diff options
author | Eduardo Chappa <chappa@washington.edu> | 2020-06-30 21:37:14 -0600 |
---|---|---|
committer | Eduardo Chappa <chappa@washington.edu> | 2020-06-30 21:37:14 -0600 |
commit | fd6fa417350dff2ae92fdf95d34896240913f2e0 (patch) | |
tree | 4470b74ee0e4ee2671b73f25e06017da92fa32b1 /libressl/include/openssl/engine.h | |
parent | 0f82bbd666184a005a35341db8c51575e7212850 (diff) | |
download | alpine-fd6fa417350dff2ae92fdf95d34896240913f2e0.tar.xz |
* Attempt to move the compilation of PC-Alpine to using openssl.
Currently only the WNT port works. The WXP port will stay in
LibreSSL, and I still need to test if the W32 port will stay with
OpenSSL or LibreSSL.
Diffstat (limited to 'libressl/include/openssl/engine.h')
-rw-r--r-- | libressl/include/openssl/engine.h | 807 |
1 files changed, 807 insertions, 0 deletions
diff --git a/libressl/include/openssl/engine.h b/libressl/include/openssl/engine.h new file mode 100644 index 00000000..30d1bde4 --- /dev/null +++ b/libressl/include/openssl/engine.h @@ -0,0 +1,807 @@ +/* $OpenBSD: engine.h,v 1.31 2015/07/19 22:34:27 doug Exp $ */ +/* Written by Geoff Thorpe (geoff@geoffthorpe.net) for the OpenSSL + * project 2000. + */ +/* ==================================================================== + * Copyright (c) 1999-2004 The OpenSSL Project. All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in + * the documentation and/or other materials provided with the + * distribution. + * + * 3. All advertising materials mentioning features or use of this + * software must display the following acknowledgment: + * "This product includes software developed by the OpenSSL Project + * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" + * + * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to + * endorse or promote products derived from this software without + * prior written permission. For written permission, please contact + * licensing@OpenSSL.org. + * + * 5. Products derived from this software may not be called "OpenSSL" + * nor may "OpenSSL" appear in their names without prior written + * permission of the OpenSSL Project. + * + * 6. Redistributions of any form whatsoever must retain the following + * acknowledgment: + * "This product includes software developed by the OpenSSL Project + * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" + * + * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY + * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR + * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR + * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; + * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, + * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED + * OF THE POSSIBILITY OF SUCH DAMAGE. + * ==================================================================== + * + * This product includes cryptographic software written by Eric Young + * (eay@cryptsoft.com). This product includes software written by Tim + * Hudson (tjh@cryptsoft.com). + * + */ +/* ==================================================================== + * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. + * ECDH support in OpenSSL originally developed by + * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project. + */ + +#ifndef HEADER_ENGINE_H +#define HEADER_ENGINE_H + +#include <openssl/opensslconf.h> + +#ifdef OPENSSL_NO_ENGINE +#error ENGINE is disabled. +#endif + +#ifndef OPENSSL_NO_DEPRECATED +#include <openssl/bn.h> +#ifndef OPENSSL_NO_RSA +#include <openssl/rsa.h> +#endif +#ifndef OPENSSL_NO_DSA +#include <openssl/dsa.h> +#endif +#ifndef OPENSSL_NO_DH +#include <openssl/dh.h> +#endif +#ifndef OPENSSL_NO_ECDH +#include <openssl/ecdh.h> +#endif +#ifndef OPENSSL_NO_ECDSA +#include <openssl/ecdsa.h> +#endif +#include <openssl/ui.h> +#include <openssl/err.h> +#endif + +#include <openssl/ossl_typ.h> + +#include <openssl/x509.h> + +#ifdef __cplusplus +extern "C" { +#endif + +/* These flags are used to control combinations of algorithm (methods) + * by bitwise "OR"ing. */ +#define ENGINE_METHOD_RSA (unsigned int)0x0001 +#define ENGINE_METHOD_DSA (unsigned int)0x0002 +#define ENGINE_METHOD_DH (unsigned int)0x0004 +#define ENGINE_METHOD_RAND (unsigned int)0x0008 +#define ENGINE_METHOD_ECDH (unsigned int)0x0010 +#define ENGINE_METHOD_ECDSA (unsigned int)0x0020 +#define ENGINE_METHOD_CIPHERS (unsigned int)0x0040 +#define ENGINE_METHOD_DIGESTS (unsigned int)0x0080 +#define ENGINE_METHOD_STORE (unsigned int)0x0100 +#define ENGINE_METHOD_PKEY_METHS (unsigned int)0x0200 +#define ENGINE_METHOD_PKEY_ASN1_METHS (unsigned int)0x0400 +/* Obvious all-or-nothing cases. */ +#define ENGINE_METHOD_ALL (unsigned int)0xFFFF +#define ENGINE_METHOD_NONE (unsigned int)0x0000 + +/* This(ese) flag(s) controls behaviour of the ENGINE_TABLE mechanism used + * internally to control registration of ENGINE implementations, and can be set + * by ENGINE_set_table_flags(). The "NOINIT" flag prevents attempts to + * initialise