diff options
author | Torbjörn Granlund <tg@gmplib.org> | 2012-09-04 18:38:29 +0200 |
---|---|---|
committer | Jim Meyering <meyering@redhat.com> | 2012-09-07 11:04:41 +0200 |
commit | 6c13e72c797771b4a37ffbea3e03f60b57f33a68 (patch) | |
tree | 5be762374d1688efadc3eef7e53693f465a01cc6 | |
parent | 51a4b04954ad5ad12de1d1b82a3603fc350a3bfa (diff) | |
download | coreutils-6c13e72c797771b4a37ffbea3e03f60b57f33a68.tar.xz |
factor: don't ever declare composites to be prime
The multiple-precision factoring code (with HAVE_GMP) was copied from
a now-obsolete version of GMP that did not pass proper arguments to
the mpz_probab_prime_p function. It makes that code perform no more
than 3 Miller-Rabin tests only, which is not sufficient.
A Miller-Rabin test will detect composites with at least a probability
of 3/4. For a uniform random composite, the probability will actually
be much higher.
Or put another way, of the N-3 possible Miller-Rabin tests for checking
the composite N, there is no number N for which more than (N-3)/4 of the
tests will fail to detect the number as a composite. For most numbers N
the number of "false witnesses" will be much, much lower.
Problem numbers are of the form N=pq, p,q prime and (p-1)/(q-1) = s,
where s is a small integer. (There are other problem forms too,
involving 3 or more prime factors.) When s = 2, we get the 3/4 factor.
It is easy to find numbers of that form that cause coreutils' factor to
fail:
465658903
2242724851
6635692801
17709149503
17754345703
20889169003
42743470771
54890944111
72047131003
85862644003
98275842811
114654168091
117225546301
...
There are 9008992 composites of the form with s=2 below 2^64. With 3
Miller-Rabin tests, one would expect about 9008992/64 = 140766 to be
invalidly recognized as primes in that range.
* src/factor.c (MR_REPS): Define to 25.
(factor_using_pollard_rho): Use MR_REPS, not 3.
(print_factors_multi): Likewise.
* THANKS.in: Remove my name, now that it will be automatically
included in the generated THANKS file.
-rw-r--r-- | THANKS.in | 1 | ||||
-rw-r--r-- | src/factor.c | 9 |
2 files changed, 6 insertions, 4 deletions
@@ -608,7 +608,6 @@ Tony Leneis tony@plaza.ds.adp.com Tony Robinson ajr@eng.cam.ac.uk Toomas Soome Toomas.Soome@Elion.ee Toralf Förster toralf.foerster@gmx.de -Torbjorn Granlund tege@nada.kth.se Torbjorn Lindgren tl@funcom.no Torsten Landschoff torsten@pclab.ifg.uni-kiel.de Travis Gummels tgummels@redhat.com diff --git a/src/factor.c b/src/factor.c index 1d5580507..e63e0e01d 100644 --- a/src/factor.c +++ b/src/factor.c @@ -153,6 +153,9 @@ factor_using_division (mpz_t t, unsigned int limit) mpz_clear (r); } +/* The number of Miller-Rabin tests we require. */ +enum { MR_REPS = 25 }; + static void factor_using_pollard_rho (mpz_t n, int a_int) { @@ -222,7 +225,7 @@ S4: mpz_div (n, n, g); /* divide by g, before g is overwritten */ - if (!mpz_probab_prime_p (g, 3)) + if (!mpz_probab_prime_p (g, MR_REPS)) { do { @@ -242,7 +245,7 @@ S4: mpz_mod (x, x, n); mpz_mod (x1, x1, n); mpz_mod (y, y, n); - if (mpz_probab_prime_p (n, 3)) + if (mpz_probab_prime_p (n, MR_REPS)) { emit_factor (n); break; @@ -411,7 +414,7 @@ print_factors_multi (mpz_t t) if (mpz_cmp_ui (t, 1) != 0) { debug ("[is number prime?] "); - if (mpz_probab_prime_p (t, 3)) + if (mpz_probab_prime_p (t, MR_REPS)) emit_factor (t); else factor_using_pollard_rho (t, 1); |