1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
|
#ifndef SKIP_GPIO
#include <stdlib.h>
#include <fcntl.h>
#include <sys/mman.h>
#endif // SKIP_GPIO
#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <pthread.h>
#include <assert.h>
#include "multiplexer.h"
//
// Set up a memory regions to access GPIO
//
int multiplexer_setup_root()
{
#ifndef SKIP_GPIO
/* open /dev/mem */
if ((mem_fd = open("/dev/mem", O_RDWR|O_SYNC) ) < 0) {
perror("can't open /dev/mem");
return EXIT_FAILURE;
}
/* mmap GPIO */
gpio_map = mmap(
NULL, //Any adddress in our space will do
BLOCK_SIZE, //Map length
PROT_READ|PROT_WRITE,// Enable reading & writting to mapped memory
MAP_SHARED, //Shared with other processes
mem_fd, //File to map
GPIO_BASE //Offset to GPIO peripheral
);
close(mem_fd); //No need to keep mem_fd open after mmap
if (gpio_map == MAP_FAILED) {
perror("mmap error");
return EXIT_FAILURE;
}
// Always use volatile pointer!
gpio = (volatile unsigned *)gpio_map;
#endif // !SKIP_GPIO
} // multiplexer_setup_root
//
// Shift the bits provided in content into the display
//
void *put_on_display(void *param)
{
t_display_data *display_data = param;
int line, column;
#ifndef SKIP_GPIO
struct timespec start_time, stop_time;
#endif // !SKIP_GPIO
while (display_data -> keep_running) {
#ifdef SKIP_GPIO
usleep(10000);
#endif // SKIP_GPIO
display_data -> is_buf = display_data -> should_buf;
if (!display_data -> should_be_on) {
if (display_data -> is_on) {
turn_off_display();
memset(display_data -> buf, 0, sizeof(display_data -> buf));
display_data -> is_on = 0;
}
sleep(1);
continue;
}
display_data -> is_on = 1;
#ifdef SKIP_GPIO
#ifndef SILENT
printf("=\n");
#endif // !SILENT
for (line=0; line<7; line++) {
for (column=0; column<40; column++) {
#ifndef SILENT
if (display_data -> buf[display_data -> is_buf][column] & (0x01 << line))
printf("X");
else
printf(" ");
#endif // !SILENT
#else // SKIP_GPIO
for (line=6; line>=0; line--) {
GPIO_CLR = 1<<GATE_PIN; // Licht an
if (clock_gettime(CLOCK_MONOTONIC_RAW, &start_time) != 0) {
display_data -> keep_running = 0;
perror("clock_gettime failed");
break;
}
for (column=0; column<8; column++) {
GPIO_ALTER(column + line == 7) = 1<<SER_DAT_PIN;
wait_tpic_settle_time
GPIO_CLR = 1<<SER_CLK_PIN;
wait_tpic_settle_time
GPIO_SET = 1<<SER_CLK_PIN;
wait_tpic_settle_time
}
for (column=39; column>=0; column--) {
GPIO_ALTER(display_data -> buf[display_data -> is_buf][column] & (0x01 << line)) = 1<<SER_DAT_PIN;
wait_tpic_settle_time
GPIO_CLR = 1<<SER_CLK_PIN;
wait_tpic_settle_time
GPIO_SET = 1<<SER_CLK_PIN;
wait_tpic_settle_time
#endif // SKIP_GPIO
}
#ifdef SKIP_GPIO
#ifndef SILENT
printf("\n");
#endif // !SILENT
#else // SKIP_GPIO
if (clock_gettime(CLOCK_MONOTONIC_RAW, &stop_time) != 0) {
display_data -> keep_running = 0;
perror("clock_gettime failed");
break;
}
// adjust tpic_settle_time_iterator
if ((tpic_settle_time_iterator > 0) && (stop_time.tv_sec - start_time.tv_sec + (stop_time.tv_nsec - start_time.tv_nsec) / 1000000000. > 0.0003)) {
// fprintf(stderr, "%d -> ", tpic_settle_time_iterator);
tpic_settle_time_iterator--;
// fprintf(stderr, "%d\n", tpic_settle_time_iterator);
}
else if ((tpic_settle_time_iterator < 200000) && (stop_time.tv_sec - start_time.tv_sec + (stop_time.tv_nsec - start_time.tv_nsec) / 1000000000. < 0.0001)) {
// fprintf(stderr, "%d -> ", tpic_settle_time_iterator);
tpic_settle_time_iterator++;
tpic_settle_time_iterator *= 2;
// fprintf(stderr, "%d\n", tpic_settle_time_iterator);
}
// wait until start_time + 1ms
int wait = (start_time.tv_sec - stop_time.tv_sec) * 1000000 + (start_time.tv_nsec - stop_time.tv_nsec) / 1000 + 1000;
if (wait > 0)
usleep(wait);
GPIO_SET = 1<<GATE_PIN; // Licht aus
wait_tpic_settle_time
GPIO_CLR = 1<<PAR_CLK_PIN;
wait_tpic_settle_time
GPIO_SET = 1<<PAR_CLK_PIN;
wait_tpic_settle_time
#endif // SKIP_GPIO
}
}
return NULL;
} // put_on_display
// scroll the text over the display
void *scroll_it(void *param)
{
t_scroll_data *scroll_data = (t_scroll_data *) param;
t_scroll_buffer buf[3];
for (int i=0; i<3; i++)
memset(&buf[i], 0, sizeof(buf[i]));