registered ENGINEs if they are not already initialised. */ +#define ENGINE_TABLE_FLAG_NOINIT (unsigned int)0x0001 + +/* ENGINE flags that can be set by ENGINE_set_flags(). */ +/* #define ENGINE_FLAGS_MALLOCED 0x0001 */ /* Not used */ + +/* This flag is for ENGINEs that wish to handle the various 'CMD'-related + * control commands on their own. Without this flag, ENGINE_ctrl() handles these + * control commands on behalf of the ENGINE using their "cmd_defns" data. */ +#define ENGINE_FLAGS_MANUAL_CMD_CTRL (int)0x0002 + +/* This flag is for ENGINEs who return new duplicate structures when found via + * "ENGINE_by_id()". When an ENGINE must store state (eg. if ENGINE_ctrl() + * commands are called in sequence as part of some stateful process like + * key-generation setup and execution), it can set this flag - then each attempt + * to obtain the ENGINE will result in it being copied into a new structure. + * Normally, ENGINEs don't declare this flag so ENGINE_by_id() just increments + * the existing ENGINE's structural reference count. */ +#define ENGINE_FLAGS_BY_ID_COPY (int)0x0004 + +/* This flag if for an ENGINE that does not want its methods registered as + * part of ENGINE_register_all_complete() for example if the methods are + * not usable as default methods. + */ + +#define ENGINE_FLAGS_NO_REGISTER_ALL (int)0x0008 + +/* ENGINEs can support their own command types, and these flags are used in + * ENGINE_CTRL_GET_CMD_FLAGS to indicate to the caller what kind of input each + * command expects. Currently only numeric and string input is supported. If a + * control command supports none of the _NUMERIC, _STRING, or _NO_INPUT options, + * then it is regarded as an "internal" control command - and not for use in + * config setting situations. As such, they're not available to the + * ENGINE_ctrl_cmd_string() function, only raw ENGINE_ctrl() access. Changes to + * this list of 'command types' should be reflected carefully in + * ENGINE_cmd_is_executable() and ENGINE_ctrl_cmd_string(). */ + +/* accepts a 'long' input value (3rd parameter to ENGINE_ctrl) */ +#define ENGINE_CMD_FLAG_NUMERIC (unsigned int)0x0001 +/* accepts string input (cast from 'void*' to 'const char *', 4th parameter to + * ENGINE_ctrl) */ +#define ENGINE_CMD_FLAG_STRING (unsigned int)0x0002 +/* Indicates that the control command takes *no* input. Ie. the control command + * is unparameterised. */ +#define ENGINE_CMD_FLAG_NO_INPUT (unsigned int)0x0004 +/* Indicates that the control command is internal. This control command won't + * be shown in any output, and is only usable through the ENGINE_ctrl_cmd() + * function. */ +#define ENGINE_CMD_FLAG_INTERNAL (unsigned int)0x0008 + +/* NB: These 3 control commands are deprecated and should not be used. ENGINEs + * relying on these commands should compile conditional support for + * compatibility (eg. if these symbols are defined) but should also migrate the + * same functionality to their own ENGINE-specific control functions that can be + * "discovered" by calling applications. The fact these control commands + * wouldn't be "executable" (ie. usable by text-based config) doesn't change the + * fact that application code can find and use them without requiring per-ENGINE + * hacking. */ + +/* These flags are used to tell the ctrl function what should be done. + * All command numbers are shared between all engines, even if some don't + * make sense to some engines. In such a case, they do nothing but return + * the error ENGINE_R_CTRL_COMMAND_NOT_IMPLEMENTED. */ +#define ENGINE_CTRL_SET_LOGSTREAM 1 +#define ENGINE_CTRL_SET_PASSWORD_CALLBACK 2 +#define ENGINE_CTRL_HUP 3 /* Close and reinitialise any + handles/connections etc. */ +#define ENGINE_CTRL_SET_USER_INTERFACE 4 /* Alternative to callback */ +#define ENGINE_CTRL_SET_CALLBACK_DATA 5 /* User-specific data, used + when calling the password + callback and the user + interface */ +#define ENGINE_CTRL_LOAD_CONFIGURATION 6 /* Load a configuration, given + a string that represents a + file name or so */ +#define ENGINE_CTRL_LOAD_SECTION 7 /* Load data from a given + section in the already loaded + configuration */ + +/* These control commands allow an application to deal with an arbitrary engine + * in a dynamic way. Warn: Negative return values indicate errors FOR THESE + * COMMANDS because zero is used to indicate 'end-of-list'. Other commands, + * including ENGINE-specific command types, return zero for an error. + * + * An ENGINE can choose to implement these ctrl functions, and can internally + * manage things however it chooses - it does so by setting the + * ENGINE_FLAGS_MANUAL_CMD_CTRL flag (using ENGINE_set_flags()). Otherwise the + * ENGINE_ctrl() code handles this on the ENGINE's behalf using the cmd_defns + * data (set using ENGINE_set_cmd_defns()). This means an ENGINE's ctrl() + * handler need only implement its own commands - the above "meta" commands will + * be taken care of. */ + +/* Returns