>
#endif
@@ -40,17 +102,540 @@
/* The official name of this program (e.g., no 'g' prefix). */
#define PROGRAM_NAME "factor"
-#define AUTHORS proper_name ("Paul Rubin")
+#define AUTHORS \
+ proper_name ("Paul Rubin"), \
+ proper_name_utf8 ("Torbjorn Granlund", "Torbj\303\266rn Granlund"), \
+ proper_name_utf8 ("Niels Moller", "Niels M\303\266ller")
/* Token delimiters when reading from a file. */
#define DELIM "\n\t "
-static bool verbose = false;
+#ifndef STAT_SQUFOF
+# define STAT_SQUFOF 0
+#endif
+
+#ifndef USE_LONGLONG_H
+# define USE_LONGLONG_H 1
+#endif
+
+#if USE_LONGLONG_H
+
+/* Make definitions for longlong.h to make it do what it can do for us */
+# define W_TYPE_SIZE 64 /* bitcount for uintmax_t */
+# define UWtype uintmax_t
+# define UHWtype unsigned long int
+# undef UDWtype
+# if HAVE_ATTRIBUTE_MODE
+typedef unsigned int UQItype __attribute__ ((mode (QI)));
+typedef int SItype __attribute__ ((mode (SI)));
+typedef unsigned int USItype __attribute__ ((mode (SI)));
+typedef int DItype __attribute__ ((mode (DI)));
+typedef unsigned int UDItype __attribute__ ((mode (DI)));
+# else
+typedef unsigned char UQItype;
+typedef long SItype;
+typedef unsigned long int USItype;
+# if HAVE_LONG_LONG
+typedef long long int DItype;
+typedef unsigned long long int UDItype;
+# else /* Assume `long' gives us a wide enough type. Needed for hppa2.0w. */
+typedef long int DItype;
+typedef unsigned long int UDItype;
+# endif
+# endif
+# define LONGLONG_STANDALONE /* Don't require GMP's longlong.h mdep files */
+# define ASSERT(x) /* FIXME make longlong.h really standalone */
+# define __clz_tab factor_clz_tab /* Rename to avoid glibc collision */
+# ifndef __GMP_GNUC_PREREQ
+# define __GMP_GNUC_PREREQ(a,b) 1
+# endif
+# if _ARCH_PPC
+# define HAVE_HOST_CPU_FAMILY_powerpc 1
+# endif
+# include "longlong.h"
+# ifdef COUNT_LEADING_ZEROS_NEED_CLZ_TAB
+const unsigned char factor_clz_tab[129] =
+{
+ 1,2,3,3,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
+ 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
+ 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
+ 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
+ 9
+};
+# endif
+
+#else /* not USE_LONGLONG_H */
+
+# define W_TYPE_SIZE (8 * sizeof (uintmax_t))
+# define __ll_B ((uintmax_t) 1 << (W_TYPE_SIZE / 2))
+# define __ll_lowpart(t) ((uintmax_t) (t) & (__ll_B - 1))
+# define __ll_highpart(t) ((uintmax_t) (t) >> (W_TYPE_SIZE / 2))
+
+#endif
+
+enum alg_type { ALG_POLLARD_RHO = 1, ALG_SQUFOF = 2 };
+
+static enum alg_type alg;
+
+/* 2*3*5*7*11...*101 is 128 bits, and has 26 prime factors */
+#define MAX_NFACTS 26
+
+enum
+{
+ VERBOSE_OPTION = CHAR_MAX + 1
+};
+
+static struct option const long_options[] =
+{
+ {"verbose", no_argument, NULL, VERBOSE_OPTION},
+ {GETOPT_HELP_OPTION_DECL},
+ {GETOPT_VERSION_OPTION_DECL},
+ {NULL, 0, NULL, 0}
+};
+
+struct factors
+{
+ uintmax_t plarge[2]; /* Can have a single large factor */
+ uintmax_t p[MAX_NFACTS];
+ unsigned char e[MAX_NFACTS];
+ unsigned char nfactors;
+};
+
+#if HAVE_GMP
+struct mp_factors
+{
+ mpz_t *p;
+ unsigned long int *e;
+ unsigned long int nfactors;
+};
+#endif
+
+static void factor (uintmax_t, uintmax_t, struct factors *);
+
+#ifndef umul_ppmm
+# define umul_ppmm(w1, w0, u, v) \
+ do { \
+ uintmax_t __x0, __x1, __x2, __x3; \
+ unsigned long int __ul, __vl, __uh, __vh; \
+ uintmax_t __u = (u), __v = (v); \
+ \
+ __ul = __ll_lowpart (__u); \
+ __uh = __ll_highpart (__u); \
+ __vl = __ll_lowpart (__v); \
+ __vh = __ll_highpart (__v); \
+ \
+ __x0 = (uintmax_t) __ul * __vl; \
+ __x1 = (uintmax_t) __ul * __vh; \
+ __x2 = (uintmax_t) __uh * __vl; \
+ __x3 = (uintmax_t) __uh * __vh; \
+ \
+ __x1 += __ll_highpart (__x0);/* this can't give carry */ \
+ __x1 += __x2; /* but this indeed can */ \
+ if (__x1 < __x2) /* did we get it? */ \
+ __x3 += __ll_B; /* yes, add it in the proper pos. */ \
+ \
+ (w1) = __x3 + __ll_highpart (__x1); \
+ (w0) = (__x1 << W_TYPE_SIZE / 2) + __ll_lowpart (__x0); \
+ } while (0)
+#endif
+
+#if !defined udiv_qrnnd || defined UDIV_NEEDS_NORMALIZATION
+/* Define our own, not needing normalization. This function is
+ currently not performance critical, so keep it simple. Similar to
+ the mod macro below. */
+# undef udiv_qrnnd
+# define udiv_qrnnd(q, r, n1, n0, d) \
+ do { \
+ uintmax_t __d1, __d0, __q, __r1, __r0; \
+ \
+ assert ((n1) < (d)); \
+ __d1 = (d); __d0 = 0; \
+ __r1 = (n1); __r0 = (n0); \
+ __q = 0; \
+ for (unsigned int __i = W_TYPE_SIZE; __i > 0; __i--) \
+ { \
+ rsh2 (__d1, __d0, __d1, __d0, 1); \
+ __q <<= 1; \
+ if (ge2 (__r1, __r0, __d1, __d0)) \
+ { \
+ __q++; \
+ sub_ddmmss (__r1, __r0, __r1, __r0, __d1, __d0); \
+ } \
+ } \
+ (r) = __r0; \
+ (q) = __q; \
+ } while (0)
+#endif
+
+#if !defined add_ssaaaa
+# define add_ssaaaa(sh, sl, ah, al, bh, bl) \
+ do { \
+ uintmax_t _add_x; \
+ _add_x = (al) + (bl); \
+ (sh) = (ah) + (bh) + (_add_x < (al)); \
+ (sl) = _add_x; \
+ } while (0)
+#endif
+
+#define rsh2(rh, rl, ah, al, cnt) \
+ do { \
+ (rl) = ((ah) << (W_TYPE_SIZE - (cnt))) | ((al) >> (cnt)); \
+ (rh) = (ah) >> (cnt); \
+ } while (0)
+
+#define lsh2(rh, rl, ah, al, cnt) \
+ do { \
+ (rh) = ((ah) << cnt) | ((al) >> (W_TYPE_SIZE - (cnt))); \
+ (rl) = (al) << (cnt); \
+ } while (0)
+
+#define ge2(ah, al, bh, bl) \
+ ((ah) > (bh) || ((ah) == (bh) && (al) >= (bl)))
+
+#define gt2(ah, al, bh, bl) \
+ ((ah) > (bh) || ((ah) == (bh) && (al) > (bl)))
+
+#ifndef sub_ddmmss
+# define sub_ddmmss(rh, rl, ah, al, bh, bl) \
+ do { \
+ uintmax_t _cy; \
+ _cy = (al) < (bl); \
+ (rl) = (al) - (bl); \
+ (rh) = (ah) - (bh) - _cy; \
+ } while (0)
+#endif
+
+#ifndef count_leading_zeros
+# define count_leading_zeros(count, x) do { \
+ uintmax_t __clz_x = (x); \
+ unsigned int __clz_c; \
+ for (__clz_c = 0; \
+ (__clz_x & ((uintmax_t) 0xff << (W_TYPE_SIZE - 8))) == 0; \
+ __clz_c += 8) \
+ __clz_x <<= 8; \
+ for (; (intmax_t)__clz_x >= 0; __clz_c++) \
+ __clz_x <<= 1; \
+ (count) = __clz_c; \
+ } while (0)
+#endif
+
+#ifndef count_trailing_zeros
+# define count_trailing_zeros(count, x) do { \
+ uintmax_t __ctz_x = (x); \
+ unsigned int __ctz_c = 0; \
+ while ((__ctz_x & 1) == 0) \
+ { \
+ __ctz_x >>= 1; \
+ __ctz_c++; \
+ } \
+ (count) = __ctz_c; \
+ } while (0)
+#endif
+
+/* Requires that a < n and b <= n */
+#define submod(r,a,b,n) \
+ do { \
+ uintmax_t _t = - (uintmax_t) (a < b); \
+ (r) = ((n) & _t) + (a) - (b); \
+ } while (0)
+
+#define addmod(r,a,b,n) \
+ submod ((r), (a), ((n) - (b)), (n))
+
+/* Modular two-word addition and subtraction. For performance reasons, the
+ most significant bit of n1 must be clear. The destination variables must be
+ distinct from the mod operand. */
+#define addmod2(r1, r0, a1, a0, b1, b0, n1, n0) \
+ do { \
+ add_ssaaaa ((r1), (r0), (a1), (a0), (b1), (b0)); \
+ if (ge2 ((r1), (r0), (n1), (n0))) \
+ sub_ddmmss ((r1), (r0), (r1), (r0), (n1), (n0)); \
+ } while (0)
+#define submod2(r1, r0, a1, a0, b1, b0, n1, n0) \
+ do { \
+ sub_ddmmss ((r1), (r0), (a1), (a0), (b1), (b0)); \
+ if ((intmax_t) (r1) < 0) \
+ add_ssaaaa ((r1), (r0), (r1), (r0), (n1), (n0)); \
+ } while (0)
+
+#define HIGHBIT_TO_MASK(x) \
+ (((intmax_t)-1 >> 1) < 0 \
+ ? (uintmax_t)((intmax_t)(x) >> (W_TYPE_SIZE - 1)) \
+ : ((x) & ((uintmax_t) 1 << (W_TYPE_SIZE - 1)) \
+ ? UINTMAX_MAX : (uintmax_t) 0))
+
+/* Compute r = a mod d, where r = <*t1,retval>, a = <a1,a0>, d = <d1,d0>.
