diff options
author | Pádraig Brady <P@draigBrady.com> | 2015-10-17 11:38:20 +0100 |
---|---|---|
committer | Pádraig Brady <P@draigBrady.com> | 2015-10-19 10:24:12 +0100 |
commit | 07b73c689d77612d23f9539e706fd7725f9cf2a5 (patch) | |
tree | bba1b3c7a7389299aa4d123c5dc0874e67cb077b | |
parent | e50f5273aad88b16704fdc8b7fe6aef40c3031e1 (diff) | |
download | coreutils-07b73c689d77612d23f9539e706fd7725f9cf2a5.tar.xz |
factor: remove unreachable SQUFOF code at compile time
It was a little confusing as to whether the SQUFOF algorithm was
enabled, and in fact there were no options available to enable it.
Therefore clarify the 3 configurable behaviors for the code to
3 defines at the top of the program, and only include the SQUFOF
code if enabled at compile time.
$ size src/factor-before
text data bss
93997 1412 2504
$ size src/factor-after
text data bss
87885 1404 2504
* src/factor.c: Only include the SQUFOF factor code
when enabled via the USE_SQUFOF define.
* doc/coreutils.texi (factor invocation): Update note about
factor limits, as we can factor 128 bit numbers without GMP.
-rw-r--r-- | doc/coreutils.texi | 8 | ||||
-rw-r--r-- | src/factor.c | 79 |
2 files changed, 45 insertions, 42 deletions
diff --git a/doc/coreutils.texi b/doc/coreutils.texi index c988aca4f..0359867f5 100644 --- a/doc/coreutils.texi +++ b/doc/coreutils.texi @@ -16855,7 +16855,7 @@ n=$(echo "$M8 * $M9" | bc) Similarly, factoring the eighth Fermat number @math{2^{256}+1} takes about 20 seconds on the same machine. -Factoring large numbers is, in general, hard. The Pollard Rho +Factoring large numbers is, in general, hard. The Pollard-Brent rho algorithm used by @command{factor} is particularly effective for numbers with relatively small factors. If you wish to factor large numbers which do not have small factors (for example, numbers which @@ -16863,9 +16863,9 @@ are the product of two large primes), other methods are far better. If @command{factor} is built without using GNU MP, only single-precision arithmetic is available, and so large numbers -(typically @math{2^{64}} and above) will not be supported. The single-precision -code uses an algorithm which is designed for factoring smaller -numbers. +(typically @math{2^{128}} and above) will not be supported. +The single-precision code uses an algorithm which is designed +for factoring smaller numbers. @exitstatus diff --git a/src/factor.c b/src/factor.c index 1d7d7c8d9..e4ce4a5ea 100644 --- a/src/factor.c +++ b/src/factor.c @@ -50,8 +50,8 @@ (2) Check the nature of any non-factored part using Miller-Rabin for detecting composites, and Lucas for detecting primes. (3) Factor any remaining composite part using the Pollard-Brent rho - algorithm or the SQUFOF algorithm, checking status of found factors - again using Miller-Rabin and Lucas. + algorithm or if USE_SQUFOF is defined to 1, try that first. + Status of found factors are checked again using Miller-Rabin and Lucas. We prefer using Hensel norm in the divisions, not the more familiar Euclidian norm, since the former leads to much faster code. In the @@ -84,6 +84,23 @@ the -w option. */ +/* Whether to recursively factor to prove primality, + or run faster probabilistic tests. */ +#ifndef PROVE_PRIMALITY +# define PROVE_PRIMALITY 1 +#endif + +/* Faster for certain ranges but less general. */ +#ifndef USE_SQUFOF +# define USE_SQUFOF 0 +#endif + +/* Output SQUFOF statistics. */ +#ifndef STAT_SQUFOF +# define STAT_SQUFOF 0 +#endif + + #include <config.h> #include <getopt.h> #include <stdio.h> @@ -114,10 +131,6 @@ /* Token delimiters when reading from a file. */ #define DELIM "\n\t " -#ifndef STAT_SQUFOF -# define STAT_SQUFOF 0 -#endif - #ifndef USE_LONGLONG_H /* With the way we use longlong.h, it's only safe to use when UWtype = UHWtype, as there were various cases @@ -208,10 +221,6 @@ const unsigned char factor_clz_tab[129] = FIXME: this is just an ugly band-aid. Fix it properly. */ #endif -enum alg_type { ALG_POLLARD_RHO = 1, ALG_SQUFOF = 2 }; - -static enum alg_type alg; - /* 2*3*5*7*11...