non-zero if the supplied ENGINE has a ctrl() handler. If "not", then + * all the remaining control commands will return failure, so it is worth + * checking this first if the caller is trying to "discover" the engine's + * capabilities and doesn't want errors generated unnecessarily. */ +#define ENGINE_CTRL_HAS_CTRL_FUNCTION 10 +/* Returns a positive command number for the first command supported by the + * engine. Returns zero if no ctrl commands are supported. */ +#define ENGINE_CTRL_GET_FIRST_CMD_TYPE 11 +/* The 'long' argument specifies a command implemented by the engine, and the + * return value is the next command supported, or zero if there are no more. */ +#define ENGINE_CTRL_GET_NEXT_CMD_TYPE 12 +/* The 'void*' argument is a command name (cast from 'const char *'), and the + * return value is the command that corresponds to it. */ +#define ENGINE_CTRL_GET_CMD_FROM_NAME 13 +/* The next two allow a command to be converted into its corresponding string + * form. In each case, the 'long' argument supplies the command. In the NAME_LEN + * case, the return value is the length of the command name (not counting a + * trailing EOL). In the NAME case, the 'void*' argument must be a string buffer + * large enough, and it will be populated with the name of the command (WITH a + * trailing EOL). */ +#define ENGINE_CTRL_GET_NAME_LEN_FROM_CMD 14 +#define ENGINE_CTRL_GET_NAME_FROM_CMD 15 +/* The next two are similar but give a "short description" of a command. */ +#define ENGINE_CTRL_GET_DESC_LEN_FROM_CMD 16 +#define ENGINE_CTRL_GET_DESC_FROM_CMD 17 +/* With this command, the return value is the OR'd combination of + * ENGINE_CMD_FLAG_*** values that indicate what kind of input a given + * engine-specific ctrl command expects. */ +#define ENGINE_CTRL_GET_CMD_FLAGS 18 + +/* ENGINE implementations should start the numbering of their own control + * commands from this value. (ie. ENGINE_CMD_BASE, ENGINE_CMD_BASE + 1, etc). */ +#define ENGINE_CMD_BASE 200 + +/* If an ENGINE supports its own specific control commands and wishes the + * framework to handle the above 'ENGINE_CMD_***'-manipulation commands on its + * behalf, it should supply a null-terminated array of ENGINE_CMD_DEFN entries + * to ENGINE_set_cmd_defns(). It should also implement a ctrl() handler that + * supports the stated commands (ie. the "cmd_num" entries as described by the + * array). NB: The array must be ordered in increasing order of cmd_num. + * "null-terminated" means that the last ENGINE_CMD_DEFN element has cmd_num set + * to zero and/or cmd_name set to NULL. */ +typedef struct ENGINE_CMD_DEFN_st { + unsigned int cmd_num; /* The command number */ + const char *cmd_name; /* The command name itself */ + const char *cmd_desc; /* A short description of the command */ + unsigned int cmd_flags; /* The input the command expects */ +} ENGINE_CMD_DEFN; + +/* Generic function pointer */ +typedef int (*ENGINE_GEN_FUNC_PTR)(void); +/* Generic function pointer taking no arguments */ +typedef int (*ENGINE_GEN_INT_FUNC_PTR)(ENGINE *); +/* Specific control function pointer */ +typedef int (*ENGINE_CTRL_FUNC_PTR)(ENGINE *, int, long, void *, + void (*f)(void)); +/* Generic load_key function pointer */ +typedef EVP_PKEY * (*ENGINE_LOAD_KEY_PTR)(ENGINE *, const char *, + UI_METHOD *ui_method, void *callback_data); +typedef int (*ENGINE_SSL_CLIENT_CERT_PTR)(ENGINE *, SSL *ssl, + STACK_OF(X509_NAME) *ca_dn, X509 **pcert, EVP_PKEY **pkey, + STACK_OF(X509) **pother, UI_METHOD *ui_method, void *callback_data); + +/* These callback types are for an ENGINE's handler for cipher and digest logic. + * These handlers have these prototypes; + * int foo(ENGINE *e, const EVP_CIPHER **cipher, const int **nids, int nid); + * int foo(ENGINE *e, const EVP_MD **digest, const int **nids, int nid); + * Looking at how to implement these handlers in the case of cipher support, if + * the framework wants the EVP_CIPHER for 'nid', it will call; + * foo(e, &p_evp_cipher, NULL, nid); (return zero for failure) + * If the framework wants a list of supported 'nid's, it will call; + * foo(e, NULL, &p_nids, 0); (returns number of 'nids' or -1 for error) + */ +/* Returns to a pointer to the array of supported cipher 'nid's. If the second + * parameter is non-NULL it is set to the size of the returned array. */ +typedef int (*ENGINE_CIPHERS_PTR)(ENGINE *, const EVP_CIPHER **, + const int **, int); +typedef int (*ENGINE_DIGESTS_PTR)(ENGINE *, const EVP_MD **, const int **, int); +typedef int (*ENGINE_PKEY_METHS_PTR)(ENGINE *, EVP_PKEY_METHOD **, + const int **, int); +typedef int (*ENGINE_PKEY_ASN1_METHS_PTR)(ENGINE *, EVP_PKEY_ASN1_METHOD **, + const int **, int); + +/* STRUCTURE functions ... all of these functions deal with pointers to ENGINE + * structures where the pointers have a "structural reference". This means that + * their reference is to allowed access to the structure but it does not imply + * that the structure is functional. To