+ Requires that d1 != 0. */
+static uintmax_t
+mod2 (uintmax_t *r1, uintmax_t a1, uintmax_t a0, uintmax_t d1, uintmax_t d0)
+{
+ int cntd, cnta;
+
+ assert (d1 != 0);
+
+ if (a1 == 0)
+ {
+ *r1 = 0;
+ return a0;
+ }
+
+ count_leading_zeros (cntd, d1);
+ count_leading_zeros (cnta, a1);
+ int cnt = cntd - cnta;
+ lsh2 (d1, d0, d1, d0, cnt);
+ for (int i = 0; i < cnt; i++)
+ {
+ if (ge2 (a1, a0, d1, d0))
+ sub_ddmmss (a1, a0, a1, a0, d1, d0);
+ rsh2 (d1, d0, d1, d0, 1);
+ }
+
+ *r1 = a1;
+ return a0;
+}
+
+static uintmax_t _GL_ATTRIBUTE_CONST
+gcd_odd (uintmax_t a, uintmax_t b)
+{
+ if ( (b & 1) == 0)
+ {
+ uintmax_t t = b;
+ b = a;
+ a = t;
+ }
+ if (a == 0)
+ return b;
+
+ /* Take out least significant one bit, to make room for sign */
+ b >>= 1;
+
+ for (;;)
+ {
+ uintmax_t t;
+ uintmax_t bgta;
+
+ while ((a & 1) == 0)
+ a >>= 1;
+ a >>= 1;
+
+ t = a - b;
+ if (t == 0)
+ return (a << 1) + 1;
+
+ bgta = HIGHBIT_TO_MASK (t);
+
+ /* b <-- min (a, b) */
+ b += (bgta & t);
+
+ /* a <-- |a - b| */
+ a = (t ^ bgta) - bgta;
+ }
+}
+
+static uintmax_t
+gcd2_odd (uintmax_t *r1, uintmax_t a1, uintmax_t a0, uintmax_t b1, uintmax_t b0)
+{
+ while ((a0 & 1) == 0)
+ rsh2 (a1, a0, a1, a0, 1);
+ while ((b0 & 1) == 0)
+ rsh2 (b1, b0, b1, b0, 1);
+
+ for (;;)
+ {
+ if ((b1 | a1) == 0)
+ {
+ *r1 = 0;
+ return gcd_odd (b0, a0);
+ }
+
+ if (gt2 (a1, a0, b1, b0))
+ {
+ sub_ddmmss (a1, a0, a1, a0, b1, b0);
+ do
+ rsh2 (a1, a0, a1, a0, 1);
+ while ((a0 & 1) == 0);
+ }
+ else if (gt2 (b1, b0, a1, a0))
+ {
+ sub_ddmmss (b1, b0, b1, b0, a1, a0);
+ do
+ rsh2 (b1, b0, b1, b0, 1);
+ while ((b0 & 1) == 0);
+ }
+ else
+ break;
+ }
+
+ *r1 = a1;
+ return a0;
+}
+
+static void
+factor_insert_multiplicity (struct factors *factors,
+ uintmax_t prime, unsigned int m)
+{
+ unsigned int nfactors = factors->nfactors;
+ uintmax_t *p = factors->p;
+ unsigned char *e = factors->e;
+
+ /* Locate position for insert new or increment e. */
+ int i;
+ for (i = nfactors - 1; i >= 0; i--)
+ {
+ if (p[i] <= prime)
+ break;
+ }
+
+ if (i < 0 || p[i] != prime)
+ {
+ for (int j = nfactors - 1; j > i; j--)
+ {
+ p[j + 1] = p[j];
+ e[j + 1] = e[j];
+ }
+ p[i + 1] = prime;
+ e[i + 1] = m;
+ factors->nfactors = nfactors + 1;
+ }
+ else
+ {
+ e[i] += m;
+ }
+}
+
+#define factor_insert(f, p) factor_insert_multiplicity (f, p, 1)
+
+static void
+factor_insert_large (struct factors *factors,
+ uintmax_t p1, uintmax_t p0)
+{
+ if (p1 > 0)
+ {
+ assert (factors->plarge[1] == 0);
+ factors->plarge[0] = p0;
+ factors->plarge[1] = p1;
+ }
+ else
+ factor_insert (factors, p0);
+}
#if HAVE_GMP
-static mpz_t *factor = NULL;
-static size_t nfactors_found = 0;
-static size_t nfactors_allocated = 0;
+static void mp_factor (mpz_t, struct mp_factors *);
+
+static void
+mp_factor_init (struct mp_factors *factors)
+{
+ factors->p = xmalloc (1);
+ factors->e = xmalloc (1);
+ factors->nfactors = 0;
+}
+
+static void
+mp_factor_clear (struct mp_factors *factors)
+{
+ for (unsigned int i = 0; i < factors->nfactors; i++)
+ mpz_clear (factors->p[i]);
+
+ free (factors->p);
+ free (factors->e);
+}
+
+static void
+mp_factor_insert (struct mp_factors *factors, mpz_t prime)
+{
+ unsigned long int nfactors = factors->nfactors;
+ mpz_t *p = factors->p;
+ unsigned long int *e = factors->e;
+ long i;
+
+ /* Locate position for insert new or increment e. */
+ for (i = nfactors - 1; i >= 0; i--)
+ {
+ if (mpz_cmp (p[i], prime) <= 0)
+ break;
+ }
+
+ if (i < 0 || mpz_cmp (p[i], prime) != 0)
+ {
+ p = xrealloc (p, (nfactors + 1) * sizeof p[0]);
+ e = xrealloc (e, (nfactors + 1) * sizeof e[0]);
+
+ mpz_init (p[nfactors]);
+ for (long j = nfactors - 1; j > i; j--)
+ {
+ mpz_set (p[j + 1], p[j]);
+ e[j + 1] = e[j];
+ }
+ mpz_set (p[i + 1], prime);
+ e[i + 1] = 1;
+
+ factors->p = p;
+ factors->e = e;
+ factors->nfactors = nfactors + 1;
+ }
+ else
+ {
+ e[i] += 1;
+ }
+}
+
+static void
+mp_factor_insert_ui (struct mp_factors *factors, unsigned long int prime)
+{
+ mpz_t pz;
+
+ mpz_init_set_ui (pz, prime);
+ mp_factor_insert (factors, pz);
+ mpz_clear (pz);
+}
+#endif /* HAVE_GMP */
+
+
+#define P(a,b,c,d) a,
+static const unsigned char primes_diff[] = {
+#include "primes.h"
+0,0,0,0,0,0,0 /* 7 sentinels for 8-way loop */
+};
+#undef P
+
+#define PRIMES_PTAB_ENTRIES \
+ (sizeof (primes_diff) / sizeof (primes_diff[0]) - 8 + 1)
+
+#define P(a,b,c,d) b,
+static const unsigned char primes_diff8[] = {
+#include "primes.h"
+0,0,0,0,0,0,0 /* 7 sentinels for 8-way loop */
+};
+#undef P
+
+struct primes_dtab
+{
+ uintmax_t binv, lim;
+};
+
+#define P(a,b,c,d) {c,d},
+static const struct primes_dtab primes_dtab[] = {
+#include "primes.h"
+{1,0},{1,0},{1,0},{1,0},{1,0},{1,0},{1,0} /* 7 sentinels for 8-way loop */
+};
+#undef P
+
+/* This flag is honored only in the GMP code. */
+static int verbose = 0;
+
+/* Prove primality or run probabilistic tests. */
+static bool flag_prove_primality = true;
+
+/* Number of Miller-Rabin tests to run when not proving primality. */
+#define MR_REPS 25
+
+#ifdef __GNUC__
+# define LIKELY(cond) __builtin_expect ((cond), 1)
+# define UNLIKELY(cond) __builtin_expect ((cond), 0)
+#else
+# define LIKELY(cond) (cond)
+# define UNLIKELY(cond) (cond)
+#endif
static void
debug (char const *fmt, ...)
@@ -65,368 +650,1637 @@ debug (char const *fmt, ...)
}
static void
-emit_factor (mpz_t n)
+factor_insert_refind (struct factors *factors, uintmax_t p, unsigned int i,
+ unsigned int off)
{
- if (nfactors_found == nfactors_allocated)
- factor = X2NREALLOC (factor, &nfactors_allocated);
- mpz_init (factor[nfactors_found]);
- mpz_set (factor[nfactors_found], n);
- ++nfactors_found;
+ for (unsigned int j = 0; j < off; j++)
+ p += primes_diff[i + j];
+ factor_insert (factors, p);
}
-static void
-emit_ul_factor (unsigned long int i)
+/* Trial division with odd primes uses the following trick.
+
+ Let p be an odd prime, and B = 2^{W_TYPE_SIZE}. For simplicity,
+ consider the case t < B (this is the second loop below).
+
+ From our tables we get
+
+ binv = p^{-1} (mod B)
+ lim = floor ( (B-1) / p ).
+
+ First assume that t is a multiple of p, t = q * p. Then 0 <= q <= lim
+ (and all quotients in this range occur for some t).
+
+ Then t = q * p is true also (mod B), and p is invertible we get
+
+ q = t * binv (mod B).
+
+ Next, assume that t is *not* divisible by p. Since multiplication
+ by binv (mod B) is a one-to-one mapping,
+
+ t * binv (mod B) > lim,
+
+ because all the smaller values are already taken.
+
+ This can be summed up by saying that the function
+
+ q(t) = binv * t (mod B)
+
+ is a permutation of the range 0 <= t < B, with the curious property
+ that it maps the multiples of p onto the range 0 <= q <= lim, in
+ order, and the non-multiples of p onto the range lim < q < B.
