1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
|
/* $Id$ */
#ifndef YAPF_BASE_HPP
#define YAPF_BASE_HPP
EXTERN_C_BEGIN
#include "../debug.h"
EXTERN_C_END
#include "fixedsizearray.hpp"
#include "blob.hpp"
#include "nodelist.hpp"
extern int _total_pf_time_us;
/** CYapfBaseT - A-star type path finder base class.
Derive your own pathfinder from it. You must provide the following template argument:
Types - used as collection of local types used in pathfinder
Requirements for the Types struct:
----------------------------------
The following types must be defined in the 'Types' argument:
- Types::Tpf - your pathfinder derived from CYapfBaseT
- Types::NodeList - open/closed node list (look at CNodeList_HashTableT)
NodeList needs to have defined local type Titem - defines the pathfinder node type.
Node needs to define local type Key - the node key in the collection ()
For node list you can use template class CNodeList_HashTableT, for which
you need to declare only your node type. Look at test_yapf.h for an example.
Requrements to your pathfinder class derived from CYapfBaseT:
-------------------------------------------------------------
Your pathfinder derived class needs to implement following methods:
FORCEINLINE void PfSetStartupNodes()
FORCEINLINE void PfFollowNode(Node& org)
FORCEINLINE bool PfCalcCost(Node& n)
FORCEINLINE bool PfCalcEstimate(Node& n)
FORCEINLINE bool PfDetectDestination(Node& n)
For more details about those methods, look at the end of CYapfBaseT
declaration. There are some examples. For another example look at
test_yapf.h (part or unittest project).
*/
template <class Types>
class CYapfBaseT {
public:
typedef typename Types::Tpf Tpf; ///< the pathfinder class (derived from THIS class)
typedef typename Types::NodeList NodeList; ///< our node list
typedef typename NodeList::Titem Node; ///< this will be our node type
typedef typename Node::Key Key; ///< key to hash tables
NodeList m_nodes; ///< node list multi-container
protected:
Node* m_pBestDestNode; ///< pointer to the destination node found at last round
Node* m_pBestIntermediateNode; ///< here should be node closest to the destination if path not found
const YapfSettings *m_settings; ///< current settings (_patches.yapf)
int m_max_search_nodes; ///< maximum number of nodes we are allowed to visit before we give up
const Vehicle* m_veh; ///< vehicle that we are trying to drive
int m_stats_cost_calcs; ///< stats - how many node's costs were calculated
int m_stats_cache_hits; ///< stats - how many node's costs were reused from cache
public:
CPerformanceTimer m_perf_cost; ///< stats - total CPU time of this run
CPerformanceTimer m_perf_slope_cost; ///< stats - slope calculation CPU time
CPerformanceTimer m_perf_ts_cost; ///< stats - GetTrackStatus() CPU time
CPerformanceTimer m_perf_other_cost; ///< stats - other CPU time
public:
int m_num_steps; ///< this is there for debugging purposes (hope it doesn't hurt)
public:
/// default constructor
FORCEINLINE CYapfBaseT()
: m_pBestDestNode(NULL)
, m_pBestIntermediateNode(NULL)
#if defined(UNITTEST)
, m_settings(NULL)
, m_max_search_nodes(100000)
#else
, m_settings(&_patches.yapf)
, m_max_search_nodes(PfGetSettings().max_search_nodes)
#endif
, m_veh(NULL)
, m_stats_cost_calcs(0)
, m_stats_cache_hits(0)
, m_num_steps(0)
{
}
/// default destructor
~CYapfBaseT() {}
protected:
/// to access inherited path finder
FORCEINLINE Tpf& Yapf() {return *static_cast<Tpf*>(this);}
public:
/// return current settings (can be custom - player based - but later)
FORCEINLINE const YapfSettings& PfGetSettings() const
{
return *m_settings;
}
/** Main pathfinder routine:
- set startup node(s)
- main loop that stops if:
- the destination was found
- or the open list is empty (no route to destination).