simply increment or decrement the + * structural reference count, use ENGINE_by_id and ENGINE_free. NB: This is not + * required when iterating using ENGINE_get_next as it will automatically + * decrement the structural reference count of the "current" ENGINE and + * increment the structural reference count of the ENGINE it returns (unless it + * is NULL). */ + +/* Get the first/last "ENGINE" type available. */ +ENGINE *ENGINE_get_first(void); +ENGINE *ENGINE_get_last(void); +/* Iterate to the next/previous "ENGINE" type (NULL = end of the list). */ +ENGINE *ENGINE_get_next(ENGINE *e); +ENGINE *ENGINE_get_prev(ENGINE *e); +/* Add another "ENGINE" type into the array. */ +int ENGINE_add(ENGINE *e); +/* Remove an existing "ENGINE" type from the array. */ +int ENGINE_remove(ENGINE *e); +/* Retrieve an engine from the list by its unique "id" value. */ +ENGINE *ENGINE_by_id(const char *id); +/* Add all the built-in engines. */ +void ENGINE_load_openssl(void); +void ENGINE_load_dynamic(void); +#ifndef OPENSSL_NO_STATIC_ENGINE +void ENGINE_load_padlock(void); +#endif +void ENGINE_load_builtin_engines(void); + +/* Get and set global flags (ENGINE_TABLE_FLAG_***) for the implementation + * "registry" handling. */ +unsigned int ENGINE_get_table_flags(void); +void ENGINE_set_table_flags(unsigned int flags); + +/* Manage registration of ENGINEs per "table". For each type, there are 3 + * functions; + * ENGINE_register_***(e) - registers the implementation from 'e' (if it has one) + * ENGINE_unregister_***(e) - unregister the implementation from 'e' + * ENGINE_register_all_***() - call ENGINE_register_***() for each 'e' in the list + * Cleanup is automatically registered from each table when required, so + * ENGINE_cleanup() will reverse any "register" operations. */ + +int ENGINE_register_RSA(ENGINE *e); +void ENGINE_unregister_RSA(ENGINE *e); +void ENGINE_register_all_RSA(void); + +int ENGINE_register_DSA(ENGINE *e); +void ENGINE_unregister_DSA(ENGINE *e); +void ENGINE_register_all_DSA(void); + +int ENGINE_register_ECDH(ENGINE *e); +void ENGINE_unregister_ECDH(ENGINE *e); +void ENGINE_register_all_ECDH(void); + +int ENGINE_register_ECDSA(ENGINE *e); +void ENGINE_unregister_ECDSA(ENGINE *e); +void ENGINE_register_all_ECDSA(void); + +int ENGINE_register_DH(ENGINE *e); +void ENGINE_unregister_DH(ENGINE *e); +void ENGINE_register_all_DH(void); + +int ENGINE_register_RAND(ENGINE *e); +void ENGINE_unregister_RAND(ENGINE *e); +void ENGINE_register_all_RAND(void); + +int ENGINE_register_STORE(ENGINE *e); +void ENGINE_unregister_STORE(ENGINE *e); +void ENGINE_register_all_STORE(void); + +int ENGINE_register_ciphers(ENGINE *e); +void ENGINE_unregister_ciphers(ENGINE *e); +void ENGINE_register_all_ciphers(void); + +int ENGINE_register_digests(ENGINE *e); +void ENGINE_unregister_digests(ENGINE *e); +void ENGINE_register_all_digests(void); + +int ENGINE_register_pkey_meths(ENGINE *e); +void ENGINE_unregister_pkey_meths(ENGINE *e); +void ENGINE_register_all_pkey_meths(void); + +int ENGINE_register_pkey_asn1_meths(ENGINE *e); +void ENGINE_unregister_pkey_asn1_meths(ENGINE *e); +void ENGINE_register_all_pkey_asn1_meths(void); + +/* These functions register all support from the above categories. Note, use of + * these functions can result in static linkage of code your application may not + * need. If you only need a subset of functionality, consider using more + * selective initialisation. */ +int ENGINE_register_complete(ENGINE *e); +int ENGINE_register_all_complete(void); + +/* Send parametrised control commands to the engine. The possibilities to send + * down an integer, a pointer to data or a function pointer are provided. Any of + * the parameters may or may not be NULL, depending on the command number. In + * actuality, this function only requires a structural (rather than functional) + * reference to an engine, but many control commands may require the engine be + * functional. The caller should be aware of trying commands that require an + * operational ENGINE, and only use functional references in such situations. */ +int ENGINE_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f)(void)); + +/* This function tests if an ENGINE-specific command is usable as a "setting". + * Eg. in an application's config file that gets processed through + * ENGINE_ctrl_cmd_string(). If this returns zero, it is not available to + * ENGINE_ctrl_cmd_string(), only ENGINE_ctrl(). */ +int ENGINE_cmd_is_executable(ENGINE *e, int cmd); + +/* This function works like ENGINE_ctrl() with the exception of taking a + * command name instead of a command number, and can handle optional commands. + * See the comment on ENGINE_ctrl_cmd_string() for an explanation on how to + * use the cmd_name and cmd_optional. */ +int ENGINE_ctrl_cmd(ENGINE *e, const char *cmd_name, + long i, void *p, void (*f)(void), int cmd_optional); + +/* This function passes a command-name and argument to an ENGINE. The cmd_name + * is