+ */
+
+static uintmax_t
+factor_using_division (uintmax_t *t1p, uintmax_t t1, uintmax_t t0,
+ struct factors *factors)
{
- mpz_t t;
- mpz_init (t);
- mpz_set_ui (t, i);
- emit_factor (t);
- mpz_clear (t);
+ if (t0 % 2 == 0)
+ {
+ unsigned int cnt;
+
+ if (t0 == 0)
+ {
+ count_trailing_zeros (cnt, t1);
+ t0 = t1 >> cnt;
+ t1 = 0;
+ cnt += W_TYPE_SIZE;
+ }
+ else
+ {
+ count_trailing_zeros (cnt, t0);
+ rsh2 (t1, t0, t1, t0, cnt);
+ }
+
+ factor_insert_multiplicity (factors, 2, cnt);
+ }
+
+ uintmax_t p = 3;
+ unsigned int i;
+ for (i = 0; t1 > 0 && i < PRIMES_PTAB_ENTRIES; i++)
+ {
+ for (;;)
+ {
+ uintmax_t q1, q0, hi, lo;
+
+ q0 = t0 * primes_dtab[i].binv;
+ umul_ppmm (hi, lo, q0, p);
+ if (hi > t1)
+ break;
+ hi = t1 - hi;
+ q1 = hi * primes_dtab[i].binv;
+ if (LIKELY (q1 > primes_dtab[i].lim))
+ break;
+ t1 = q1; t0 = q0;
+ factor_insert (factors, p);
+ }
+ p += primes_diff[i + 1];
+ }
+ if (t1p)
+ *t1p = t1;
+
+#define DIVBLOCK(I) \
+ do { \
+ for (;;) \
+ { \
+ q = t0 * pd[I].binv; \
+ if (LIKELY (q > pd[I].lim)) \
+ break; \
+ t0 = q; \
+ factor_insert_refind (factors, p, i + 1, I); \
+ } \
+ } while (0)
+
+ for (; i < PRIMES_PTAB_ENTRIES; i += 8)
+ {
+ uintmax_t q;
+ const struct primes_dtab *pd = &primes_dtab[i];
+ DIVBLOCK (0);
+ DIVBLOCK (1);
+ DIVBLOCK (2);
+ DIVBLOCK (3);
+ DIVBLOCK (4);
+ DIVBLOCK (5);
+ DIVBLOCK (6);
+ DIVBLOCK (7);
+
+ p += primes_diff8[i];
+ if (p * p > t0)
+ break;
+ }
+
+ return t0;
}
+#if HAVE_GMP
static void
-factor_using_division (mpz_t t, unsigned int limit)
+mp_factor_using_division (mpz_t t, struct mp_factors *factors)
{
- mpz_t q, r;
- unsigned long int f;
- int ai;
- static unsigned int const add[] = {4, 2, 4, 2, 4, 6, 2, 6};
- unsigned int const *addv = add;
- unsigned int failures;
+ mpz_t q;
+ unsigned long int p;
- debug ("[trial division (%u)] ", limit);
+ debug ("[trial division] ");
mpz_init (q);
- mpz_init (r);
- f = mpz_scan1 (t, 0);
- mpz_div_2exp (t, t, f);
- while (f)
+ p = mpz_scan1 (t, 0);
+ mpz_div_2exp (t, t, p);
+ while (p)
{
- emit_ul_factor (2);
- --f;
+ mp_factor_insert_ui (factors, 2);
+ --p;
}
- while (true)
+ p = 3;
+ for (unsigned int i = 1; i <= PRIMES_PTAB_ENTRIES;)
{
- mpz_tdiv_qr_ui (q, r, t, 3);
- if (mpz_cmp_ui (r, 0) != 0)
- break;
- mpz_set (t, q);
- emit_ul_factor (3);
+ if (! mpz_divisible_ui_p (t, p))
+ {
+ p += primes_diff[i++];
+ if (mpz_cmp_ui (t, p * p) < 0)
+ break;
+ }
+ else
+ {
+ mpz_tdiv_q_ui (t, t, p);
+ mp_factor_insert_ui (factors, p);
+ }
}
- while (true)
+ mpz_clear (q);
+}
+#endif
+
+/* Entry i contains (2i+1)^(-1) mod 2^8. */
+static const unsigned char binvert_table[128] =
+{
+ 0x01, 0xAB, 0xCD, 0xB7, 0x39, 0xA3, 0xC5, 0xEF,
+ 0xF1, 0x1B, 0x3D, 0xA7, 0x29, 0x13, 0x35, 0xDF,
+ 0xE1, 0x8B, 0xAD, 0x97, 0x19, 0x83, 0xA5, 0xCF,
+ 0xD1, 0xFB, 0x1D, 0x87, 0x09, 0xF3, 0x15, 0xBF,
+ 0xC1, 0x6B, 0x8D, 0x77, 0xF9, 0x63, 0x85, 0xAF,
+ 0xB1, 0xDB, 0xFD, 0x67, 0xE9, 0xD3, 0xF5, 0x9F,
+ 0xA1, 0x4B, 0x6D, 0x57, 0xD9, 0x43, 0x65, 0x8F,
+ 0x91, 0xBB, 0xDD, 0x47, 0xC9, 0xB3, 0xD5, 0x7F,
+ 0x81, 0x2B, 0x4D, 0x37, 0xB9, 0x23, 0x45, 0x6F,
+ 0x71, 0x9B, 0xBD, 0x27, 0xA9, 0x93, 0xB5, 0x5F,
+ 0x61, 0x0B, 0x2D, 0x17, 0x99, 0x03, 0x25, 0x4F,
+ 0x51, 0x7B, 0x9D, 0x07, 0x89, 0x73, 0x95, 0x3F,
+ 0x41, 0xEB, 0x0D, 0xF7, 0x79, 0xE3, 0x05, 0x2F,
+ 0x31, 0x5B, 0x7D, 0xE7, 0x69, 0x53, 0x75, 0x1F,
+ 0x21, 0xCB, 0xED, 0xD7, 0x59, 0xC3, 0xE5, 0x0F,
+ 0x11, 0x3B, 0x5D, 0xC7, 0x49, 0x33, 0x55, 0xFF
+};
+
+/* Compute n^(-1) mod B, using a Newton iteration. */
+#define binv(inv,n) \
+ do { \
+ uintmax_t __n = (n); \
+ uintmax_t __inv; \
+ \
+ __inv = binvert_table[(__n / 2) & 0x7F]; /* 8 */ \
+ if (W_TYPE_SIZE > 8) __inv = 2 * __inv - __inv * __inv * __n; \
+ if (W_TYPE_SIZE > 16) __inv = 2 * __inv - __inv * __inv * __n; \
+ if (W_TYPE_SIZE > 32) __inv = 2 * __inv - __inv * __inv * __n; \
+ \
+ if (W_TYPE_SIZE > 64) \
+ { \
+ int __invbits = 64; \
+ do { \
+ __inv = 2 * __inv - __inv * __inv * __n; \
+ __invbits *= 2; \
+ } while (__invbits < W_TYPE_SIZE); \
+ } \
+ \
+ (inv) = __inv; \
+ } while (0)
+
+/* q = u / d, assuming d|u. */
+#define divexact_21(q1, q0, u1, u0, d) \
+ do { \
+ uintmax_t _di, _q0; \
+ binv (_di, (d)); \
+ _q0 = (u0) * _di; \
+ if ((u1) >= (d)) \
+ { \
+ uintmax_t _p1, _p0; \
+ umul_ppmm (_p1, _p0, _q0, d); \
+ (q1) = ((u1) - _p1) * _di; \
+ (q0) = _q0; \
+ } \
+ else \
+ { \
+ (q0) = _q0; \
+ (q1) = 0; \
+ } \
+ } while (0)
+
+/* x B (mod n). */
+#define redcify(r_prim, r, n) \
+ do { \
+ uintmax_t _redcify_q ATTRIBUTE_UNUSED; \
+ udiv_qrnnd (_redcify_q, r_prim, r, 0, n); \
+ } while (0)
+
+/* x B^2 (mod n). Requires x > 0, n1 < B/2 */
+#define redcify2(r1, r0, x, n1, n0) \
+ do { \
+ uintmax_t _r1, _r0, _i; \
+ if ((x) < (n1)) \
+ { \
+ _r1 = (x); _r0 = 0; \
+ _i = W_TYPE_SIZE; \
+ } \
+ else \
+ { \
+ _r1 = 0; _r0 = (x); \
+ _i = 2*W_TYPE_SIZE; \
+ } \
+ while (_i-- > 0) \
+ { \
+ lsh2 (_r1, _r0, _r1, _r0, 1); \
+ if (ge2 (_r1, _r0, (n1), (n0))) \
+ sub_ddmmss (_r1, _r0, _r1, _r0, (n1), (n0)); \
+ } \
+ (r1) = _r1; \
+ (r0) = _r0; \
+ } while (0)
+
+/* Modular two-word multiplication, r = a * b mod m, with mi = m^(-1) mod B.
+ Both a and b must be in redc form, the result will be in redc form too. */
+static inline uintmax_t
+mulredc (uintmax_t a, uintmax_t b, uintmax_t m, uintmax_t mi)
+{
+ uintmax_t rh, rl, q, th, tl, xh;
+
+ umul_ppmm (rh, rl, a, b);
+ q = rl * mi;
+ umul_ppmm (th, tl, q, m);
+ xh = rh - th;
+ if (rh < th)
+ xh += m;
+
+ return xh;
+}
+
+/* Modular two-word multiplication, r = a * b mod m, with mi = m^(-1) mod B.
+ Both a and b must be in redc form, the result will be in redc form too.
+ For performance reasons, the most significant bit of m must be clear. */
+static uintmax_t
+mulredc2 (uintmax_t *r1p,
+ uintmax_t a1, uintmax_t a0, uintmax_t b1, uintmax_t b0,
+ uintmax_t m1, uintmax_t m0, uintmax_t mi)
+{
+ uintmax_t r1, r0, q, p1, p0, t1, t0, s1, s0;
+ mi = -mi;
+ assert ( (a1 >> (W_TYPE_SIZE - 1)) == 0);
+ assert ( (b1 >> (W_TYPE_SIZE - 1)) == 0);
+ assert ( (m1 >> (W_TYPE_SIZE - 1)) == 0);
+
+ /* First compute a0 * <b1, b0> B^{-1}
+ +-----+
+ |a0 b0|
+ +--+--+--+
+ |a0 b1|
+ +--+--+--+
+ |q0 m0|
+ +--+--+--+
+ |q0 m1|
+ -+--+--+--+
+ |r1|r0| 0|
+ +--+--+--+
+ */
+ umul_ppmm (t1, t0, a0, b0);
+ umul_ppmm (r1, r0, a0, b1);
+ q = mi * t0;
+ umul_ppmm (p1, p0, q, m0);
+ umul_ppmm (s1, s0, q, m1);
+ r0 += (t0 != 0); /* Carry */
+ add_ssaaaa (r1, r0, r1, r0, 0, p1);
+ add_ssaaaa (r1, r0, r1, r0, 0, t1);
+ add_ssaaaa (r1, r0, r1, r0, s1, s0);
+
+ /* Next, (a1 * <b1, b0> + <r1, r0> B^{-1}
+ +-----+
+ |a1 b0|
+ +--+--+
+ |r1|r0|
+ +--+--+--+
+ |a1 b1|
+ +--+--+--+
+ |q1 m0|
+ +--+--+--+
+ |q1 m1|
+ -+--+--+--+
+ |r1|r0| 0|
+ +--+--+--+
+ */
+ umul_ppmm (t1, t0, a1, b0);
+ umul_ppmm (s1, s0, a1, b1);
+ add_ssaaaa (t1, t0, t1, t0, 0, r0);
+ q = mi * t0;
+ add_ssaaaa (r1, r0, s1, s0, 0, r1);
+ umul_ppmm (p1, p0, q, m0);
+ umul_ppmm (s1, s0, q, m1);
+ r0 += (t0 != 0); /* Carry */
+ add_ssaaaa (r1, r0, r1, r0, 0, p1);
+ add_ssaaaa (r1, r0, r1, r0, 0, t1);
+ add_ssaaaa (r1, r0, r1, r0, s1, s0);
+
+ if (ge2 (r1, r0, m1, m0))
+ sub_ddmmss (r1, r0, r1, r0, m1, m0);
+
+ *r1p = r1;
+ return r0;
+}
+
+static uintmax_t _GL_ATTRIBUTE_CONST
+powm (uintmax_t b, uintmax_t e, uintmax_t n, uintmax_t ni, uintmax_t one)
+{
+ uintmax_t y = one;
+
+ if (e & 1)
+ y = b;
+
+ while (e != 0)
{
- mpz_tdiv_qr_ui (q, r, t, 5);
- if (mpz_cmp_ui (r, 0) != 0)
- break;
- mpz_set (t, q);
- emit_ul_factor (5);
+ b = mulredc (b, b, n, ni);
+ e >>= 1;
+
+ if (e & 1)
+ y = mulredc (y, b, n, ni);
}
- failures = 0;
- f = 7;
- ai = 0;
- while (mpz_cmp_ui (t, 1) != 0)
+ return y;
+}
+
+static uintmax_t
+powm2 (uintmax_t *r1m,
+ const uintmax_t *bp, const uintmax_t *ep, const uintmax_t *np,
+ uintmax_t ni, const uintmax_t *one)
+{
+ uintmax_t r1, r0, b1, b0, n1, n0;
+ unsigned int i;
+ uintmax_t e;
+
+ b0 = bp[0];
+ b1 = bp[1];
+ n0 = np[0];
+ n1 = np[1];
+
+ r0 = one[0];
+ r1 = one[1];
+
+ for (e = ep[0], i = W_TYPE_SIZE; i > 0; i--, e >>= 1)
