summaryrefslogtreecommitdiff
path: root/src/map.cpp
blob: e6b0dcb42ecc55b472f691da44a64709f4e9edfc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
/* $Id$ */

/*
 * This file is part of OpenTTD.
 * OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
 * OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 * See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
 */

/** @file map.cpp Base functions related to the map and distances on them. */

#include "stdafx.h"
#include "debug.h"
#include "core/bitmath_func.hpp"
#include "core/alloc_func.hpp"
#include "core/math_func.hpp"
#include "map_func.h"
#include "tile_map.h"

#if defined(_MSC_VER)
/* Why the hell is that not in all MSVC headers?? */
extern "C" _CRTIMP void __cdecl _assert(void *, void *, unsigned);
#endif

uint _map_log_x;     ///< 2^_map_log_x == _map_size_x
uint _map_log_y;     ///< 2^_map_log_y == _map_size_y
uint _map_size_x;    ///< Size of the map along the X
uint _map_size_y;    ///< Size of the map along the Y
uint _map_size;      ///< The number of tiles on the map
uint _map_tile_mask; ///< _map_size - 1 (to mask the mapsize)

Tile *_m = NULL;          ///< Tiles of the map
TileExtended *_me = NULL; ///< Extended Tiles of the map


/*!
 * (Re)allocates a map with the given dimension
 * @param size_x the width of the map along the NE/SW edge
 * @param size_y the 'height' of the map along the SE/NW edge
 */
void AllocateMap(uint size_x, uint size_y)
{
	/* Make sure that the map size is within the limits and that
	 * size of both axes is a power of 2. */
	if (!IsInsideMM(size_x, MIN_MAP_SIZE, MAX_MAP_SIZE + 1) ||
			!IsInsideMM(size_y, MIN_MAP_SIZE, MAX_MAP_SIZE + 1) ||
			(size_x & (size_x - 1)) != 0 ||
			(size_y & (size_y - 1)) != 0)
		error("Invalid map size");

	DEBUG(map, 1, "Allocating map of size %dx%d", size_x, size_y);

	_map_log_x = FindFirstBit(size_x);
	_map_log_y = FindFirstBit(size_y);
	_map_size_x = size_x;
	_map_size_y = size_y;
	_map_size = size_x * size_y;
	_map_tile_mask = _map_size - 1;

	free(_m);
	free(_me);

	_m = CallocT<Tile>(_map_size);
	_me = CallocT<TileExtended>(_map_size);
}


#ifdef _DEBUG
TileIndex TileAdd(TileIndex tile, TileIndexDiff add,
	const char *exp, const char *file, int line)
{
	int dx;
	int dy;
	uint x;
	uint y;

	dx = add & MapMaxX();
	if (dx >= (int)MapSizeX() / 2) dx -= MapSizeX();
	dy = (add - dx) / (int)MapSizeX();

	x = TileX(tile) + dx;
	y = TileY(tile) + dy;

	if (x >= MapSizeX() || y >= MapSizeY()) {
		char buf[512];

		snprintf(buf, lengthof(buf), "TILE_ADD(%s) when adding 0x%.4X and 0x%.4X failed",
			exp, tile, add);
#if !defined(_MSC_VER) || defined(WINCE)
		fprintf(stderr, "%s:%d %s\n", file, line, buf);
#else
		_assert(buf, (char*)file, line);
#endif
	}

	assert(TileXY(x, y) == TILE_MASK(tile + add));

	return TileXY(x, y);
}
#endif

/*!
 * This function checks if we add addx/addy to tile, if we
 * do wrap around the edges. For example, tile = (10,2) and
 * addx = +3 and addy = -4. This function will now return
 * INVALID_TILE, because the y is wrapped. This is needed in
 * for example, farmland. When the tile is not wrapped,
 * the result will be tile + TileDiffXY(addx, addy)
 *
 * @param tile the 'starting' point of the adding
 * @param addx the amount of tiles in the X direction to add
 * @param addy the amount of tiles in the Y direction to add
 * @return translated tile, or INVALID_TILE when it would've wrapped.
 */
TileIndex TileAddWrap(TileIndex tile, int addx, int addy)
{
	uint x = TileX(tile) + addx;
	uint y = TileY(tile) + addy;