converted to a command number and the control command is called using + * 'arg' as an argument (unless the ENGINE doesn't support such a command, in + * which case no control command is called). The command is checked for input + * flags, and if necessary the argument will be converted to a numeric value. If + * cmd_optional is non-zero, then if the ENGINE doesn't support the given + * cmd_name the return value will be success anyway. This function is intended + * for applications to use so that users (or config files) can supply + * engine-specific config data to the ENGINE at run-time to control behaviour of + * specific engines. As such, it shouldn't be used for calling ENGINE_ctrl() + * functions that return data, deal with binary data, or that are otherwise + * supposed to be used directly through ENGINE_ctrl() in application code. Any + * "return" data from an ENGINE_ctrl() operation in this function will be lost - + * the return value is interpreted as failure if the return value is zero, + * success otherwise, and this function returns a boolean value as a result. In + * other words, vendors of 'ENGINE'-enabled devices should write ENGINE + * implementations with parameterisations that work in this scheme, so that + * compliant ENGINE-based applications can work consistently with the same + * configuration for the same ENGINE-enabled devices, across applications. */ +int ENGINE_ctrl_cmd_string(ENGINE *e, const char *cmd_name, const char *arg, + int cmd_optional); + +/* These functions are useful for manufacturing new ENGINE structures. They + * don't address reference counting at all - one uses them to populate an ENGINE + * structure with personalised implementations of things prior to using it + * directly or adding it to the builtin ENGINE list in OpenSSL. These are also + * here so that the ENGINE structure doesn't have to be exposed and break binary + * compatibility! */ +ENGINE *ENGINE_new(void); +int ENGINE_free(ENGINE *e); +int ENGINE_up_ref(ENGINE *e); +int ENGINE_set_id(ENGINE *e, const char *id); +int ENGINE_set_name(ENGINE *e, const char *name); +int ENGINE_set_RSA(ENGINE *e, const RSA_METHOD *rsa_meth); +int ENGINE_set_DSA(ENGINE *e, const DSA_METHOD *dsa_meth); +int ENGINE_set_ECDH(ENGINE *e, const ECDH_METHOD *ecdh_meth); +int ENGINE_set_ECDSA(ENGINE *e, const ECDSA_METHOD *ecdsa_meth); +int ENGINE_set_DH(ENGINE *e, const DH_METHOD *dh_meth); +int ENGINE_set_RAND(ENGINE *e, const RAND_METHOD *rand_meth); +int ENGINE_set_STORE(ENGINE *e, const STORE_METHOD *store_meth); +int ENGINE_set_destroy_function(ENGINE *e, ENGINE_GEN_INT_FUNC_PTR destroy_f); +int ENGINE_set_init_function(ENGINE *e, ENGINE_GEN_INT_FUNC_PTR init_f); +int ENGINE_set_finish_function(ENGINE *e, ENGINE_GEN_INT_FUNC_PTR finish_f); +int ENGINE_set_ctrl_function(ENGINE *e, ENGINE_CTRL_FUNC_PTR ctrl_f); +int ENGINE_set_load_privkey_function(ENGINE *e, ENGINE_LOAD_KEY_PTR loadpriv_f); +int ENGINE_set_load_pubkey_function(ENGINE *e, ENGINE_LOAD_KEY_PTR loadpub_f); +int ENGINE_set_load_ssl_client_cert_function(ENGINE *e, + ENGINE_SSL_CLIENT_CERT_PTR loadssl_f); +int ENGINE_set_ciphers(ENGINE *e, ENGINE_CIPHERS_PTR f); +int ENGINE_set_digests(ENGINE *e, ENGINE_DIGESTS_PTR f); +int ENGINE_set_pkey_meths(ENGINE *e, ENGINE_PKEY_METHS_PTR f); +int ENGINE_set_pkey_asn1_meths(ENGINE *e, ENGINE_PKEY_ASN1_METHS_PTR f); +int ENGINE_set_flags(ENGINE *e, int flags); +int ENGINE_set_cmd_defns(ENGINE *e, const ENGINE_CMD_DEFN *defns); +/* These functions allow control over any per-structure ENGINE data. */ +int ENGINE_get_ex_new_index(long argl, void *argp, CRYPTO_EX_new *new_func, + CRYPTO_EX_dup *dup_func, CRYPTO_EX_free *free_func); +int ENGINE_set_ex_data(ENGINE *e, int idx, void *arg); +void *ENGINE_get_ex_data(const ENGINE *e, int idx); + +/* This function cleans up anything that needs it. Eg. the ENGINE_add() function + * automatically ensures the list cleanup function is registered to be called + * from ENGINE_cleanup(). Similarly, all ENGINE_register_*** functions ensure + * ENGINE_cleanup() will clean up after them. */ +void ENGINE_cleanup(void); + +/* These return values from within the ENGINE structure. These can be useful + * with functional references as well as structural references - it depends + * which you obtained. Using the result for functional purposes if you only + * obtained a structural reference may be problematic! */ +const char *ENGINE_get_id(const ENGINE *e); +const char *ENGINE_get_name(const ENGINE *e); +const RSA_METHOD *ENGINE_get_RSA(const ENGINE *e); +const DSA_METHOD *ENGINE_get_DSA(const ENGINE *e); +const ECDH_METHOD *ENGINE_get_ECDH(const ENGINE *e); +const ECDSA_METHOD *ENGINE_get_ECDSA(const ENGINE *e); +const DH_METHOD *ENGINE_get_DH(const ENGINE *e); +const RAND_METHOD *ENGINE_get_RAND(const ENGINE *e); +const STORE_METHOD *ENGINE_get_STORE(const ENGINE *e); +ENGINE_GEN_INT_FUNC_PTR ENGINE_get_destroy_function(const ENGINE *e); +ENGINE_GEN_INT_FUNC_PTR