{
- mpz_tdiv_qr_ui (q, r, t, f);
- if (mpz_cmp_ui (r, 0) != 0)
+ if (e & 1)
{
- f += addv[ai];
- if (mpz_cmp_ui (q, f) < 0)
- break;
- ai = (ai + 1) & 7;
- failures++;
- if (failures > limit)
- break;
+ r0 = mulredc2 (r1m, r1, r0, b1, b0, n1, n0, ni);
+ r1 = *r1m;
+ }
+ b0 = mulredc2 (r1m, b1, b0, b1, b0, n1, n0, ni);
+ b1 = *r1m;
+ }
+ for (e = ep[1]; e > 0; e >>= 1)
+ {
+ if (e & 1)
+ {
+ r0 = mulredc2 (r1m, r1, r0, b1, b0, n1, n0, ni);
+ r1 = *r1m;
+ }
+ b0 = mulredc2 (r1m, b1, b0, b1, b0, n1, n0, ni);
+ b1 = *r1m;
+ }
+ *r1m = r1;
+ return r0;
+}
+
+static bool _GL_ATTRIBUTE_CONST
+millerrabin (uintmax_t n, uintmax_t ni, uintmax_t b, uintmax_t q,
+ unsigned int k, uintmax_t one)
+{
+ uintmax_t y = powm (b, q, n, ni, one);
+
+ uintmax_t nm1 = n - one; /* -1, but in redc representation. */
+
+ if (y == one || y == nm1)
+ return true;
+
+ for (unsigned int i = 1; i < k; i++)
+ {
+ y = mulredc (y, y, n, ni);
+
+ if (y == nm1)
+ return true;
+ if (y == one)
+ return false;
+ }
+ return false;
+}
+
+static bool
+millerrabin2 (const uintmax_t *np, uintmax_t ni, const uintmax_t *bp,
+ const uintmax_t *qp, unsigned int k, const uintmax_t *one)
+{
+ uintmax_t y1, y0, nm1_1, nm1_0, r1m;
+
+ y0 = powm2 (&r1m, bp, qp, np, ni, one);
+ y1 = r1m;
+
+ if (y0 == one[0] && y1 == one[1])
+ return true;
+
+ sub_ddmmss (nm1_1, nm1_0, np[1], np[0], one[1], one[0]);
+
+ if (y0 == nm1_0 && y1 == nm1_1)
+ return true;
+
+ for (unsigned int i = 1; i < k; i++)
+ {
+ y0 = mulredc2 (&r1m, y1, y0, y1, y0, np[1], np[0], ni);
+ y1 = r1m;
+
+ if (y0 == nm1_0 && y1 == nm1_1)
+ return true;
+ if (y0 == one[0] && y1 == one[1])
+ return false;
+ }
+ return false;
+}
+
+#if HAVE_GMP
+static bool
+mp_millerrabin (mpz_srcptr n, mpz_srcptr nm1, mpz_ptr x, mpz_ptr y,
+ mpz_srcptr q, unsigned long int k)
+{
+ mpz_powm (y, x, q, n);
+
+ if (mpz_cmp_ui (y, 1) == 0 || mpz_cmp (y, nm1) == 0)
+ return true;
+
+ for (unsigned long int i = 1; i < k; i++)
+ {
+ mpz_powm_ui (y, y, 2, n);
+ if (mpz_cmp (y, nm1) == 0)
+ return true;
+ if (mpz_cmp_ui (y, 1) == 0)
+ return false;
+ }
+ return false;
+}
+#endif
+
+/* Lucas' prime test. The number of iterations vary greatly, up to a few dozen
+ have been observed. The average seem to be about 2. */
+static bool
+prime_p (uintmax_t n)
+{
+ int k;
+ bool is_prime;
+ uintmax_t a_prim, one, ni;
+ struct factors factors;
+
+ if (n <= 1)
+ return false;
+
+ /* We have already casted out small primes. */
+ if (n < (uintmax_t) FIRST_OMITTED_PRIME * FIRST_OMITTED_PRIME)
+ return true;
+
+ /* Precomputation for Miller-Rabin. */
+ uintmax_t q = n - 1;
+ for (k = 0; (q & 1) == 0; k++)
+ q >>= 1;
+
+ uintmax_t a = 2;
+ binv (ni, n); /* ni <- 1/n mod B */
+ redcify (one, 1, n);
+ addmod (a_prim, one, one, n); /* i.e., redcify a = 2 */
+
+ /* Perform a Miller-Rabin test, finds most composites quickly. */
+ if (!millerrabin (n, ni, a_prim, q, k, one))
+ return false;
+
+ if (flag_prove_primality)
+ {
+ /* Factor n-1 for Lucas. */
+ factor (0, n - 1, &factors);
+ }
+
+ /* Loop until Lucas proves our number prime, or Miller-Rabin proves our
+ number composite. */
+ for (unsigned int r = 0; r < PRIMES_PTAB_ENTRIES; r++)
+ {
+ if (flag_prove_primality)
+ {
+ is_prime = true;
+ for (unsigned int i = 0; i < factors.nfactors && is_prime; i++)
+ {
+ is_prime
+ = powm (a_prim, (n - 1) / factors.p[i], n, ni, one) != one;
+ }
}
else
{
- mpz_swap (t, q);
- emit_ul_factor (f);
- failures = 0;
+ /* After enough Miller-Rabin runs, be content. */
+ is_prime = (r == MR_REPS - 1);
}
+
+ if (is_prime)
+ return true;
+
+ a += primes_diff[r]; /* Establish new base. */
+
+ /* The following is equivalent to redcify (a_prim, a, n). It runs faster
+ on most processors, since it avoids udiv_qrnnd. If we go down the
+ udiv_qrnnd_preinv path, this code should be replaced. */
+ {
+ uintmax_t s1, s0;
+ umul_ppmm (s1, s0, one, a);
+ if (LIKELY (s1 == 0))
+ a_prim = s0 % n;
+ else
+ {
+ uintmax_t dummy ATTRIBUTE_UNUSED;
+ udiv_qrnnd (dummy, a_prim, s1, s0, n);
+ }
+ }
+
+ if (!millerrabin (n, ni, a_prim, q, k, one))
+ return false;
}
- mpz_clear (q);
- mpz_clear (r);
+ error (0, 0, _("Lucas prime test failure. This should not happen"));
+ abort ();
}
-/* The number of Miller-Rabin tests we require. */
-enum { MR_REPS = 25 };
+static bool
+prime2_p (uintmax_t n1, uintmax_t n0)
+{
+ uintmax_t q[2], nm1[2];
+ uintmax_t a_prim[2];
+ uintmax_t one[2];
+ uintmax_t na[2];
+ uintmax_t ni;
+ unsigned int k;
+ struct factors factors;
+
+ if (n1 == 0)
+ return prime_p (n0);
+
+ nm1[1] = n1 - (n0 == 0);
+ nm1[0] = n0 - 1;
+ if (nm1[0] == 0)
+ {
+ count_trailing_zeros (k, nm1[1]);
-static void
-factor_using_pollard_rho (mpz_t n, int a_int)
+ q[0] = nm1[1] >> k;
+ q[1] = 0;
+ k += W_TYPE_SIZE;
+ }
+ else
+ {
+ count_trailing_zeros (k, nm1[0]);
+ rsh2 (q[1], q[0], nm1[1], nm1[0], k);
+ }
+
+ uintmax_t a = 2;
+ binv (ni, n0);
+ redcify2 (one[1], one[0], 1, n1, n0);
+ addmod2 (a_prim[1], a_prim[0], one[1], one[0], one[1], one[0], n1, n0);
+
+ /* FIXME: Use scalars or pointers in arguments? Some consistency needed. */
+ na[0] = n0;
+ na[1] = n1;
+
+ if (!millerrabin2 (na, ni, a_prim, q, k, one))
+ return false;
+
+ if (flag_prove_primality)
+ {
+ /* Factor n-1 for Lucas. */
+ factor (nm1[1], nm1[0], &factors);
+ }
+
+ /* Loop until Lucas proves our number prime, or Miller-Rabin proves our
+ number composite. */
+ for (unsigned int r = 0; r < PRIMES_PTAB_ENTRIES; r++)
+ {
+ bool is_prime;
+ uintmax_t e[2], y[2];
+
+ if (flag_prove_primality)
+ {
+ is_prime = true;
+ if (factors.plarge[1])
+ {
+ uintmax_t pi;
+ binv (pi, factors.plarge[0]);
+ e[0] = pi * nm1[0];
+ e[1] = 0;
+ y[0] = powm2 (&y[1], a_prim, e, na, ni, one);
+ is_prime = (y[0] != one[0] || y[1] != one[1]);
+ }
+ for (unsigned int i = 0; i < factors.nfactors && is_prime; i++)
+ {
+ /* FIXME: We always have the factor 2. Do we really need to
+ handle it here? We have done the same powering as part
+ of millerrabin. */
+ if (factors.p[i] == 2)
+ rsh2 (e[1], e[0], nm1[1], nm1[0], 1);
+ else
+ divexact_21 (e[1], e[0], nm1[1], nm1[0], factors.p[i]);
+ y[0] = powm2 (&y[1], a_prim, e, na, ni, one);
+ is_prime = (y[0] != one[0] || y[1] != one[1]);
+ }
+ }
+ else
+ {
+ /* After enough Miller-Rabin runs, be content. */
+ is_prime = (r == MR_REPS - 1);
+ }
+
+ if (is_prime)
+ return true;
+
+ a += primes_diff[r]; /* Establish new base. */
+ redcify2 (a_prim[1], a_prim[0], a, n1, n0);
+
+ if (!millerrabin2 (na, ni, a_prim, q, k, one))
+ return false;
+ }
+
+ error (0, 0, _("Lucas prime test failure. This should not happen"));
+ abort ();
+}
+
+#if HAVE_GMP
+static bool
+mp_prime_p (mpz_t n)
{
- mpz_t x, x1, y, P;
- mpz_t a;
- mpz_t g;
- mpz_t t1, t2;
- int k, l, c;
+ bool is_prime;
+ mpz_t q, a, nm1, tmp;
+ struct mp_factors factors;
- debug ("[pollard-rho (%d)] ", a_int);
+ if (mpz_cmp_ui (n, 1) <= 0)
+ return false;
- mpz_init (g);
- mpz_init (t1);
- mpz_init (t2);
+ /* We have already casted out small primes. */
+ if (mpz_cmp_ui (n, (long) FIRST_OMITTED_PRIME * FIRST_OMITTED_PRIME) < 0)
+ return true;
- mpz_init_set_si (a, a_int);
- mpz_init_set_si (y, 2);
- mpz_init_set_si (x, 2);
- mpz_init_set_si (x1, 2);
- k = 1;
- l = 1;
- mpz_init_set_ui (P, 1);
- c = 0;
+ mpz_inits (q, a, nm1, tmp, NULL);
- while (mpz_cmp_ui (n, 1) != 0)
+ /* Precomputation for Miller-Rabin. */
+ mpz_sub_ui (nm1, n, 1);
+
+ /* Find q and k, where q is odd and n = 1 + 2**k * q. */
+ unsigned long int k = mpz_scan1 (nm1, 0);
+ mpz_tdiv_q_2exp (q, nm1, k);
+
+ mpz_set_ui (a, 2);
+
+ /* Perform a Miller-Rabin test, finds most composites quickly. */
+ if (!mp_millerrabin (n, nm1, a, tmp, q, k))
{
-S2:
- mpz_mul (x, x, x); mpz_add (x, x, a); mpz_mod (x, x, n);
+ is_prime = false;
+ goto ret2;
+ }
+
+ if (flag_prove_primality)
+ {
+ /* Factor n-1 for Lucas. */
+ mpz_set (tmp, nm1);
+ mp_factor (tmp, &factors);
+ }
- mpz_sub (t1, x1, x); mpz_mul (t2, P, t1); mpz_mod (P, t2, n);
- c++;
- if (c == 20)