- or the maximum amount of loops reached - m_max_search_nodes (default = 10000)
@return true if the path was found */
inline bool FindPath(const Vehicle* v)
{
m_veh = v;
CPerformanceTimer perf;
perf.Start();
Yapf().PfSetStartupNodes();
while (true) {
m_num_steps++;
Node& n = m_nodes.GetBestOpenNode();
if (&n == NULL)
break;
// if the best open node was worse than the best path found, we can finish
if (m_pBestDestNode != NULL && m_pBestDestNode->GetCost() < n.GetCostEstimate())
break;
Yapf().PfFollowNode(n);
if (m_max_search_nodes == 0 || m_nodes.ClosedCount() < m_max_search_nodes) {
m_nodes.PopOpenNode(n.GetKey());
m_nodes.InsertClosedNode(n);
} else {
m_pBestDestNode = m_pBestIntermediateNode;
break;
}
}
bool bDestFound = (m_pBestDestNode != NULL);
int16 veh_idx = (m_veh != NULL) ? m_veh->unitnumber : 0;
// if (veh_idx != 433) return bDestFound;
perf.Stop();
int t = perf.Get(1000000);
_total_pf_time_us += t;
char ttc = Yapf().TransportTypeChar();
float cache_hit_ratio = (float)m_stats_cache_hits / (float)(m_stats_cache_hits + m_stats_cost_calcs) * 100.0f;
int cost = bDestFound ? m_pBestDestNode->m_cost : -1;
int dist = bDestFound ? m_pBestDestNode->m_estimate - m_pBestDestNode->m_cost : -1;
#ifdef UNITTEST
printf("%c%c%4d-%6d us -%5d rounds -%4d open -%5d closed - CHR %4.1f%% - c/d(%d, %d) - c%d(sc%d, ts%d, o%d) -- \n", bDestFound ? '-' : '!', ttc, veh_idx, t, m_num_steps, m_nodes.OpenCount(), m_nodes.ClosedCount(), cache_hit_ratio, cost, dist, m_perf_cost.Get(1000000), m_perf_slope_cost.Get(1000000), m_perf_ts_cost.Get(1000000), m_perf_other_cost.Get(1000000));
#else
DEBUG(yapf, 1)("[YAPF][YAPF%c]%c%4d- %d us - %d rounds - %d open - %d closed - CHR %4.1f%% - c%d(sc%d, ts%d, o%d) -- ", ttc, bDestFound ? '-' : '!', veh_idx, t, m_num_steps, m_nodes.OpenCount(), m_nodes.ClosedCount(), cache_hit_ratio, cost, dist, m_perf_cost.Get(1000000), m_perf_slope_cost.Get(1000000), m_perf_ts_cost.Get(1000000), m_perf_other_cost.Get(1000000));
#endif
return bDestFound;
}
/** If path was found return the best node that has reached the destination. Otherwise
return the best visited node (which was nearest to the destination).
*/
FORCEINLINE Node& GetBestNode()
{
return (m_pBestDestNode != NULL) ? *m_pBestDestNode : *m_pBestIntermediateNode;
}
/** Calls NodeList::CreateNewNode() - allocates new node that can be filled and used
as argument for AddStartupNode() or AddNewNode()
*/
FORCEINLINE Node& CreateNewNode()
{
Node& node = *m_nodes.CreateNewNode();
return node;
}
/** Add new node (created by CreateNewNode and filled with data) into open list */
FORCEINLINE void AddStartupNode(Node& n)
{
Yapf().PfNodeCacheFetch(n);
m_nodes.InsertOpenNode(n);
}
/** add multiple nodes - direct children of the given node */
FORCEINLINE void AddMultipleNodes(Node* parent, TileIndex tile, TrackdirBits td_bits)
{
for (TrackdirBits rtds = td_bits; rtds != TRACKDIR_BIT_NONE; rtds = (TrackdirBits)KillFirstBit2x64(rtds)) {
Trackdir td = (Trackdir)FindFirstBit2x64(rtds);
Node& n = Yapf().CreateNewNode();
n.Set(parent, tile, td);
Yapf().AddNewNode(n);
}
}
/** AddNewNode() - called by Tderived::PfFollowNode() for each child node.