ENGINE_get_init_function(const ENGINE *e); +ENGINE_GEN_INT_FUNC_PTR ENGINE_get_finish_function(const ENGINE *e); +ENGINE_CTRL_FUNC_PTR ENGINE_get_ctrl_function(const ENGINE *e); +ENGINE_LOAD_KEY_PTR ENGINE_get_load_privkey_function(const ENGINE *e); +ENGINE_LOAD_KEY_PTR ENGINE_get_load_pubkey_function(const ENGINE *e); +ENGINE_SSL_CLIENT_CERT_PTR ENGINE_get_ssl_client_cert_function(const ENGINE *e); +ENGINE_CIPHERS_PTR ENGINE_get_ciphers(const ENGINE *e); +ENGINE_DIGESTS_PTR ENGINE_get_digests(const ENGINE *e); +ENGINE_PKEY_METHS_PTR ENGINE_get_pkey_meths(const ENGINE *e); +ENGINE_PKEY_ASN1_METHS_PTR ENGINE_get_pkey_asn1_meths(const ENGINE *e); +const EVP_CIPHER *ENGINE_get_cipher(ENGINE *e, int nid); +const EVP_MD *ENGINE_get_digest(ENGINE *e, int nid); +const EVP_PKEY_METHOD *ENGINE_get_pkey_meth(ENGINE *e, int nid); +const EVP_PKEY_ASN1_METHOD *ENGINE_get_pkey_asn1_meth(ENGINE *e, int nid); +const EVP_PKEY_ASN1_METHOD *ENGINE_get_pkey_asn1_meth_str(ENGINE *e, + const char *str, int len); +const EVP_PKEY_ASN1_METHOD *ENGINE_pkey_asn1_find_str(ENGINE **pe, + const char *str, int len); +const ENGINE_CMD_DEFN *ENGINE_get_cmd_defns(const ENGINE *e); +int ENGINE_get_flags(const ENGINE *e); + +/* FUNCTIONAL functions. These functions deal with ENGINE structures + * that have (or will) be initialised for use. Broadly speaking, the + * structural functions are useful for iterating the list of available + * engine types, creating new engine types, and other "list" operations. + * These functions actually deal with ENGINEs that are to be used. As + * such these functions can fail (if applicable) when particular + * engines are unavailable - eg. if a hardware accelerator is not + * attached or not functioning correctly. Each ENGINE has 2 reference + * counts; structural and functional. Every time a functional reference + * is obtained or released, a corresponding structural reference is + * automatically obtained or released too. */ + +/* Initialise a engine type for use (or up its reference count if it's + * already in use). This will fail if the engine is not currently + * operational and cannot initialise. */ +int ENGINE_init(ENGINE *e); +/* Free a functional reference to a engine type. This does not require + * a corresponding call to ENGINE_free as it also releases a structural + * reference. */ +int ENGINE_finish(ENGINE *e); + +/* The following functions handle keys that are stored in some secondary + * location, handled by the engine. The storage may be on a card or + * whatever. */ +EVP_PKEY *ENGINE_load_private_key(ENGINE *e, const char *key_id, + UI_METHOD *ui_method, void *callback_data); +EVP_PKEY *ENGINE_load_public_key(ENGINE *e, const char *key_id, + UI_METHOD *ui_method, void *callback_data); +int ENGINE_load_ssl_client_cert(ENGINE *e, SSL *s, + STACK_OF(X509_NAME) *ca_dn, X509 **pcert, EVP_PKEY **ppkey, + STACK_OF(X509) **pother, + UI_METHOD *ui_method, void *callback_data); + +/* This returns a pointer for the current ENGINE structure that + * is (by default) performing any RSA operations. The value returned + * is an incremented reference, so it should be free'd (ENGINE_finish) + * before it is discarded. */ +ENGINE *ENGINE_get_default_RSA(void); +/* Same for the other "methods" */ +ENGINE *ENGINE_get_default_DSA(void); +ENGINE *ENGINE_get_default_ECDH(void); +ENGINE *ENGINE_get_default_ECDSA(void); +ENGINE *ENGINE_get_default_DH(void); +ENGINE *ENGINE_get_default_RAND(void); +/* These functions can be used to get a functional reference to perform + * ciphering or digesting corresponding to "nid". */ +ENGINE *ENGINE_get_cipher_engine(int nid); +ENGINE *ENGINE_get_digest_engine(int nid); +ENGINE *ENGINE_get_pkey_meth_engine(int nid); +ENGINE *ENGINE_get_pkey_asn1_meth_engine(int nid); + +/* This sets a new default ENGINE structure for performing RSA + * operations. If the result is non-zero (success) then the ENGINE + * structure will have had its reference count up'd so the caller + * should still free their own reference 'e'. */ +int ENGINE_set_default_RSA(ENGINE *e); +int ENGINE_set_default_string(ENGINE *e, const char *def_list); +/* Same for the other "methods" */ +int ENGINE_set_default_DSA(ENGINE *e); +int ENGINE_set_default_ECDH(ENGINE *e); +int ENGINE_set_default_ECDSA(ENGINE *e); +int ENGINE_set_default_DH(ENGINE *e); +int ENGINE_set_default_RAND(ENGINE *e); +int ENGINE_set_default_ciphers(ENGINE *e); +int ENGINE_set_default_digests(ENGINE *e); +int ENGINE_set_default_pkey_meths(ENGINE *e); +int ENGINE_set_default_pkey_asn1_meths(ENGINE *e); + +/* The combination "set" - the flags are bitwise "OR"d from the + * ENGINE_METHOD_*** defines above. As with the "ENGINE_register_complete()" + * function, this function can result in unnecessary static linkage. If your + * application requires only specific functionality, consider using more + * selective functions. */ +int ENGINE_set_default(ENGINE *e, unsigned int flags); + +void