+ /* Loop until Lucas proves our number prime, or Miller-Rabin proves our
+ number composite. */
+ for (unsigned int r = 0; r < PRIMES_PTAB_ENTRIES; r++)
+ {
+ if (flag_prove_primality)
{
- c = 0;
- mpz_gcd (g, P, n);
- if (mpz_cmp_ui (g, 1) != 0)
- goto S4;
- mpz_set (y, x);
+ is_prime = true;
+ for (unsigned long int i = 0; i < factors.nfactors && is_prime; i++)
+ {
+ mpz_divexact (tmp, nm1, factors.p[i]);
+ mpz_powm (tmp, a, tmp, n);
+ is_prime = mpz_cmp_ui (tmp, 1) != 0;
+ }
+ }
+ else
+ {
+ /* After enough Miller-Rabin runs, be content. */
+ is_prime = (r == MR_REPS - 1);
}
- k--;
- if (k > 0)
- goto S2;
+ if (is_prime)
+ goto ret1;
- mpz_gcd (g, P, n);
- if (mpz_cmp_ui (g, 1) != 0)
- goto S4;
+ mpz_add_ui (a, a, primes_diff[r]); /* Establish new base. */
- mpz_set (x1, x);
- k = l;
- l = 2 * l;
- unsigned int i;
- for (i = 0; i < k; i++)
+ if (!mp_millerrabin (n, nm1, a, tmp, q, k))
{
- mpz_mul (x, x, x); mpz_add (x, x, a); mpz_mod (x, x, n);
+ is_prime = false;
+ goto ret1;
}
- mpz_set (y, x);
- c = 0;
- goto S2;
-S4:
+ }
+
+ error (0, 0, _("Lucas prime test failure. This should not happen"));
+ abort ();
+
+ ret1:
+ if (flag_prove_primality)
+ mp_factor_clear (&factors);
+ ret2:
+ mpz_clears (q, a, nm1, tmp, NULL);
+
+ return is_prime;
+}
+#endif
+
+static void
+factor_using_pollard_rho (uintmax_t n, unsigned long int a,
+ struct factors *factors)
+{
+ uintmax_t x, z, y, P, t, ni, g;
+
+ unsigned long int k = 1;
+ unsigned long int l = 1;
+
+ redcify (P, 1, n);
+ addmod (x, P, P, n); /* i.e., redcify(2) */
+ y = z = x;
+
+ while (n != 1)
+ {
+ assert (a < n);
+
+ binv (ni, n); /* FIXME: when could we use old 'ni' value? */
+
+ for (;;)
+ {
+ do
+ {
+ x = mulredc (x, x, n, ni);
+ addmod (x, x, a, n);
+
+ submod (t, z, x, n);
+ P = mulredc (P, t, n, ni);
+
+ if (k % 32 == 1)
+ {
+ if (gcd_odd (P, n) != 1)
+ goto factor_found;
+ y = x;
+ }
+ }
+ while (--k != 0);
+
+ z = x;
+ k = l;
+ l = 2 * l;
+ for (unsigned long int i = 0; i < k; i++)
+ {
+ x = mulredc (x, x, n, ni);
+ addmod (x, x, a, n);
+ }
+ y = x;
+ }
+
+ factor_found:
do
{
- mpz_mul (y, y, y); mpz_add (y, y, a); mpz_mod (y, y, n);
- mpz_sub (t1, x1, y); mpz_gcd (g, t1, n);
+ y = mulredc (y, y, n, ni);
+ addmod (y, y, a, n);
+
+ submod (t, z, y, n);
+ g = gcd_odd (t, n);
+ }
+ while (g == 1);
+
+ n = n / g;
+
+ if (!prime_p (g))
+ factor_using_pollard_rho (g, a + 1, factors);
+ else
+ factor_insert (factors, g);
+
+ if (prime_p (n))
+ {
+ factor_insert (factors, n);
+ break;
}
- while (mpz_cmp_ui (g, 1) == 0);
- mpz_div (n, n, g); /* divide by g, before g is overwritten */
+ x = x % n;
+ z = z % n;
+ y = y % n;
+ }
+}
+
+static void
+factor_using_pollard_rho2 (uintmax_t n1, uintmax_t n0, unsigned long int a,
+ struct factors *factors)
+{
+ uintmax_t x1, x0, z1, z0, y1, y0, P1, P0, t1, t0, ni, g1, g0, r1m;
+
+ unsigned long int k = 1;
+ unsigned long int l = 1;
+
+ redcify2 (P1, P0, 1, n1, n0);
+ addmod2 (x1, x0, P1, P0, P1, P0, n1, n0); /* i.e., redcify(2) */
+ y1 = z1 = x1;
+ y0 = z0 = x0;
- if (!mpz_probab_prime_p (g, MR_REPS))
+ while (n1 != 0 || n0 != 1)
+ {
+ binv (ni, n0);
+
+ for (;;)
{
do
{
- mp_limb_t a_limb;
- mpn_random (&a_limb, (mp_size_t) 1);
- a_int = (int) a_limb;
+ x0 = mulredc2 (&r1m, x1, x0, x1, x0, n1, n0, ni);
+ x1 = r1m;
+ addmod2 (x1, x0, x1, x0, 0, a, n1, n0);
+
+ submod2 (t1, t0, z1, z0, x1, x0, n1, n0);
+ P0 = mulredc2 (&r1m, P1, P0, t1, t0, n1, n0, ni);
+ P1 = r1m;
+
+ if (k % 32 == 1)
+ {
+ g0 = gcd2_odd (&g1, P1, P0, n1, n0);
+ if (g1 != 0 || g0 != 1)
+ goto factor_found;
+ y1 = x1; y0 = x0;
+ }
}
- while (a_int == -2 || a_int == 0);
+ while (--k != 0);
- debug ("[composite factor--restarting pollard-rho] ");
- factor_using_pollard_rho (g, a_int);
+ z1 = x1; z0 = x0;
+ k = l;
+ l = 2 * l;
+ for (unsigned long int i = 0; i < k; i++)
+ {
+ x0 = mulredc2 (&r1m, x1, x0, x1, x0, n1, n0, ni);
+ x1 = r1m;
+ addmod2 (x1, x0, x1, x0, 0, a, n1, n0);
+ }
+ y1 = x1; y0 = x0;
+ }
+
+ factor_found:
+ do
+ {
+ y0 = mulredc2 (&r1m, y1, y0, y1, y0, n1, n0, ni);
+ y1 = r1m;
+ addmod2 (y1, y0, y1, y0, 0, a, n1, n0);
+
+ submod2 (t1, t0, z1, z0, y1, y0, n1, n0);
+ g0 = gcd2_odd (&g1, t1, t0, n1, n0);
+ }
+ while (g1 == 0 && g0 == 1);
+
+ if (g1 == 0)
+ {
+ /* The found factor is one word. */
+ divexact_21 (n1, n0, n1, n0, g0); /* n = n / g */
+
+ if (!prime_p (g0))
+ factor_using_pollard_rho (g0, a + 1, factors);
+ else
+ factor_insert (factors, g0);
}
else
{
- emit_factor (g);
+ /* The found factor is two words. This is highly unlikely, thus hard
+ to trigger. Please be careful before you change this code! */
+ uintmax_t ginv;
+
+ binv (ginv, g0); /* Compute n = n / g. Since the result will */
+ n0 = ginv * n0; /* fit one word, we can compute the quotient */
+ n1 = 0; /* modulo B, ignoring the high divisor word. */
+
+ if (!prime2_p (g1, g0))
+ factor_using_pollard_rho2 (g1, g0, a + 1, factors);
+ else
+ factor_insert_large (factors, g1, g0);
+ }
+
+ if (n1 == 0)
+ {
+ if (prime_p (n0))
+ {
+ factor_insert (factors, n0);
+ break;
+ }
+
+ factor_using_pollard_rho (n0, a, factors);
+ return;
}
- mpz_mod (x, x, n);
- mpz_mod (x1, x1, n);
- mpz_mod (y, y, n);
- if (mpz_probab_prime_p (n, MR_REPS))
+
+ if (prime2_p (n1, n0))
{
- emit_factor (n);
+ factor_insert_large (factors, n1, n0);
break;
}
- }
- mpz_clear (g);
- mpz_clear (P);
- mpz_clear (t2);
- mpz_clear (t1);
- mpz_clear (a);
- mpz_clear (x1);
- mpz_clear (x);
- mpz_clear (y);
+ x0 = mod2 (&x1, x1, x0, n1, n0);
+ z0 = mod2 (&z1, z1, z0, n1, n0);
+ y0 = mod2 (&y1, y1, y0, n1, n0);
+ }
}
-#else
-
+#if HAVE_GMP
static void
-debug (char const *fmt ATTRIBUTE_UNUSED, ...)
+mp_factor_using_pollard_rho (mpz_t n, unsigned long int a,
+ struct mp_factors *factors)
{
-}
+ mpz_t x, z, y, P;
+ mpz_t t, t2;
-#endif
+ debug ("[pollard-rho (%lu)] ", a);
-/* The maximum number of factors, including -1, for negative numbers. */
-#define MAX_N_FACTORS (sizeof (uintmax_t) * CHAR_BIT)
+ mpz_inits (t, t2, NULL);
+ mpz_init_set_si (y, 2);
+ mpz_init_set_si (x, 2);
+ mpz_init_set_si (z, 2);
+ mpz_init_set_ui (P, 1);
-/* The trial divisor increment wheel. Use it to skip over divisors that
- are composites of 2, 3, 5, 7, or 11. The part from WHEEL_START up to
- WHEEL_END is reused periodically, while the "lead in" is used to test
- for those primes and to jump onto the wheel. For more information, see
- http://www.utm.edu/research/primes/glossary/WheelFactorization.html */
+ unsigned long long int k = 1;
+ unsigned long long int l = 1;
-#include "wheel-size.h" /* For the definition of WHEEL_SIZE. */
-static const unsigned char wheel_tab[] =
- {
-#include "wheel.h"
- };
+ while (mpz_cmp_ui (n, 1) != 0)
+ {
+ for (;;)
+ {
+ do
+ {
+ mpz_mul (t, x, x);
+ mpz_mod (x, t, n);
+ mpz_add_ui (x, x, a);
+
+ mpz_sub (t, z, x);
+ mpz_mul (t2, P, t);
+ mpz_mod (P, t2, n);
+
+ if (k % 32 == 1)
+ {
+ mpz_gcd (t, P, n);
+ if (mpz_cmp_ui (t, 1) != 0)
+ goto factor_found;
+ mpz_set (y, x);
+ }
+ }
+ while (--k != 0);
-#define WHEEL_START (wheel_tab + WHEEL_SIZE)
-#define WHEEL_END (wheel_tab + ARRAY_CARDINALITY (wheel_tab))
+ mpz_set (z, x);
+ k = l;
+ l = 2 * l;
+ for (unsigned long long int i = 0; i < k; i++)
+ {
+ mpz_mul (t, x, x);
+ mpz_mod (x, t, n);
+ mpz_add_ui (x, x, a);
+ }
+ mpz_set (y, x);
+ }
-/* FIXME: comment */
+ factor_found:
+ do
+ {
+ mpz_mul (t, y, y);
+ mpz_mod (y, t, n);
+ mpz_add_ui (y, y, a);
-static size_t
-factor_wheel (uintmax_t n0, size_t max_n_factors, uintmax_t *factors)
-{
- uintmax_t n = n0, d, q;
- size_t n_factors = 0;
- unsigned char const *w = wheel_tab;
+ mpz_sub (t, z, y);
+ mpz_gcd (t, t, n);
+ }
+ while (mpz_cmp_ui (t, 1) == 0);
- if (n <= 1)
- return n_factors;
+ mpz_divexact (n, n, t); /* divide by t, before t is overwritten */
- /* The exit condition in the following loop is correct because
- any time it is tested one of these 3 conditions holds:
- (1) d divides n
- (2) n is prime
- (3) n is composite but has no factors less than d.
- If (1) or (2) obviously the right thing happens.