Nodes are evaluated here and added into open list */
void AddNewNode(Node& n)
{
// evaluate the node
bool bCached = Yapf().PfNodeCacheFetch(n);
if (!bCached) {
m_stats_cost_calcs++;
} else {
m_stats_cache_hits++;
}
bool bValid = Yapf().PfCalcCost(n);
if (bCached) {
Yapf().PfNodeCacheFlush(n);
}
if (bValid) bValid = Yapf().PfCalcEstimate(n);
// have the cost or estimate callbacks marked this node as invalid?
if (!bValid) return;
// detect the destination
bool bDestination = Yapf().PfDetectDestination(n);
if (bDestination) {
if (m_pBestDestNode == NULL || n < *m_pBestDestNode) {
m_pBestDestNode = &n;
}
m_nodes.FoundBestNode(n);
return;
}
if (m_max_search_nodes > 0 && (m_pBestIntermediateNode == NULL || (m_pBestIntermediateNode->GetCostEstimate() - m_pBestIntermediateNode->GetCost()) > (n.GetCostEstimate() - n.GetCost()))) {
m_pBestIntermediateNode = &n;
}
// check new node against open list
Node& openNode = m_nodes.FindOpenNode(n.GetKey());
if (&openNode != NULL) {
// another node exists with the same key in the open list
// is it better than new one?
if (n.GetCostEstimate() < openNode.GetCostEstimate()) {
// update the old node by value from new one
m_nodes.PopOpenNode(n.GetKey());
openNode = n;
// add the updated old node back to open list
m_nodes.InsertOpenNode(openNode);
}
return;
}
// check new node against closed list
Node& closedNode = m_nodes.FindClosedNode(n.GetKey());
if (&closedNode != NULL) {
// another node exists with the same key in the closed list
// is it better than new one?
int node_est = n.GetCostEstimate();
int closed_est = closedNode.GetCostEstimate();
if (node_est < closed_est) {
// If this assert occurs, you have probably problem in
// your Tderived::PfCalcCost() or Tderived::PfCalcEstimate().
// The problem could be:
// - PfCalcEstimate() gives too large numbers
// - PfCalcCost() gives too small numbers
// - You have used negative cost penalty in some cases (cost bonus)
assert(0);
return;
}
return;
}
// the new node is really new
// add it to the open list
m_nodes.InsertOpenNode(n);
}
const Vehicle* GetVehicle() const {return m_veh;}
// methods that should be implemented at derived class Types::Tpf (derived from CYapfBaseT)
#if 0
/** Example: PfSetStartupNodes() - set source (origin) nodes */
FORCEINLINE void PfSetStartupNodes()
{
// example:
Node& n1 = *base::m_nodes.CreateNewNode();
.
. // setup node members here
.
base::m_nodes.InsertOpenNode(n1);
}
/** Example: PfFollowNode() - set following (child) nodes of the given node */
FORCEINLINE void PfFollowNode(Node& org)
{
for (each follower of node org) {
Node& n = *base::m_nodes.CreateNewNode();
.
. // setup node members here
.
n.m_parent = &org; // set node's parent to allow back tracking
AddNewNode(n);
}
}
/** Example: PfCalcCost() - set path cost from origin to the given node */
FORCEINLINE bool PfCalcCost(Node& n)
{
// evaluate last step cost
int cost = ...;
// set the node cost as sum of parent's cost and last step cost
n.m_cost = n.m_parent->m_cost + cost;
return true; // true if node is valid follower (i.e. no obstacle was found)
}
/** Example: PfCalcEstimate() - set path cost estimate from origin to the target through given node */
FORCEINLINE bool PfCalcEstimate(Node& n)
{
// evaluate the distance to our destination
int distance = ...;
// set estimate as sum of cost from origin + distance to the target
n.m_estimate = n.m_cost + distance;
return true; // true if node is valid (i.e. not too far away :)
}
/** Example: PfDetectDestination() - return true if the given node is our destination */
FORCEINLINE bool PfDetectDestination(Node& n)
{
bool bDest = (n.m_key.m_x == m_x2) && (n.m_key.m_y == m_y2);
return bDest;
}
#endif
};
#endif /* YAPF_BASE_HPP */
|