	/* Are we about to wrap? */
	if (x < MapMaxX() && y < MapMaxY())
		return tile + TileDiffXY(addx, addy);

	return INVALID_TILE;
}

/** 'Lookup table' for tile offsets given a DiagDirection */
extern const TileIndexDiffC _tileoffs_by_diagdir[] = {
	{-1,  0}, ///< DIAGDIR_NE
	{ 0,  1}, ///< DIAGDIR_SE
	{ 1,  0}, ///< DIAGDIR_SW
	{ 0, -1}  ///< DIAGDIR_NW
};

/** 'Lookup table' for tile offsets given a Direction */
extern const TileIndexDiffC _tileoffs_by_dir[] = {
	{-1, -1}, ///< DIR_N
	{-1,  0}, ///< DIR_NE
	{-1,  1}, ///< DIR_E
	{ 0,  1}, ///< DIR_SE
	{ 1,  1}, ///< DIR_S
	{ 1,  0}, ///< DIR_SW
	{ 1, -1}, ///< DIR_W
	{ 0, -1}  ///< DIR_NW
};

/*!
 * Gets the Manhattan distance between the two given tiles.
 * The Manhattan distance is the sum of the delta of both the
 * X and Y component.
 * Also known as L1-Norm
 * @param t0 the start tile
 * @param t1 the end tile
 * @return the distance
 */
uint DistanceManhattan(TileIndex t0, TileIndex t1)
{
	const uint dx = Delta(TileX(t0), TileX(t1));
	const uint dy = Delta(TileY(t0), TileY(t1));
	return dx + dy;
}


/*!
 * Gets the 'Square' distance between the two given tiles.
 * The 'Square' distance is the square of the shortest (straight line)
 * distance between the two tiles.
 * Also known as euclidian- or L2-Norm squared.
 * @param t0 the start tile
 * @param t1 the end tile
 * @return the distance
 */
uint DistanceSquare(TileIndex t0, TileIndex t1)
{
	const int dx = TileX(t0) - TileX(t1);
	const int dy = TileY(t0) - TileY(t1);
	return dx * dx + dy * dy;
}


/*!
 * Gets the biggest distance component (x or y) between the two given tiles.
 * Also known as L-Infinity-Norm.
 * @param t0 the start tile
 * @param t1 the end tile
 * @return the distance
 */
uint DistanceMax(TileIndex t0, TileIndex t1)
{
	const uint dx = Delta(TileX(t0), TileX(t1));
	const uint dy = Delta(TileY(t0), TileY(t1));
	return max(dx, dy);
}


/*!
 * Gets the biggest distance component (x or y) between the two given tiles
 * plus the Manhattan distance, i.e. two times the biggest distance component
 * and once the smallest component.
 * @param t0 the start tile
 * @param t1 the end tile
 * @return the distance
 */
uint DistanceMaxPlusManhattan(TileIndex t0, TileIndex t1)
{
	const uint dx = Delta(TileX(t0), TileX(t1));
	const uint dy = Delta(TileY(t0), TileY(t1));
	return dx > dy ? 2 * dx + dy : 2 * dy + dx;
}

/*!
 * Param the minimum distance to an edge
 * @param tile the tile to get the distance from
 * @return the distance from the edge in tiles
 */
uint DistanceFromEdge(TileIndex tile)
{
	const uint xl = TileX(tile);
	const uint yl = TileY(tile);
	const uint xh = MapSizeX() - 1 - xl;
	const uint yh = MapSizeY() - 1 - yl;
	const uint minl = min(xl, yl);
	const uint minh = min(xh, yh);
	return min(minl, minh);
}

/*!
 * Function performing a search around a center tile and going outward, thus in circle.
 * Although it really is a square search...
 * Every tile will be tested by means of the callback function proc,
 * which will determine if yes or no the given tile meets criteria of search.
 * @param tile to start the search from. Upon completion, it will return the tile matching the search
 * @param size: number of tiles per side of the desired search area
 * @param proc: callback testing function pointer.
 * @param user_data to be passed to the callback function. Depends on the implementation
 * @return result of the search
 * @pre proc != NULL
 * @pre size > 0
 */
bool CircularTileSearch(TileIndex *tile, uint size, TestTileOnSearchProc proc, void *user_data)
{
	assert(proc != NULL);
	assert(size > 0);

	if (size % 2 == 1) {
		/* If the length of the side is uneven, the center has to be checked
		 * separately, as the pattern of uneven sides requires to go around the center */
		if (proc(*tile, user_data)) return true;