ENGINE_add_conf_module(void); + +/* Deprecated functions ... */ +/* int ENGINE_clear_defaults(void); */ + +/**************************/ +/* DYNAMIC ENGINE SUPPORT */ +/**************************/ + +/* Binary/behaviour compatibility levels */ +#define OSSL_DYNAMIC_VERSION (unsigned long)0x00020000 +/* Binary versions older than this are too old for us (whether we're a loader or + * a loadee) */ +#define OSSL_DYNAMIC_OLDEST (unsigned long)0x00020000 + +/* When compiling an ENGINE entirely as an external shared library, loadable by + * the "dynamic" ENGINE, these types are needed. The 'dynamic_fns' structure + * type provides the calling application's (or library's) error functionality + * and memory management function pointers to the loaded library. These should + * be used/set in the loaded library code so that the loading application's + * 'state' will be used/changed in all operations. The 'static_state' pointer + * allows the loaded library to know if it shares the same static data as the + * calling application (or library), and thus whether these callbacks need to be + * set or not. */ +typedef void *(*dyn_MEM_malloc_cb)(size_t); +typedef void *(*dyn_MEM_realloc_cb)(void *, size_t); +typedef void (*dyn_MEM_free_cb)(void *); +typedef struct st_dynamic_MEM_fns { + dyn_MEM_malloc_cb malloc_cb; + dyn_MEM_realloc_cb realloc_cb; + dyn_MEM_free_cb free_cb; +} dynamic_MEM_fns; +/* FIXME: Perhaps the memory and locking code (crypto.h) should declare and use + * these types so we (and any other dependant code) can simplify a bit?? */ +typedef void (*dyn_lock_locking_cb)(int, int, const char *, int); +typedef int (*dyn_lock_add_lock_cb)(int*, int, int, const char *, int); +typedef struct CRYPTO_dynlock_value *(*dyn_dynlock_create_cb)( + const char *, int); +typedef void (*dyn_dynlock_lock_cb)(int, struct CRYPTO_dynlock_value *, + const char *, int); +typedef void (*dyn_dynlock_destroy_cb)(struct CRYPTO_dynlock_value *, + const char *, int); +typedef struct st_dynamic_LOCK_fns { + dyn_lock_locking_cb lock_locking_cb; + dyn_lock_add_lock_cb lock_add_lock_cb; + dyn_dynlock_create_cb dynlock_create_cb; + dyn_dynlock_lock_cb dynlock_lock_cb; + dyn_dynlock_destroy_cb dynlock_destroy_cb; +} dynamic_LOCK_fns; +/* The top-level structure */ +typedef struct st_dynamic_fns { + void *static_state; + const ERR_FNS *err_fns; + const CRYPTO_EX_DATA_IMPL *ex_data_fns; + dynamic_MEM_fns mem_fns; + dynamic_LOCK_fns lock_fns; +} dynamic_fns; + +/* The version checking function should be of this prototype. NB: The + * ossl_version value passed in is the OSSL_DYNAMIC_VERSION of the loading code. + * If this function returns zero, it indicates a (potential) version + * incompatibility and the loaded library doesn't believe it can proceed. + * Otherwise, the returned value is the (latest) version supported by the + * loading library. The loader may still decide that the loaded code's version + * is unsatisfactory and could veto the load. The function is expected to + * be implemented with the symbol name "v_check", and a default implementation + * can be fully instantiated with IMPLEMENT_DYNAMIC_CHECK_FN(). */ +typedef unsigned long (*dynamic_v_check_fn)(unsigned long ossl_version); +#define IMPLEMENT_DYNAMIC_CHECK_FN() \ + extern unsigned long v_check(unsigned long v); \ + extern unsigned long v_check(unsigned long v) { \ + if(v >= OSSL_DYNAMIC_OLDEST) return OSSL_DYNAMIC_VERSION; \ + return 0; } + +/* This function is passed the ENGINE structure to initialise with its own + * function and command settings. It should not adjust the structural or + * functional reference counts. If this function returns zero, (a) the load will + * be aborted, (b) the previous ENGINE state will be memcpy'd back onto the + * structure, and (c) the shared library will be unloaded. So implementations + * should do their own internal cleanup in failure circumstances otherwise they + * could leak. The 'id' parameter, if non-NULL, represents the ENGINE id that + * the loader is looking for. If this is NULL, the shared library can choose to + * return failure or to initialise a 'default' ENGINE. If non-NULL, the shared + * library must initialise only an ENGINE matching the passed 'id'. The function + * is expected to be implemented with the symbol name "bind_engine". A standard + * implementation can be instantiated with IMPLEMENT_DYNAMIC_BIND_FN(fn) where + * the parameter 'fn' is a callback function that populates the ENGINE structure + * and returns an int value (zero for failure). 