- If (3), then since n is composite it is >= d^2. */
+ if (!mp_prime_p (t))
+ {
+ debug ("[composite factor--restarting pollard-rho] ");
+ mp_factor_using_pollard_rho (t, a + 1, factors);
+ }
+ else
+ {
+ mp_factor_insert (factors, t);
+ }
- d = 2;
- do
- {
- q = n / d;
- while (n == q * d)
+ if (mp_prime_p (n))
{
- assert (n_factors < max_n_factors);
- factors[n_factors++] = d;
- n = q;
- q = n / d;
+ mp_factor_insert (factors, n);
+ break;
}
- d += *(w++);
- if (w == WHEEL_END)
- w = WHEEL_START;
+
+ mpz_mod (x, x, n);
+ mpz_mod (z, z, n);
+ mpz_mod (y, y, n);
}
- while (d <= q);
- if (n != 1 || n0 == 1)
+ mpz_clears (P, t2, t, z, x, y, NULL);
+}
+#endif
+
+/* FIXME: Maybe better to use an iteration converging to 1/sqrt(n)? If
+ algorithm is replaced, consider also returning the remainder. */
+static uintmax_t _GL_ATTRIBUTE_CONST
+isqrt (uintmax_t n)
+{
+ uintmax_t x;
+ unsigned c;
+ if (n == 0)
+ return 0;
+
+ count_leading_zeros (c, n);
+
+ /* Make x > sqrt(n). This will be invariant through the loop. */
+ x = (uintmax_t) 1 << ((W_TYPE_SIZE + 1 - c) / 2);
+
+ for (;;)
{
- assert (n_factors < max_n_factors);
- factors[n_factors++] = n;
- }
+ uintmax_t y = (x + n/x) / 2;
+ if (y >= x)
+ return x;
- return n_factors;
+ x = y;
+ }
}
-/* Single-precision factoring */
-static void
-print_factors_single (uintmax_t n)
+static uintmax_t _GL_ATTRIBUTE_CONST
+isqrt2 (uintmax_t nh, uintmax_t nl)
{
- uintmax_t factors[MAX_N_FACTORS];
- size_t n_factors = factor_wheel (n, MAX_N_FACTORS, factors);
- size_t i;
- char buf[INT_BUFSIZE_BOUND (uintmax_t)];
+ unsigned int shift;
+ uintmax_t x;
- printf ("%s:", umaxtostr (n, buf));
- for (i = 0; i < n_factors; i++)
- printf (" %s", umaxtostr (factors[i], buf));
- putchar ('\n');
+ /* Ensures the remainder fits in an uintmax_t. */
+ assert (nh < ((uintmax_t) 1 << (W_TYPE_SIZE - 2)));
+
+ if (nh == 0)
+ return isqrt (nl);
+
+ count_leading_zeros (shift, nh);
+ shift &= ~1;
+
+ /* Make x > sqrt(n) */
+ x = isqrt ( (nh << shift) + (nl >> (W_TYPE_SIZE - shift))) + 1;
+ x <<= (W_TYPE_SIZE - shift) / 2;
+
+ /* Do we need more than one iteration? */
+ for (;;)
+ {
+ uintmax_t r ATTRIBUTE_UNUSED;
+ uintmax_t q, y;
+ udiv_qrnnd (q, r, nh, nl, x);
+ y = (x + q) / 2;
+
+ if (y >= x)
+ {
+ uintmax_t hi, lo;
+ umul_ppmm (hi, lo, x + 1, x + 1);
+ assert (gt2 (hi, lo, nh, nl));
+
+ umul_ppmm (hi, lo, x, x);
+ assert (ge2 (nh, nl, hi, lo));
+ sub_ddmmss (hi, lo, nh, nl, hi, lo);
+ assert (hi == 0);
+
+ return x;
+ }
+
+ x = y;
+ }
}
-#if HAVE_GMP
-static int
-mpcompare (const void *av, const void *bv)
+/* MAGIC[N] has a bit i set iff i is a quadratic residue mod N. */
+#define MAGIC64 ((uint64_t) 0x0202021202030213ULL)
+#define MAGIC63 ((uint64_t) 0x0402483012450293ULL)
+#define MAGIC65 ((uint64_t) 0x218a019866014613ULL)
+#define MAGIC11 0x23b
+
+/* Returns the square root if the input is a square, otherwise 0. */
+static uintmax_t _GL_ATTRIBUTE_CONST
+is_square (uintmax_t x)
{
- mpz_t *const *a = av;
- mpz_t *const *b = bv;
- return mpz_cmp (**a, **b);
+ /* Uses the tests suggested by Cohen. Excludes 99% of the non-squares before
+ computing the square root. */
+ if (((MAGIC64 >> (x & 63)) & 1)
+ && ((MAGIC63 >> (x % 63)) & 1)
+ /* Both 0 and 64 are squares mod (65) */
+ && ((MAGIC65 >> ((x % 65) & 63)) & 1)
+ && ((MAGIC11 >> (x % 11) & 1)))
+ {
+ uintmax_t r = isqrt (x);
+ if (r*r == x)
+ return r;
+ }
+ return 0;
}
-static void
-sort_and_print_factors (void)
+/* invtab[i] = floor(0x10000 / (0x100 + i) */
+static const unsigned short invtab[0x81] =
+ {
+ 0x200,
+ 0x1fc, 0x1f8, 0x1f4, 0x1f0, 0x1ec, 0x1e9, 0x1e5, 0x1e1,
+ 0x1de, 0x1da, 0x1d7, 0x1d4, 0x1d0, 0x1cd, 0x1ca, 0x1c7,
+ 0x1c3, 0x1c0, 0x1bd, 0x1ba, 0x1b7, 0x1b4, 0x1b2, 0x1af,
+ 0x1ac, 0x1a9, 0x1a6, 0x1a4, 0x1a1, 0x19e, 0x19c, 0x199,
+ 0x197, 0x194, 0x192, 0x18f, 0x18d, 0x18a, 0x188, 0x186,
+ 0x183, 0x181, 0x17f, 0x17d, 0x17a, 0x178, 0x176, 0x174,
+ 0x172, 0x170, 0x16e, 0x16c, 0x16a, 0x168, 0x166, 0x164,
+ 0x162, 0x160, 0x15e, 0x15c, 0x15a, 0x158, 0x157, 0x155,
+ 0x153, 0x151, 0x150, 0x14e, 0x14c, 0x14a, 0x149, 0x147,
+ 0x146, 0x144, 0x142, 0x141, 0x13f, 0x13e, 0x13c, 0x13b,
+ 0x139, 0x138, 0x136, 0x135, 0x133, 0x132, 0x130, 0x12f,
+ 0x12e, 0x12c, 0x12b, 0x129, 0x128, 0x127, 0x125, 0x124,
+ 0x123, 0x121, 0x120, 0x11f, 0x11e, 0x11c, 0x11b, 0x11a,
+ 0x119, 0x118, 0x116, 0x115, 0x114, 0x113, 0x112, 0x111,
+ 0x10f, 0x10e, 0x10d, 0x10c, 0x10b, 0x10a, 0x109, 0x108,
+ 0x107, 0x106, 0x105, 0x104, 0x103, 0x102, 0x101, 0x100,
+ };
+
+/* Compute q = [u/d], r = u mod d. Avoids slow hardware division for the case
+ that q < 0x40; here it instead uses a table of (Euclidian) inverses. */
+#define div_smallq(q, r, u, d) \
+ do { \
+ if ((u) / 0x40 < (d)) \
+ { \
+ int _cnt; \
+ uintmax_t _dinv, _mask, _q, _r; \
+ count_leading_zeros (_cnt, (d)); \
+ _r = (u); \
+ if (UNLIKELY (_cnt > (W_TYPE_SIZE - 8))) \
+ { \
+ _dinv = invtab[((d) << (_cnt + 8 - W_TYPE_SIZE)) - 0x80]; \
+ _q = _dinv * _r >> (8 + W_TYPE_SIZE - _cnt); \
+ } \
+ else \
+ { \
+ _dinv = invtab[((d) >> (W_TYPE_SIZE - 8 - _cnt)) - 0x7f]; \
+ _q = _dinv * (_r >> (W_TYPE_SIZE - 3 - _cnt)) >> 11; \
+ } \
+ _r -= _q*(d); \
+ \
+ _mask = -(uintmax_t) (_r >= (d)); \
+ (r) = _r - (_mask & (d)); \
+ (q) = _q - _mask; \
+ assert ( (q) * (d) + (r) == u); \
+ } \
+ else \
+ { \
+ uintmax_t _q = (u) / (d); \
+ (r) = (u) - _q * (d); \
+ (q) = _q; \
+ } \
+ } while (0)
+
+/* Notes: Example N = 22117019. After first phase we find Q1 = 6314, Q
+ = 3025, P = 1737, representing F_{18} = (-6314, 2* 1737, 3025),
+ with 3025 = 55^2.
+
+ Constructing the square root, we get Q1 = 55, Q = 8653, P = 4652,
+ representing G_0 = (-55, 2*4652, 8653).
+
+ In the notation of the paper:
+
+ S_{-1} = 55, S_0 = 8653, R_0 = 4652
+
+ Put
+
+ t_0 = floor([q_0 + R_0] / S0) = 1
+ R_1 = t_0 * S_0 - R_0 = 4001
+ S_1 = S_{-1} +t_0 (R_0 - R_1) = 706
+*/
+
+/* Multipliers, in order of efficiency:
+ 0.7268 3*5*7*11 = 1155 = 3 (mod 4)
+ 0.7317 3*5*7 = 105 = 1
+ 0.7820 3*5*11 = 165 = 1
+ 0.7872 3*5 = 15 = 3
+ 0.8101 3*7*11 = 231 = 3
+ 0.8155 3*7 = 21 = 1
+ 0.8284 5*7*11 = 385 = 1
+ 0.8339 5*7 = 35 = 3
+ 0.8716 3*11 = 33 = 1
+ 0.8774 3 = 3 = 3
+ 0.8913 5*11 = 55 = 3
+ 0.8972 5 = 5 = 1
+ 0.9233 7*11 = 77 = 1
+ 0.9295 7 = 7 = 3
+ 0.9934 11 = 11 = 3
+*/
+#define QUEUE_SIZE 50
+
+#if STAT_SQUFOF
+# define Q_FREQ_SIZE 50
+/* Element 0 keeps the total */
+static unsigned int q_freq[Q_FREQ_SIZE + 1];
+# define MIN(a,b) ((a) < (b) ? (a) : (b))
+#endif
+
+/* Return true on success. Expected to fail only for numbers
+ >= 2^{2*W_TYPE_SIZE - 2}, or close to that limit. */
+static bool
+factor_using_squfof (uintmax_t n1, uintmax_t n0, struct factors *factors)
{
- mpz_t **faclist;
- size_t i;
+ /* Uses algorithm and notation from
+
+ SQUARE FORM FACTORIZATION
+ JASON E. GOWER AND SAMUEL S. WAGSTAFF, JR.
+
+ http://homes.cerias.purdue.edu/~ssw/squfof.pdf
+ */
+
+ static const unsigned int multipliers_1[] =
+ { /* = 1 (mod 4) */
+ 105, 165, 21, 385, 33, 5, 77, 1, 0
+ };
+ static const unsigned int multipliers_3[] =
+ { /* = 3 (mod 4) */
+ 1155, 15, 231, 35, 3, 55, 7, 11, 0
+ };
+
+ const unsigned int *m;
+
+ struct { uintmax_t Q; uintmax_t P; } queue[QUEUE_SIZE];
+
+ if (n1 >= ((uintmax_t) 1 << (W_TYPE_SIZE - 2)))
+ return false;
- faclist = xcalloc (nfactors_found, sizeof *faclist);
- for (i = 0; i < nfactors_found; ++i)
+ uintmax_t sqrt_n = isqrt2 (n1, n0);
+
+ if (n0 == sqrt_n * sqrt_n)
{
- faclist[i] = &factor[i];
+ uintmax_t p1, p0;
+
+ umul_ppmm (p1, p0, sqrt_n, sqrt_n);
+ assert (p0 == n0);
+
+ if (n1 == p1)
+ {
+ if (prime_p (sqrt_n))
+ factor_insert_multiplicity (factors, sqrt_n, 2);
+ else
+ {
+ struct factors f;
+
+ f.nfactors = 0;
+ if (!factor_using_squfof (0, sqrt_n, &f))
+ {
+ /* Try pollard rho instead */
+ factor_using_pollard_rho (sqrt_n, 1, &f);
+ }
+ /* Duplicate the new factors */
+ for (unsigned int i = 0; i < f.nfactors; i++)
+ factor_insert_multiplicity (factors, f.p[i], 2*f.e[i]);
+ }
+ return true;
+ }
}
- qsort (faclist, nfactors_found, sizeof *faclist, mpcompare);
- for (i = 0; i < nfactors_found; ++i)
+ /* Select multipliers so we always get n * mu = 3 (mod 4) */
+ for (m = (n0 % 4 == 1) ? multipliers_3 : multipliers_1;
+ *m; m++)
{
- fputc (' ', stdout);
- mpz_out_str (stdout, 10, *faclist[i]);
+ uintmax_t S, Dh, Dl, Q1, Q, P, L, L1, B;
+ unsigned int i;
+ unsigned int mu = *m;
+ unsigned int qpos = 0;
+
+ assert (mu * n0 % 4 == 3);
+
+ /* In the notation of the paper, with mu * n == 3 (mod 4), we
+ get \Delta = 4 mu * n, and the paper's \mu is 2 mu. As far as
+ I understand it, the necessary bound is 4 \mu^3 < n, or 32
+ mu^3 < n.
