summaryrefslogtreecommitdiff
path: root/src/misc/binaryheap.hpp
blob: b98f6a97554c4fb2589688290308e38d509872a6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
/* $Id$ */

/*
 * This file is part of OpenTTD.
 * OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
 * OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 * See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
 */

/** @file binaryheap.hpp Binary heap implementation. */

#ifndef  BINARYHEAP_HPP
#define  BINARYHEAP_HPP

/**
 * Binary Heap as C++ template.
 *
 * For information about Binary Heap algotithm,
 *   see: http://www.policyalmanac.org/games/binaryHeaps.htm
 *
 * Implementation specific notes:
 *
 * 1) It allocates space for item pointers (array). Items are allocated elsewhere.
 *
 * 2) T*[0] is never used. Total array size is max_items + 1, because we
 *    use indices 1..max_items instead of zero based C indexing.
 *
 * 3) Item of the binary heap should support these public members:
 *    - 'lower-than' operator '<' - used for comparing items before moving
 *
 */

template <class T>
class CBinaryHeapT {
private:
	uint m_size;     ///< Number of items in the heap
	uint m_max_size; ///< Maximum number of items the heap can hold
	T **m_items;       ///< The heap item pointers

public:
	explicit CBinaryHeapT(uint max_items)
		: m_size(0)
		, m_max_size(max_items)
	{
		m_items = MallocT<T*>(max_items + 1);
	}

	~CBinaryHeapT()
	{
		Clear();
		free(m_items);
		m_items = NULL;
	}

public:
	/** Return the number of items stored in the priority queue.
	 *  @return number of items in the queue */
	FORCEINLINE uint Size() const {return m_size;};

	/** Test if the priority queue is empty.
	 *  @return true if empty */
	FORCEINLINE bool IsEmpty() const {return (m_size == 0);};

	/** Test if the priority queue is full.
	 *  @return true if full. */
	FORCEINLINE bool IsFull() const {return (m_size >= m_max_size);};

	/** Find the smallest item in the priority queue.
	 *  Return the smallest item, or throw assert if empty. */
	FORCEINLINE T& GetHead()
	{
		assert(!IsEmpty());
		return *m_items[1];
	}

	/** Insert new item into the priority queue, maintaining heap order.
	 *  @return false if the queue is full. */
	FORCEINLINE void Push(T& new_item)
	{
		if (IsFull()) {
			m_max_size *= 2;
			m_items = ReallocT<T*>(m_items, m_max_size + 1);
		}

		/* make place for new item */
		uint gap = ++m_size;
		/* Heapify up */
		for (uint parent = gap / 2; (parent > 0) && (new_item < *m_items[parent]); gap = parent, parent /= 2)
			m_items[gap] = m_items[parent];
		m_items[gap] = &new_item;
		CheckConsistency();
	}

	/** Remove and return the smallest item from the priority queue. */
	FORCEINLINE T& PopHead()
	{
		T& ret = GetHead();
		RemoveHead();
		return ret;
	}

	/** Remove the smallest item from the priority queue. */
	FORCEINLINE void RemoveHead()
	{
		assert(!IsEmpty());

		/* at index 1 we have a gap now */
		uint gap = 1;

		/* Heapify down:
		 *   last item becomes a candidate for the head. Call it new_item. */
		T& new_item = *m_items[m_size--];

		/* now we must maintain relation between parent and its children:
		 *   parent <= any child
		 * from head down to the tail */
		uint child  = 2; // first child is at [parent * 2]

		/* while children are valid */
		while (child <= m_size) {
			/* choose the smaller child */
			if (child < m_size && *m_items[child + 1] < *m_items[child])
				child++;
			/* is it smaller than our parent? */
			if (!(*m_items[child] < new_item)) {
				/* the smaller child is still bigger or same as parent => we are done */
				break;
			}
			/* if smaller child is smaller than parent, it will become new parent */
			m_items[gap] = m_items[child];
			gap = child;
			/* where do we have our new children? */
			child = gap * 2;
		}
		/* move last item to the proper place */
		if (m_size > 0) m_items[gap] = &new_item;
		CheckConsistency();
	}

	/** Remove item specified by index */
	FORCEINLINE void RemoveByIdx(uint idx)
	{
		/* at position idx we have a gap now */
		uint gap = idx;
		T& last = *m_items[m_size];
		if (idx < m_size) {
			assert(idx >= 1);
			m_size--;
			/* and the candidate item for fixing this gap is our last item 'last'
			 * Move gap / last item up: */
			while (gap > 1)
			{
				/* compare [gap] with its parent */
				uint parent = gap / 2;
				if (last < *m_items[parent]) {
					m_items[gap] = m_items[parent];
					gap = parent;
				} else {
					/* we don't need to continue upstairs */
					break;
				}
			}

			/* Heapify (move gap) down: */
			while (true) {
				/* where we do have our children? */
				uint child  = gap * 2; // first child is at [parent * 2]
				if (child > m_size) break;
				/* choose the smaller child */
				if (child < m_size && *m_items[child + 1] < *m_items[child])
					child++;
				/* is it smaller than our parent? */
				if (!(*m_items[child] < last)) {
					/* the smaller child is still bigger or same as parent => we are done */
					break;
				}
				/* if smaller child is smaller than parent, it will become new parent */
				m_items[gap] = m_items[child];
				gap = child;
			}
			/* move parent to the proper place */
			if (m_size > 0) m_items[gap] = &last;
		} else {
			assert(idx == m_size);
			m_size--;
		}
		CheckConsistency();
	}

	/** return index of the item that matches (using &item1 == &item2) the given item. */
	FORCEINLINE uint FindLinear(const T& item) const
	{
		if (IsEmpty()) return 0;
		for (T **ppI = m_items + 1, **ppLast = ppI + m_size; ppI <= ppLast; ppI++) {
			if (*ppI == &item) {
				return ppI - m_items;
			}
		}
		return 0;
	}

	/** Make the priority queue empty.
	 * All remaining items will remain untouched. */
	FORCEINLINE void Clear() {m_size = 0;}

	/** verifies the heap consistency (added during first YAPF debug phase) */
	FORCEINLINE void CheckConsistency()
	{
		/* enable it if you suspect binary heap doesn't work well */
#if 0
		for (uint child = 2; child <= m_size; child++) {
			uint parent = child / 2;
			assert(!(*m_items[child] < *m_items[parent]));
		}
#endif
	}
};

#endif /* BINARYHEAP_HPP */