*101 is 128 bits, and has 26 prime factors */ #define MAX_NFACTS 26 @@ -691,7 +700,7 @@ verify (W <= WIDE_UINT_BITS); static bool dev_debug = false; /* Prove primality or run probabilistic tests. */ -static bool flag_prove_primality = true; +static bool flag_prove_primality = PROVE_PRIMALITY; /* Number of Miller-Rabin tests to run when not proving primality. */ #define MR_REPS 25 @@ -1741,6 +1750,7 @@ mp_factor_using_pollard_rho (mpz_t n, unsigned long int a, } #endif +#if USE_SQUFOF /* FIXME: Maybe better to use an iteration converging to 1/sqrt(n)? If algorithm is replaced, consider also returning the remainder. */ static uintmax_t _GL_ATTRIBUTE_CONST @@ -1812,10 +1822,10 @@ isqrt2 (uintmax_t nh, uintmax_t nl) } /* MAGIC[N] has a bit i set iff i is a quadratic residue mod N. */ -#define MAGIC64 0x0202021202030213ULL -#define MAGIC63 0x0402483012450293ULL -#define MAGIC65 0x218a019866014613ULL -#define MAGIC11 0x23b +# define MAGIC64 0x0202021202030213ULL +# define MAGIC63 0x0402483012450293ULL +# define MAGIC65 0x218a019866014613ULL +# define MAGIC11 0x23b /* Return the square root if the input is a square, otherwise 0. */ static uintmax_t _GL_ATTRIBUTE_CONST @@ -1860,7 +1870,7 @@ static const unsigned short invtab[0x81] = /* Compute q = [u/d], r = u mod d. Avoids slow hardware division for the case that q < 0x40; here it instead uses a table of (Euclidian) inverses. */ -#define div_smallq(q, r, u, d) \ +# define div_smallq(q, r, u, d) \ do { \ if ((u) / 0x40 < (d)) \ { \ @@ -1928,7 +1938,8 @@ static const unsigned short invtab[0x81] = 0.9295 7 = 7 = 3 0.9934 11 = 11 = 3 */ -#define QUEUE_SIZE 50 +# define QUEUE_SIZE 50 +#endif #if STAT_SQUFOF # define Q_FREQ_SIZE 50 @@ -1937,6 +1948,7 @@ static unsigned int q_freq[Q_FREQ_SIZE + 1]; # define MIN(a,b) ((a) < (b) ? (a) : (b)) #endif +#if USE_SQUFOF /* Return true on success. Expected to fail only for numbers >= 2^{2*W_TYPE_SIZE - 2}, or close to that limit. */ static bool @@ -2058,10 +2070,10 @@ factor_using_squfof (uintmax_t n1, uintmax_t n0, struct factors *factors) IF_LINT (assert (q > 0 && Q > 0)); -#if STAT_SQUFOF +# if STAT_SQUFOF q_freq[0]++; q_freq[MIN (q, Q_FREQ_SIZE)]++; -#endif +# endif if (Q <= L1) { @@ -2145,10 +2157,10 @@ factor_using_squfof (uintmax_t n1, uintmax_t n0, struct factors *factors) div_smallq (q, rem, S+P, Q); P1 = S - rem; /* P1 = q*Q - P */ -#if STAT_SQUFOF +# if STAT_SQUFOF q_freq[0]++; q_freq[MIN (q, Q_FREQ_SIZE)]++; -#endif +# endif if (P == P1) break; t = Q1 + q * (P - P1); @@ -2192,9 +2204,10 @@ factor_using_squfof (uintmax_t n1, uintmax_t n0, struct factors *factors) } return false; } +#endif /* Compute the prime factors of the 128-bit number (T1,T0), and put the - results in FACTORS. Use the algorithm selected by the global ALG. */ + results in FACTORS. */ static void factor (uintmax_t t1, uintmax_t t0, struct factors *factors) { @@ -2213,9 +2226,10 @@ factor (uintmax_t t1, uintmax_t t0, struct factors *factors) factor_insert_large (factors, t1, t0); else { - if (alg == ALG_SQUFOF) - if (factor_using_squfof (t1, t0, factors)) - return; +#if USE_SQUFOF + if (factor_using_squfof (t1, t0, factors)) + return; +#endif if (t1 == 0) factor_using_pollard_rho (t0, 1, factors); @@ -2576,8 +2590,6 @@ main (int argc, char **argv) atexit (close_stdout); atexit (lbuf_flush); - alg = ALG_POLLARD_RHO; /* Default to Pollard rho */ - int c; while ((c = getopt_long (argc, argv, "", long_options, NULL)) != -1) { @@ -2587,14 +2599,6 @@ main (int argc, char **argv) dev_debug = true; break; - case 's': - alg = ALG_SQUFOF; - break; - - case 'w': - flag_prove_primality = false; - break; - case_GETOPT_HELP_CHAR; case_GETOPT_VERSION_CHAR (PROGRAM_NAME, AUTHORS); @@ -2605,8 +2609,7 @@ main (int argc, char **argv) } #if STAT_SQUFOF - if (alg == ALG_SQUFOF) - memset (q_freq, 0, sizeof (q_freq)); + memset (q_freq, 0, sizeof (q_freq)); #endif bool ok; @@ -2621,7 +2624,7 @@ main (int argc, char **argv) } #if STAT_SQUFOF - if (alg == ALG_SQUFOF && q_freq[0] > 0) + if (q_freq[0] > 0) { double acc_f; printf ("q freq. cum. freq.(total: %d)\n", q_freq[0]); |