+
+ However, this seems insufficient: With n = 37243139 and mu =
+ 105, we get a trivial factor, from the square 38809 = 197^2,
+ without any corresponding Q earlier in the iteration.
+
+ Requiring 64 mu^3 < n seems sufficient. */
+ if (n1 == 0)
+ {
+ if ((uintmax_t) mu*mu*mu >= n0 / 64)
+ continue;
+ }
+ else
+ {
+ if (n1 > ((uintmax_t) 1 << (W_TYPE_SIZE - 2)) / mu)
+ continue;
+ }
+ umul_ppmm (Dh, Dl, n0, mu);
+ Dh += n1 * mu;
+
+ assert (Dl % 4 != 1);
+ assert (Dh < (uintmax_t) 1 << (W_TYPE_SIZE - 2));
+
+ S = isqrt2 (Dh, Dl);
+
+ Q1 = 1;
+ P = S;
+
+ /* Square root remainder fits in one word, so ignore high part. */
+ Q = Dl - P*P;
+ /* FIXME: When can this differ from floor(sqrt(2 sqrt(D)))? */
+ L = isqrt (2*S);
+ B = 2*L;
+ L1 = mu * 2 * L;
+
+ /* The form is (+/- Q1, 2P, -/+ Q), of discriminant 4 (P^2 + Q Q1) =
+ 4 D. */
+
+ for (i = 0; i <= B; i++)
+ {
+ uintmax_t q, P1, t, rem;
+
+ div_smallq (q, rem, S+P, Q);
+ P1 = S - rem; /* P1 = q*Q - P */
+
+#if STAT_SQUFOF
+ assert (q > 0);
+ q_freq[0]++;
+ q_freq[MIN (q, Q_FREQ_SIZE)]++;
+#endif
+
+ if (Q <= L1)
+ {
+ uintmax_t g = Q;
+
+ if ( (Q & 1) == 0)
+ g /= 2;
+
+ g /= gcd_odd (g, mu);
+
+ if (g <= L)
+ {
+ if (qpos >= QUEUE_SIZE)
+ error (EXIT_FAILURE, 0, _("squfof queue overflow"));
+ queue[qpos].Q = g;
+ queue[qpos].P = P % g;
+ qpos++;
+ }
+ }
+
+ /* I think the difference can be either sign, but mod
+ 2^W_TYPE_SIZE arithmetic should be fine. */
+ t = Q1 + q * (P - P1);
+ Q1 = Q;
+ Q = t;
+ P = P1;
+
+ if ( (i & 1) == 0)
+ {
+ uintmax_t r = is_square (Q);
+ if (r)
+ {
+ for (unsigned int j = 0; j < qpos; j++)
+ {
+ if (queue[j].Q == r)
+ {
+ if (r == 1)
+ /* Traversed entire cycle. */
+ goto next_multiplier;
+
+ /* Need the absolute value for divisibility test. */
+ if (P >= queue[j].P)
+ t = P - queue[j].P;
+ else
+ t = queue[j].P - P;
+ if (t % r == 0)
+ {
+ /* Delete entries up to and including entry
+ j, which matched. */
+ memmove (queue, queue + j + 1,
+ (qpos - j - 1) * sizeof (queue[0]));
+ qpos -= (j + 1);
+ }
+ goto next_i;
+ }
+ }
+
+ /* We have found a square form, which should give a
+ factor. */
+ Q1 = r;
+ assert (S >= P); /* What signs are possible? */
+ P += r * ((S - P) / r);
+
+ /* Note: Paper says (N - P*P) / Q1, that seems incorrect
+ for the case D = 2N. */
+ /* Compute Q = (D - P*P) / Q1, but we need double
+ precision. */
+ uintmax_t hi, lo;
+ umul_ppmm (hi, lo, P, P);
+ sub_ddmmss (hi, lo, Dh, Dl, hi, lo);
+ udiv_qrnnd (Q, rem, hi, lo, Q1);
+ assert (rem == 0);
+
+ for (;;)
+ {
+ /* Note: There appears to by a typo in the paper,
+ Step 4a in the algorithm description says q <--
+ floor([S+P]/\hat Q), but looking at the equations
+ in Sec. 3.1, it should be q <-- floor([S+P] / Q).
+ (In this code, \hat Q is Q1). */
+ div_smallq (q, rem, S+P, Q);
+ P1 = S - rem; /* P1 = q*Q - P */
+
+#if STAT_SQUFOF
+ q_freq[0]++;
+ q_freq[MIN (q, Q_FREQ_SIZE)]++;
+#endif
+ if (P == P1)
+ break;
+ t = Q1 + q * (P - P1);
+ Q1 = Q;
+ Q = t;
+ P = P1;
+ }
+
+ if ( (Q & 1) == 0)
+ Q /= 2;
+ Q /= gcd_odd (Q, mu);
+
+ assert (Q > 1 && (n1 || Q < n0));
+
+ if (prime_p (Q))
+ factor_insert (factors, Q);
+ else if (!factor_using_squfof (0, Q, factors))
+ factor_using_pollard_rho (Q, 2, factors);
+
+ divexact_21 (n1, n0, n1, n0, Q);
+
+ if (prime2_p (n1, n0))
+ factor_insert_large (factors, n1, n0);
+ else
+ {
+ if (!factor_using_squfof (n1, n0, factors))
+ {
+ if (n1 == 0)
+ factor_using_pollard_rho (n0, 1, factors);
+ else
+ factor_using_pollard_rho2 (n1, n0, 1, factors);
+ }
+ }
+
+ return true;
+ }
+ }
+ next_i:;
+ }
+ next_multiplier:;
}
- putchar ('\n');
- free (faclist);
+ return false;
}
static void
-free_factors (void)
+factor (uintmax_t t1, uintmax_t t0, struct factors *factors)
{
- size_t i;
+ factors->nfactors = 0;
+ factors->plarge[1] = 0;
+
+ if (t1 == 0 && t0 < 2)
+ return;
+
+ t0 = factor_using_division (&t1, t1, t0, factors);
+
+ if (t1 == 0 && t0 < 2)
+ return;
- for (i = 0; i < nfactors_found; ++i)
+ if (prime2_p (t1, t0))
+ factor_insert_large (factors, t1, t0);
+ else
{
- mpz_clear (factor[i]);
+ if (alg == ALG_SQUFOF)
+ if (factor_using_squfof (t1, t0, factors))
+ return;
+
+ if (t1 == 0)
+ factor_using_pollard_rho (t0, 1, factors);
+ else
+ factor_using_pollard_rho2 (t1, t0, 1, factors);
}
- /* Don't actually free factor[] because in the case where we are
- reading numbers from stdin, we may be about to use it again. */
- nfactors_found = 0;
}
-/* Arbitrary-precision factoring */
+#if HAVE_GMP
static void
-print_factors_multi (mpz_t t)
+mp_factor (mpz_t t, struct mp_factors *factors)
{
- mpz_out_str (stdout, 10, t);
- putchar (':');
+ mp_factor_init (factors);
if (mpz_sgn (t) != 0)
{
- /* Set the trial division limit according to the size of t. */
- size_t n_bits = mpz_sizeinbase (t, 2);
- unsigned int division_limit = MIN (n_bits, 1000);
- division_limit *= division_limit;
-
- factor_using_division (t, division_limit);
+ mp_factor_using_division (t, factors);
if (mpz_cmp_ui (t, 1) != 0)
{
debug ("[is number prime?] ");
- if (mpz_probab_prime_p (t, MR_REPS))
- emit_factor (t);
+ if (mp_prime_p (t))
+ mp_factor_insert (factors, t);
else
- factor_using_pollard_rho (t, 1);
+ mp_factor_using_pollard_rho (t, 1, factors);
}
}
-
- mpz_clear (t);
- sort_and_print_factors ();
- free_factors ();
}
#endif
+static strtol_error
+strto2uintmax (uintmax_t *hip, uintmax_t *lop, const char *s)
+{
+ unsigned int lo_carry;
+ uintmax_t hi, lo;
+
+ strtol_error err;
+
+ hi = lo = 0;
+ for (;;)
+ {
+ unsigned int c = *s++;
+ if (c == 0)
+ break;
+
+ if (UNLIKELY (!ISDIGIT (c)))
+ {
+ err = LONGINT_INVALID;
+ break;
+ }
+ c -= '0';
+
+ err = LONGINT_OK; /* we've seen at least one valid digit */
+
+ if (UNLIKELY (hi > ~(uintmax_t)0 / 10))
+ {
+ err = LONGINT_OVERFLOW;
+ break;
+ }
+ hi = 10 * hi;
+
+ lo_carry = (lo >> (W_TYPE_SIZE - 3)) + (lo >> (W_TYPE_SIZE - 1));
+ lo_carry += 10 * lo < 2 * lo;
+
+ lo = 10 * lo;
+ lo += c;
+
+ lo_carry += lo < c;
+ hi += lo_carry;
+ if (UNLIKELY (hi < lo_carry))
+ {
+ err = LONGINT_OVERFLOW;
+ break;
+ }
+ }
+
+ *hip = hi;
+ *lop = lo;
+
+ return err;
+}
+
+static void
+print_uintmaxes (uintmax_t t1, uintmax_t t0)
+{
+ uintmax_t q, r;
+
+ if (t1 == 0)
+ printf ("%ju", t0);
+ else
+ {
+ /* Use very plain code here since it seems hard to write fast code
+ without assuming a specific word size. */
+ q = t1 / 1000000000;
+ r = t1 % 1000000000;
+ udiv_qrnnd (t0, r, r, t0, 1000000000);
+ print_uintmaxes (q, t0);
+ printf ("%09u", (int) r);
+ }
+}
+
+/* Single-precision factoring */
+static void
+print_factors_single (uintmax_t t1, uintmax_t t0)
+{
+ struct factors factors;
+
+ print_uintmaxes (t1, t0);
+ putchar (':');
+
+ factor (t1, t0, &factors);
+
+ for (unsigned int j = 0; j < factors.nfactors; j++)
+ for (unsigned int k = 0; k < factors.e[j]; k++)
+ printf (" %ju", factors.p[j]);
+
+ if (factors.plarge[1])
+ {
+ putchar (' ');
+ print_uintmaxes (factors.plarge[1], factors.plarge[0]);
+ }
+ putchar ('\n');
+}
/* Emit the factors of the indicated number. If we have the option of using
either algorithm, we select on the basis of the length of the number.