t_display_data display_data;
multiplexer_setup_non_root(&display_data);
int is_buf = 0;
int column = 0;
/**
* ein Aufruf von clock_gettime(CLOCK_MONOTONIC_RAW, ...) braucht
* etwa 2.2 µs auf dem Raspi1
**/
struct timespec start_time, stop_time;
while (scroll_data -> keep_running) {
if (clock_gettime(CLOCK_MONOTONIC_RAW, &start_time) != 0) {
scroll_data -> keep_running = 0;
perror("clock_gettime failed");
break;
}
if ((scroll_data -> shine_until != 0) && (scroll_data -> shine_until < time(NULL))) {
// turn off display
display_data . should_be_on = 0;
column = 0;
}
else {
// turn on display
display_data . should_be_on = 1;
}
if (scroll_data -> update) {
if ((buf[is_buf] . len != scroll_data -> input_len) || (memcmp(&buf[is_buf] . buf[buf[is_buf] . start], scroll_data -> input, scroll_data -> input_len) != 0)) {
is_buf = (is_buf + 1) % 2;
// copy the currently visible, old content
memcpy(buf[is_buf] . buf, &buf[(is_buf + 1) % 2] . buf[column + 1], 39);
buf[is_buf] . start = 39;
// set the length of the new content
buf[is_buf] . len = scroll_data -> input_len;
// copy the new content from input
for (int i=0; i<2; i++)
memcpy(
&buf[is_buf] . buf[39 + i * buf[is_buf] . len],
scroll_data -> input,
buf[is_buf] . len
);
column = 0;
}
// clear update flag
scroll_data -> update = 0;
}
if (display_data . should_be_on != 0) {
for (int i=0; i<40; i++)
display_data . buf[(display_data . should_buf + 1) % 3][i] =
buf[is_buf] . buf[column + i];
column++;
if (buf[is_buf] . len > 0)
while (column >= buf[is_buf] . start + buf[is_buf] . len)
column -= buf[is_buf] . len;
}
if (clock_gettime(CLOCK_MONOTONIC_RAW, &stop_time) != 0) {
scroll_data -> keep_running = 0;
perror("clock_gettime failed");
break;
}
// wait until start_time + 50ms
int wait = (start_time.tv_sec - stop_time.tv_sec) * 1000000 + (start_time.tv_nsec - stop_time.tv_nsec) / 1000 + 25000;
if (wait > 0)
usleep(wait);
if (display_data . should_be_on != 0)
display_data . should_buf = (display_data . should_buf + 1) % 3;
}
display_data . keep_running = 0;
pthread_join(display_data . thread_id, NULL);
} // scroll_it
void multiplexer_setup_non_root(t_display_data *display_data)
{
#ifndef SKIP_GPIO
// must use INP_GPIO before we can use OUT_GPIO
INP_GPIO(SER_DAT_PIN);
OUT_GPIO(SER_DAT_PIN);
INP_GPIO(SER_CLK_PIN);
OUT_GPIO(SER_CLK_PIN);
INP_GPIO(GATE_PIN);
OUT_GPIO(GATE_PIN);
INP_GPIO(PAR_CLK_PIN);
OUT_GPIO(PAR_CLK_PIN);
INP_GPIO(SENSE_PIN);
// enable pull-up on SENSE_PIN
/** adopted from wiringPi's wiringPi/wiringPi.c lines 1507-1511 **/
*(gpio + GPPUD) = 2; // bit 0: pull down; bit 1: pull up
usleep(5);
*(gpio + gpioToPUDCLK[SENSE_PIN]) = 1 << (SENSE_PIN & 31);
usleep(5);
*(gpio + GPPUD) = 0;
usleep(5);
*(gpio + gpioToPUDCLK[SENSE_PIN]) = 0;
usleep(5);
/** end of adoption **/
#endif // !SKIP_GPIO
for (int i=0; i<3; i++)
memset(display_data -> buf[i],0,40);
display_data -> is_buf = 0;
display_data -> should_buf = 0;
display_data -> keep_running = 1;
display_data -> is_on = 1;
display_data -> should_be_on = 1;
pthread_create(&display_data -> thread_id, NULL, put_on_display, display_data);
return;
} // multiplexer_setup_non_root
void multiplexer_setup_scroll(t_scroll_data *scroll_data)
{
scroll_data -> update = 0;
scroll_data -> keep_running = 1;
scroll_data -> shine_until = 0;
pthread_create(&scroll_data -> thread_id, NULL, scroll_it, scroll_data);
return;
} // multiplexer_setup_scroll
void turn_off_display()
{
#ifndef SKIP_GPIO
GPIO_SET = 1<<GATE_PIN; // Licht aus
GPIO_CLR = 1<<SER_DAT_PIN;
for (int i=0; i<48; i++) {
wait_tpic_settle_time
GPIO_CLR = 1<<SER_CLK_PIN;
wait_tpic_settle_time
GPIO_SET = 1<<SER_CLK_PIN;
}
wait_tpic_settle_time
GPIO_CLR = 1<<PAR_CLK_PIN;
wait_tpic_settle_time
GPIO_SET = 1<<PAR_CLK_PIN;
#endif // !SKIP_GPIO
} // turn_off_display
int got_input()
{
#ifdef SKIP_GPIO
struct timeval tv = { 0L, 0L };
fd_set fds;
FD_ZERO(&fds);
FD_SET(0, &fds);
if (select(1, &fds, NULL, NULL, &tv)) {
unsigned char c;
read(0, &c, sizeof(c));
return 1;
}
else
return 0;
#else // SKIP_GPIO
return ! GET_GPIO(SENSE_PIN); // low = active
#endif // SKIP_GPIO
} // got_input
|