		/* If tile test is not successful, get one tile down and left,
		 * ready for a test in first circle around center tile */
		*tile = TILE_ADD(*tile, TileOffsByDir(DIR_W));
		return CircularTileSearch(tile, size / 2, 1, 1, proc, user_data);
	} else {
		return CircularTileSearch(tile, size / 2, 0, 0, proc, user_data);
	}
}

/*!
 * Generalized circular search allowing for rectangles and a hole.
 * Function performing a search around a center rectangle and going outward.
 * The center rectangle is left out from the search. To do a rectangular search
 * without a hole, set either h or w to zero.
 * Every tile will be tested by means of the callback function proc,
 * which will determine if yes or no the given tile meets criteria of search.
 * @param tile to start the search from. Upon completion, it will return the tile matching the search
 * @param radius How many tiles to search outwards. Note: This is a radius and thus different
 *                from the size parameter of the other CircularTileSearch function, which is a diameter.
 * @param w the width of the inner rectangle
 * @param h the height of the inner rectangle
 * @param proc callback testing function pointer.
 * @param user_data to be passed to the callback function. Depends on the implementation
 * @return result of the search
 * @pre proc != NULL
 * @pre radius > 0
 */
bool CircularTileSearch(TileIndex *tile, uint radius, uint w, uint h, TestTileOnSearchProc proc, void *user_data)
{
	assert(proc != NULL);
	assert(radius > 0);

	uint x = TileX(*tile) + w + 1;
	uint y = TileY(*tile);

	const uint extent[DIAGDIR_END] = { w, h, w, h };

	for (uint n = 0; n < radius; n++) {
		for (DiagDirection dir = DIAGDIR_BEGIN; dir < DIAGDIR_END; dir++) {
			/* Is the tile within the map? */
			for (uint j = extent[dir] + n * 2 + 1; j != 0; j--) {
				if (x < MapSizeX() && y < MapSizeY()) {
					TileIndex t = TileXY(x, y);
					/* Is the callback successful? */
					if (proc(t, user_data)) {
						/* Stop the search */
						*tile = t;
						return true;
					}
				}

				/* Step to the next 'neighbour' in the circular line */
				x += _tileoffs_by_diagdir[dir].x;
				y += _tileoffs_by_diagdir[dir].y;
			}
		}
		/* Jump to next circle to test */
		x += _tileoffs_by_dir[DIR_W].x;
		y += _tileoffs_by_dir[DIR_W].y;
	}

	*tile = INVALID_TILE;
	return false;
}

/*!
 * Finds the distance for the closest tile with water/land given a tile
 * @param tile  the tile to find the distance too
 * @param water whether to find water or land
 * @return distance to nearest water (max 0x7F) / land (max 0x1FF; 0x200 if there is no land)
 * @note FAILS when an industry should be seen as water
 */
uint GetClosestWaterDistance(TileIndex tile, bool water)
{
	if (IsTileType(tile, MP_WATER) == water) return 0;

	uint max_dist = water ? 0x7F : 0x200;

	int x = TileX(tile);
	int y = TileY(tile);

	uint max_x = MapMaxX();
	uint max_y = MapMaxY();
	uint min_xy = _settings_game.construction.freeform_edges ? 1 : 0;

	/* go in a 'spiral' with increasing manhattan distance in each iteration */
	for (uint dist = 1; dist < max_dist; dist++) {
		/* next 'diameter' */
		y--;

		/* going counter-clockwise around this square */
		for (DiagDirection dir = DIAGDIR_BEGIN; dir < DIAGDIR_END; dir++) {
			static const int8 ddx[DIAGDIR_END] = { -1,  1,  1, -1};
			static const int8 ddy[DIAGDIR_END] = {  1,  1, -1, -1};

			int dx = ddx[dir];
			int dy = ddy[dir];

			/* each side of this square has length 'dist' */
			for (uint a = 0; a < dist; a++) {
				/* MP_VOID tiles are not checked (interval is [min; max) for IsInsideMM())*/
				if (IsInsideMM(x, min_xy, max_x) && IsInsideMM(y, min_xy, max_y)) {
					TileIndex t = TileXY(x, y);
					if (IsTileType(t, MP_WATER) == water) return dist;
				}
				x += dx;
				y += dy;
			}
		}
	}

	if (!water) {
		/* no land found - is this a water-only map? */
		for (TileIndex t = 0; t < MapSize(); t++) {
			if (!IsTileType(t, MP_VOID) && !IsTileType(t, MP_WATER)) return 0x1FF;
		}
	}

	return max_dist;
}