@@ -434,58 +2288,55 @@ print_factors_multi (mpz_t t)
has enough digits, because the algorithm is better. The turnover point
depends on the value. */
static bool
-print_factors (char const *s)
+print_factors (const char *input)
{
- uintmax_t n;
- strtol_error err = xstrtoumax (s, NULL, 10, &n, "");
+ uintmax_t t1, t0;
-#if HAVE_GMP
- enum { GMP_TURNOVER_POINT = 100000 };
+ /* Try converting the number to one or two words. If it fails, use GMP or
+ print an error message. The 2nd condition checks that the most
+ significant bit of the two-word number is clear, in a typesize neutral
+ way. */
+ strtol_error err = strto2uintmax (&t1, &t0, input);
- if (err == LONGINT_OVERFLOW
- || (err == LONGINT_OK && GMP_TURNOVER_POINT <= n))
+ switch (err)
{
- mpz_t t;
- mpz_init (t);
- if (gmp_sscanf (s, "%Zd", t) == 1)
+ case LONGINT_OK:
+ if (((t1 << 1) >> 1) == t1)
{
- debug ("[%s]", _("using arbitrary-precision arithmetic"));
- print_factors_multi (t);
+ debug ("[%s]", _("using single-precision arithmetic"));
+ print_factors_single (t1, t0);
return true;
}
- err = LONGINT_INVALID;
- }
-#endif
-
- switch (err)
- {
- case LONGINT_OK:
- debug ("[%s]", _("using single-precision arithmetic"));
- print_factors_single (n);
- return true;
-
- case LONGINT_OVERFLOW:
- error (0, 0, _("%s is too large"), quote (s));
- return false;
+ break;
default:
- error (0, 0, _("%s is not a valid positive integer"), quote (s));
+ error (0, 0, _("%s is not a valid positive integer"), quote (input));
return false;
}
-}
-enum
-{
- VERBOSE_OPTION = CHAR_MAX + 1
-};
+#if HAVE_GMP
+ debug ("[%s]", _("using arbitrary-precision arithmetic"));
+ mpz_t t;
+ struct mp_factors factors;
-static struct option const long_options[] =
-{
- {"verbose", no_argument, NULL, VERBOSE_OPTION},
- {GETOPT_HELP_OPTION_DECL},
- {GETOPT_VERSION_OPTION_DECL},
- {NULL, 0, NULL, 0}
-};
+ mpz_init_set_str (t, input, 10);
+
+ gmp_printf ("%Zd:", t);
+ mp_factor (t, &factors);
+
+ for (unsigned int j = 0; j < factors.nfactors; j++)
+ for (unsigned int k = 0; k < factors.e[j]; k++)
+ gmp_printf (" %Zd", factors.p[j]);
+
+ mp_factor_clear (&factors);
+ mpz_clear (t);
+ putchar ('\n');
+ return true;
+#else
+ error (0, 0, _("%s is too large"), quote (input));
+ return false;
+#endif
+}
void
usage (int status)
@@ -535,9 +2386,6 @@ do_stdin (void)
int
main (int argc, char **argv)
{
- bool ok;
- int c;
-
initialize_main (&argc, &argv);
set_program_name (argv[0]);
setlocale (LC_ALL, "");
@@ -546,12 +2394,23 @@ main (int argc, char **argv)
atexit (close_stdout);
+ alg = ALG_POLLARD_RHO; /* Default to Pollard rho */
+
+ int c;
while ((c = getopt_long (argc, argv, "", long_options, NULL)) != -1)
{
switch (c)
{
case VERBOSE_OPTION:
- verbose = true;
+ verbose = 1;
+ break;
+
+ case 's':
+ alg = ALG_SQUFOF;
+ break;
+
+ case 'w':
+ flag_prove_primality = false;
break;
case_GETOPT_HELP_CHAR;
@@ -563,18 +2422,36 @@ main (int argc, char **argv)
}
}
+#if STAT_SQUFOF
+ if (alg == ALG_SQUFOF)
+ memset (q_freq, 0, sizeof (q_freq));
+#endif
+
+ bool ok;
if (argc <= optind)
ok = do_stdin ();
else
{
- int i;
ok = true;
- for (i = optind; i < argc; i++)
+ for (int i = optind; i < argc; i++)
if (! print_factors (argv[i]))
ok = false;
}
-#if HAVE_GMP
- free (factor);
+
+#if STAT_SQUFOF
+ if (alg == ALG_SQUFOF && q_freq[0] > 0)
+ {
+ double acc_f;
+ printf ("q freq. cum. freq.(total: %d)\n", q_freq[0]);
+ for (unsigned int i = 1, acc_f = 0.0; i <= Q_FREQ_SIZE; i++)
+ {
+ double f = (double) q_freq[i] / q_freq[0];
+ acc_f += f;
+ printf ("%s%d %.2f%% %.2f%%\n", i == Q_FREQ_SIZE ? ">=" : "", i,
+ 100.0 * f, 100.0 * acc_f);
+ }
+ }
#endif
+
exit (ok ? EXIT_SUCCESS : EXIT_FAILURE);
}
diff --git a/src/local.mk b/src/local.mk
index 98259fa80..6a01ef1c7 100644
--- a/src/local.mk
+++ b/src/local.mk
@@ -35,7 +35,10 @@ bin_PROGRAMS = @bin_PROGRAMS@
pkglibexec_PROGRAMS = @pkglibexec_PROGRAMS@
# Needed by the testsuite.
-noinst_PROGRAMS = src/setuidgid src/getlimits
+noinst_PROGRAMS = \
+ src/getlimits \
+ src/make-prime-list \
+ src/setuidgid
noinst_HEADERS = \
src/chown-core.h \
@@ -48,20 +51,18 @@ noinst_HEADERS = \
src/fs-is-local.h \
src/group-list.h \
src/ioblksize.h \
+ src/longlong.h \
src/ls.h \
src/operand2sig.h \
src/prog-fprintf.h \
src/remove.h \
src/system.h \
- src/wheel-size.h \
- src/wheel.h \
src/uname.h
EXTRA_DIST += \
src/dcgen \
src/dircolors.hin \
src/tac-pipe.c \
- src/wheel-gen.pl \
src/extract-magic \
src/c99-to-c89.diff
@@ -134,6 +135,12 @@ src_link_LDADD = $(LDADD)
src_ln_LDADD = $(LDADD)
src_logname_LDADD = $(LDADD)
src_ls_LDADD = $(LDADD)
+
+# This must *not* depend on anything in lib/, since it is used to generate
+# src/primes.h. If it depended on libcoreutils.a, that would pull all lib/*.c
+# into BUILT_SOURCES.
+src_make_prime_list_LDADD =
+
src_md5sum_LDADD = $(LDADD)
src_mkdir_LDADD = $(LDADD)
src_mkfifo_LDADD = $(LDADD)
@@ -371,19 +378,11 @@ src/dircolors.h: src/dcgen src/dircolors.hin
$(AM_V_at)chmod a-w $@-t
$(AM_V_at)mv $@-t $@
-wheel_size = 5
-
-BUILT_SOURCES += src/wheel-size.h
-src/wheel-size.h: Makefile.am
- $(AM_V_GEN)rm -f $@ $@-t
- $(AM_V_at)echo '#define WHEEL_SIZE $(wheel_size)' > $@-t
- $(AM_V_at)chmod a-w $@-t
- $(AM_V_at)mv $@-t $@
-
-BUILT_SOURCES += src/wheel.h
-src/wheel.h: src/wheel-gen.pl Makefile.am
+BUILT_SOURCES += src/primes.h
+CLEANFILES += src/primes.h
+src/primes.h: src/make-prime-list
$(AM_V_GEN)rm -f $@ $@-t
- $(AM_V_at)$(srcdir)/src/wheel-gen.pl $(wheel_size) > $@-t
+ $(AM_V_at)src/make-prime-list 5000 > $@-t
$(AM_V_at)chmod a-w $@-t
$(AM_V_at)mv $@-t $@
diff --git a/src/longlong.h b/src/longlong.h
index 84e32ee46..510f40ef2 100644
--- a/src/longlong.h
+++ b/src/longlong.h
@@ -1,7 +1,7 @@
/* longlong.h -- definitions for mixed size 32/64 bit arithmetic.
Copyright 1991, 1992, 1993, 1994, 1996, 1997, 1999, 2000, 2001, 2002, 2003,
-2004, 2005, 2007, 2008, 2009, 2011 Free Software Foundation, Inc.
+2004, 2005, 2007, 2008, 2009, 2011, 2012 Free Software Foundation, Inc.
This file is free software; you can redistribute it and/or modify it under the
terms of the GNU Lesser General Public License as published by the Free
@@ -2055,6 +2055,10 @@ extern UWtype mpn_udiv_qrnnd_r (UWtype, UWtype, UWtype, UWtype *);
__GMP_DECLSPEC UWtype __MPN(udiv_w_sdiv) (UWtype *, UWtype, UWtype, UWtype);
#endif
+#ifndef __GMP_DECLSPEC
+#define __GMP_DECLSPEC /* empty */
+#endif
+
/* If udiv_qrnnd was not defined for this processor, use __udiv_qrnnd_c. */
#if !defined (udiv_qrnnd)
#define UDIV_NEEDS_NORMALIZATION 1
diff --git a/src/wheel-gen.pl b/src/wheel-gen.pl
deleted file mode 100755
index 65b60d12d..000000000
--- a/src/wheel-gen.pl
+++ /dev/null
@@ -1,114 +0,0 @@
-#!/usr/bin/perl -w
-# Generate the spokes of a wheel, for wheel factorization.
-
-# Copyright (C) 2001-2012 Free Software Foundation, Inc.
-
-# This program is free software: you can redistribute it and/or modify
-# it under the terms of the GNU General Public License as published by
-# the Free Software Foundation, either version 3 of the License, or
-# (at your option) any later version.
-
-# This program is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-# GNU General Public License for more details.
-
-# You should have received a copy of the GNU General Public License
-# along with this program. If not, see <http://www.gnu.org/licenses/>.
-
-eval 'exec /usr/bin/perl -S $0 ${1+"$@"}'
- if 0;
-
-use strict;
-(my $ME = $0) =~ s|.*/||;
-
-# A global destructor to close standard output with error checking.
-sub END
-{
- defined fileno STDOUT
- or return;
- close STDOUT
- and return;
- warn "$ME: closing standard output: $!\n";
- $? ||= 1;
-}
-
-sub is_prime ($)
-{
- my ($n) = @_;
- use integer;
-
- $n == 2
- and return 1;
-
- my $d = 2;
- my $w = 1;
- while (1)
- {
- my $q = $n / $d;
- $n == $q * $d
- and return 0;
- $d += $w;
- $q < $d
- and last;
- $w = 2;
- }
- return 1;
-}
-
-{
- @ARGV == 1
- or die "$ME: missing argument\n";
-
- my $wheel_size = $ARGV[0];
-
- my @primes = (2);
- my $product = $primes[0];
- my $n_primes = 1;
- for (my $i = 3; ; $i += 2)
- {
- if (is_prime $i)
- {
- push @primes, $i;
- $product *= $i;
- ++$n_primes == $wheel_size
- and last;
- }
- }
-
- my $ws_m1 = $wheel_size - 1;
- print <<EOF;
-/* The first $ws_m1 elements correspond to the incremental offsets of the
- first $wheel_size primes (@primes). The $wheel_size(th) element is the
- difference between that last prime and the next largest integer
- that is not a multiple of those primes. The remaining numbers
- define the wheel. For more information, see
- http://www.utm.edu/research/primes/glossary/WheelFactorization.html. */
-EOF
-
- my @increments;
- my $prev = 2;
- for (my $i = 3; ; $i += 2)
- {
- my $rel_prime = 1;
- foreach my $divisor (@primes)
- {
- $i != $divisor && $i % $divisor == 0
- and $rel_prime = 0;
- }
-
- if ($rel_prime)
- {
- #warn $i, ' ', $i - $prev, "\n";
- push @increments, $i - $prev;
- $prev = $i;
-
- $product + 1 < $i
- and last;
- }
- }
-
- print join (",\n", @increments), "\n";
-
- exit 0;
-}