'fn' should have prototype; + * [static] int fn(ENGINE *e, const char *id); */ +typedef int (*dynamic_bind_engine)(ENGINE *e, const char *id, + const dynamic_fns *fns); +#define IMPLEMENT_DYNAMIC_BIND_FN(fn) \ + extern \ + int bind_engine(ENGINE *e, const char *id, const dynamic_fns *fns); \ + extern \ + int bind_engine(ENGINE *e, const char *id, const dynamic_fns *fns) { \ + if(ENGINE_get_static_state() == fns->static_state) goto skip_cbs; \ + if(!CRYPTO_set_mem_functions(fns->mem_fns.malloc_cb, \ + fns->mem_fns.realloc_cb, fns->mem_fns.free_cb)) \ + return 0; \ + CRYPTO_set_locking_callback(fns->lock_fns.lock_locking_cb); \ + CRYPTO_set_add_lock_callback(fns->lock_fns.lock_add_lock_cb); \ + CRYPTO_set_dynlock_create_callback(fns->lock_fns.dynlock_create_cb); \ + CRYPTO_set_dynlock_lock_callback(fns->lock_fns.dynlock_lock_cb); \ + CRYPTO_set_dynlock_destroy_callback(fns->lock_fns.dynlock_destroy_cb); \ + if(!CRYPTO_set_ex_data_implementation(fns->ex_data_fns)) \ + return 0; \ + if(!ERR_set_implementation(fns->err_fns)) return 0; \ + skip_cbs: \ + if(!fn(e,id)) return 0; \ + return 1; } + +/* If the loading application (or library) and the loaded ENGINE library share + * the same static data (eg. they're both dynamically linked to the same + * libcrypto.so) we need a way to avoid trying to set system callbacks - this + * would fail, and for the same reason that it's unnecessary to try. If the + * loaded ENGINE has (or gets from through the loader) its own copy of the + * libcrypto static data, we will need to set the callbacks. The easiest way to + * detect this is to have a function that returns a pointer to some static data + * and let the loading application and loaded ENGINE compare their respective + * values. */ + void *ENGINE_get_static_state(void); + +/* BEGIN ERROR CODES */ +/* The following lines are auto generated by the script mkerr.pl. Any changes + * made after this point may be overwritten when the script is next run. + */ +void ERR_load_ENGINE_strings(void); + +/* Error codes for the ENGINE functions. */ + +/* Function codes. */ +#define ENGINE_F_DYNAMIC_CTRL 180 +#define ENGINE_F_DYNAMIC_GET_DATA_CTX 181 +#define ENGINE_F_DYNAMIC_LOAD 182 +#define ENGINE_F_DYNAMIC_SET_DATA_CTX 183 +#define ENGINE_F_ENGINE_ADD 105 +#define ENGINE_F_ENGINE_BY_ID 106 +#define ENGINE_F_ENGINE_CMD_IS_EXECUTABLE 170 +#define ENGINE_F_ENGINE_CTRL 142 +#define ENGINE_F_ENGINE_CTRL_CMD 178 +#define ENGINE_F_ENGINE_CTRL_CMD_STRING 171 +#define ENGINE_F_ENGINE_FINISH 107 +#define ENGINE_F_ENGINE_FREE_UTIL 108 +#define ENGINE_F_ENGINE_GET_CIPHER 185 +#define ENGINE_F_ENGINE_GET_DEFAULT_TYPE 177 +#define ENGINE_F_ENGINE_GET_DIGEST 186 +#define ENGINE_F_ENGINE_GET_NEXT 115 +#define ENGINE_F_ENGINE_GET_PKEY_ASN1_METH 193 +#define ENGINE_F_ENGINE_GET_PKEY_METH 192 +#define ENGINE_F_ENGINE_GET_PREV 116 +#define ENGINE_F_ENGINE_INIT 119 +#define ENGINE_F_ENGINE_LIST_ADD 120 +#define ENGINE_F_ENGINE_LIST_REMOVE 121 +#define ENGINE_F_ENGINE_LOAD_PRIVATE_KEY 150 +#define ENGINE_F_ENGINE_LOAD_PUBLIC_KEY 151 +#define ENGINE_F_ENGINE_LOAD_SSL_CLIENT_CERT 194 +#define ENGINE_F_ENGINE_NEW 122 +#define ENGINE_F_ENGINE_REMOVE 123 +#define ENGINE_F_ENGINE_SET_DEFAULT_STRING 189 +#define ENGINE_F_ENGINE_SET_DEFAULT_TYPE 126 +#define ENGINE_F_ENGINE_SET_ID 129 +#define ENGINE_F_ENGINE_SET_NAME 130 +#define ENGINE_F_ENGINE_TABLE_REGISTER 184 +#define ENGINE_F_ENGINE_UNLOAD_KEY 152 +#define ENGINE_F_ENGINE_UNLOCKED_FINISH 191 +#define ENGINE_F_ENGINE_UP_REF 190 +#define ENGINE_F_INT_CTRL_HELPER 172 +#define ENGINE_F_INT_ENGINE_CONFIGURE 188 +#define ENGINE_F_INT_ENGINE_MODULE_INIT 187 +#define ENGINE_F_LOG_MESSAGE 141 + +/* Reason codes. */ +#define ENGINE_R_ALREADY_LOADED 100 +#define ENGINE_R_ARGUMENT_IS_NOT_A_NUMBER 133 +#define ENGINE_R_CMD_NOT_EXECUTABLE 134 +#define ENGINE_R_COMMAND_TAKES_INPUT 135 +#define ENGINE_R_COMMAND_TAKES_NO_INPUT 136 +#define ENGINE_R_CONFLICTING_ENGINE_ID 103 +#define ENGINE_R_CTRL_COMMAND_NOT_IMPLEMENTED 119 +#define ENGINE_R_DH_NOT_IMPLEMENTED 139 +#define ENGINE_R_DSA_NOT_IMPLEMENTED 140 +#define ENGINE_R_DSO_FAILURE 104 +#define ENGINE_R_DSO_NOT_FOUND 132 +#define ENGINE_R_ENGINES_SECTION_ERROR 148 +#define ENGINE_R_ENGINE_CONFIGURATION_ERROR 102 +#define ENGINE_R_ENGINE_IS_NOT_IN_LIST 105 +#define ENGINE_R_ENGINE_SECTION_ERROR 149 +#define ENGINE_R_FAILED_LOADING_PRIVATE_KEY 128 +#define ENGINE_R_FAILED_LOADING_PUBLIC_KEY 129 +#define ENGINE_R_FINISH_FAILED 106 +#define ENGINE_R_GET_HANDLE_FAILED 107 +#define ENGINE_R_ID_OR_NAME_MISSING 108 +#define ENGINE_R_INIT_FAILED 109 +#define ENGINE_R_INTERNAL_LIST_ERROR 110 +#define ENGINE_R_INVALID_ARGUMENT 143 +#define ENGINE_R_INVALID_CMD_NAME 137 +#define ENGINE_R_INVALID_CMD_NUMBER 138 +#define ENGINE_R_INVALID_INIT_VALUE 151 +#define ENGINE_R_INVALID_STRING 150 +#define ENGINE_R_NOT_INITIALISED 117 +#define ENGINE_R_NOT_LOADED 112 +#define ENGINE_R_NO_CONTROL_FUNCTION 120 +#define ENGINE_R_NO_INDEX 144 +#define ENGINE_R_NO_LOAD_FUNCTION 125 +#define ENGINE_R_NO_REFERENCE 130 +#define ENGINE_R_NO_SUCH_ENGINE 116 +#define ENGINE_R_NO_UNLOAD_FUNCTION 126 +#define ENGINE_R_PROVIDE_PARAMETERS 113 +#define ENGINE_R_RSA_NOT_IMPLEMENTED 141 +#define ENGINE_R_UNIMPLEMENTED_CIPHER 146 +#define ENGINE_R_UNIMPLEMENTED_DIGEST 147 +#define ENGINE_R_UNIMPLEMENTED_PUBLIC_KEY_METHOD 101 +#define ENGINE_R_VERSION_INCOMPATIBILITY 145 + +#ifdef __cplusplus +} +#endif +#endif |