1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
|
/* $Id$ */
/*
* This file is part of OpenTTD.
* OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
* OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file binaryheap.hpp Binary heap implementation. */
#ifndef BINARYHEAP_HPP
#define BINARYHEAP_HPP
/* Enable it if you suspect binary heap doesn't work well */
#define BINARYHEAP_CHECK 0
#if BINARYHEAP_CHECK
#define CHECK_CONSISTY() this->CheckConsistency()
#else
#define CHECK_CONSISTY() ;
#endif
/**
* Binary Heap as C++ template.
* A carrier which keeps it's items automaticaly holds the smallest item at
* the first position. The order of items is maintained by using a binary tree.
* The implementation is used for priority queue's.
*
* @par Usage information:
* Item of the binary heap should support the 'lower-than' operator '<'.
* It is used for comparing items before moving them to their position.
*
* @par
* This binary heap allocates just the space for item pointers. The items
* are allocated elsewhere.
*
* @par Implementation notes:
* Internaly the first item is never used, because that simplifies the
* implementation.
*
* @par
* For further information about the Binary Heap algotithm, see
* http://www.policyalmanac.org/games/binaryHeaps.htm
*
* @tparam T Type of the items stored in the binary heap
*/
template <class T>
class CBinaryHeapT {
private:
uint items; ///< Number of items in the heap
uint capacity; ///< Maximum number of items the heap can hold
T **data; ///< The pointer to the heap item pointers
public:
explicit CBinaryHeapT(uint max_items)
: items(0)
, capacity(max_items)
{
this->data = MallocT<T *>(max_items + 1);
}
~CBinaryHeapT()
{
this->Clear();
free(this->data);
this->data = NULL;
}
protected:
/**
* Get position for fixing a gap (downwards).
* The gap is moved downwards in the binary tree until it
* is in order again.
*
* @param gap The position of the gap
* @param item The proposed item for filling the gap
* @return The (gap)position where the item fits
*/
FORCEINLINE uint HeapifyDown(uint gap, T *item)
{
assert(gap != 0);
/* The first child of the gap is at [parent * 2] */
uint child = gap * 2;
/* while children are valid */
while (child <= this->items) {
/* choose the smaller child */
if (child < this->items && *this->data[child + 1] < *this->data[child])
child++;
/* is it smaller than our parent? */
if (!(*this->data[child] < *item)) {
/* the smaller child is still bigger or same as parent => we are done */
break;
}
/* if smaller child is smaller than parent, it will become new parent */
this->data[gap] = this->data[child];
gap = child;
/* where do we have our new children? */
child = gap * 2;
}
return gap;
}
/**
* Get position for fixing a gap (upwards).
* The gap is moved upwards in the binary tree until the
* is in order again.
*
* @param gap The position of the gap
* @param item The proposed item for filling the gap
* @return The (gap)position where the item fits
*/
FORCEINLINE uint HeapifyUp(uint gap, T *item)
{
assert(gap != 0);
uint parent;
while (gap > 1) {
/* compare [gap] with its parent */
parent = gap / 2;
if (!(*item < *this->data[parent])) {
/* we don't need to continue upstairs */
break;
}
this->data[gap] = this->data[parent];
gap = parent;
}
return gap;
}
#if BINARYHEAP_CHECK
/** Verify the heap consistency */
FORCEINLINE void CheckConsistency()
{
for (uint child = 2; child <= this->items; child++) {
uint parent = child / 2;
assert(!(*this->data[child] < *this->data[parent]));
}
}
#endif
public:
/**
* Get the number of items stored in the priority queue.
*
* @return The number of items in the queue
*/
FORCEINLINE uint Length() const { return this->items; }
/**
* Test if the priority queue is empty.
*
* @return True if empty
*/
FORCEINLINE bool IsEmpty() const { return this->items == 0; }
/**
* Test if the priority queue is full.
*
* @return True if full.
*/
FORCEINLINE bool IsFull() const { return this->items >= this->capacity; }
/**
* Get the smallest item in the binary tree.
*
* @return The smallest item, or throw assert if empty.
*/
FORCEINLINE T *Begin()
{
assert(!this->IsEmpty());
return this->data[1];
}
/**
* Get the LAST item in the binary tree.
*
* @note The last item is not neccesary the biggest!
*
* @return The last item
*/
FORCEINLINE T *End()
{
return this->data[1 + this->items];
}
/**
* Insert new item into the priority queue, maintaining heap order.
*
* @param new_item The pointer to the new item
*/
FORCEINLINE void Include(T *new_item)
{
if (this->IsFull()) {
this->capacity *= 2;
this->data = ReallocT<T*>(this->data, this->capacity + 1);
}
/* Make place for new item. A gap is now at the end of the tree. */
uint gap = this->HeapifyUp(++items, new_item);
this->data[gap] = new_item;
CHECK_CONSISTY();
}
/**
* Remove and return the smallest (and also first) item
* from the priority queue.
*
* @return The pointer to the removed item
*/
FORCEINLINE T *Shift()
{
assert(!this->IsEmpty());
T *first = this->Begin();
this->items--;
/* at index 1 we have a gap now */
T *last = this->End();
uint gap = this->HeapifyDown(1, last);
/* move last item to the proper place */
if (!this->IsEmpty()) this->data[gap] = last;
CHECK_CONSISTY();
return first;
}
/**
* Remove item at given index from the priority queue.
*
* @param index The position of the item in the heap
*/
FORCEINLINE void Remove(uint index)
{
if (index < this->items) {
assert(index != 0);
this->items--;
/* at position index we have a gap now */
T *last = this->End();
/* Fix binary tree up and downwards */
uint gap = this->HeapifyUp(index, last);
gap = this->HeapifyDown(gap, last);
/* move last item to the proper place */
if (!this->IsEmpty()) this->data[gap] = last;
} else {
assert(index == this->items);
this->items--;
}
CHECK_CONSISTY();
}
/**
* Search for an item in the priority queue.
* Matching is done by comparing adress of the
* item.
*
* @param item The reference to the item
* @return The index of the item or zero if not found
*/
FORCEINLINE uint FindIndex(const T &item) const
{
if (this->IsEmpty()) return 0;
for (T **ppI = this->data + 1, **ppLast = ppI + this->items; ppI <= ppLast; ppI++) {
if (*ppI == &item) {
return ppI - this->data;
}
}
return 0;
}
/**
* Make the priority queue empty.
* All remaining items will remain untouched.
*/
FORCEINLINE void Clear() { this->items = 0; }
};
#endif /* BINARYHEAP_HPP */
|