1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
|
/* $Id$ */
/** @file helpers.hpp */
#ifndef HELPERS_HPP
#define HELPERS_HPP
#include "macros.h"
/** When allocating using malloc/calloc in C++ it is usually needed to cast the return value
* from void* to the proper pointer type. Another alternative would be MallocT<> as follows */
template <typename T> FORCEINLINE T* MallocT(size_t num_elements)
{
T *t_ptr = (T*)malloc(num_elements * sizeof(T));
if (t_ptr == NULL && num_elements != 0) error("Out of memory. Cannot allocate %i bytes", num_elements * sizeof(T));
return t_ptr;
}
/** When allocating using malloc/calloc in C++ it is usually needed to cast the return value
* from void* to the proper pointer type. Another alternative would be MallocT<> as follows */
template <typename T> FORCEINLINE T* CallocT(size_t num_elements)
{
T *t_ptr = (T*)calloc(num_elements, sizeof(T));
if (t_ptr == NULL && num_elements != 0) error("Out of memory. Cannot allocate %i bytes", num_elements * sizeof(T));
return t_ptr;
}
/** When allocating using malloc/calloc in C++ it is usually needed to cast the return value
* from void* to the proper pointer type. Another alternative would be MallocT<> as follows */
template <typename T> FORCEINLINE T* ReallocT(T* t_ptr, size_t num_elements)
{
t_ptr = (T*)realloc(t_ptr, num_elements * sizeof(T));
if (t_ptr == NULL && num_elements != 0) error("Out of memory. Cannot reallocate %i bytes", num_elements * sizeof(T));
return t_ptr;
}
/** type safe swap operation */
template<typename T> void Swap(T& a, T& b)
{
T t = a;
a = b;
b = t;
}
/** Some enums need to have allowed incrementing (i.e. StationClassID) */
#define DECLARE_POSTFIX_INCREMENT(type) \
FORCEINLINE type operator ++(type& e, int) \
{ \
type e_org = e; \
e = (type)((int)e + 1); \
return e_org; \
} \
FORCEINLINE type operator --(type& e, int) \
{ \
type e_org = e; \
e = (type)((int)e - 1); \
return e_org; \
}
/** Operators to allow to work with enum as with type safe bit set in C++ */
# define DECLARE_ENUM_AS_BIT_SET(mask_t) \
FORCEINLINE mask_t operator | (mask_t m1, mask_t m2) {return (mask_t)((int)m1 | m2);} \
FORCEINLINE mask_t operator & (mask_t m1, mask_t m2) {return (mask_t)((int)m1 & m2);} \
FORCEINLINE mask_t operator ^ (mask_t m1, mask_t m2) {return (mask_t)((int)m1 ^ m2);} \
FORCEINLINE mask_t& operator |= (mask_t& m1, mask_t m2) {m1 = m1 | m2; return m1;} \
FORCEINLINE mask_t& operator &= (mask_t& m1, mask_t m2) {m1 = m1 & m2; return m1;} \
FORCEINLINE mask_t& operator ^= (mask_t& m1, mask_t m2) {m1 = m1 ^ m2; return m1;} \
FORCEINLINE mask_t operator ~(mask_t m) {return (mask_t)(~(int)m);}
/** Informative template class exposing basic enumeration properties used by several
* other templates below. Here we have only forward declaration. For each enum type
* we will create specialization derived from MakeEnumPropsT<>.
* i.e.:
* template <> struct EnumPropsT<Track> : MakeEnumPropsT<Track, byte, TRACK_BEGIN, TRACK_END, INVALID_TRACK> {};
* followed by:
* typedef TinyEnumT<Track> TrackByte;
*/
template <typename Tenum_t> struct EnumPropsT;
/** Helper template class that makes basic properties of given enumeration type visible
* from outsize. It is used as base class of several EnumPropsT specializations each
* dedicated to one of commonly used enumeration types.
* @param Tenum_t enumeration type that you want to describe
* @param Tstorage_t what storage type would be sufficient (i.e. byte)
* @param Tbegin first valid value from the contiguous range (i.e. TRACK_BEGIN)
* @param Tend one past the last valid value from the contiguous range (i.e. TRACK_END)
* @param Tinvalid value used as invalid value marker (i.e. INVALID_TRACK)
*/
template <typename Tenum_t, typename Tstorage_t, Tenum_t Tbegin, Tenum_t Tend, Tenum_t Tinvalid>
struct MakeEnumPropsT {
typedef Tenum_t type; ///< enum type (i.e. Trackdir)
typedef Tstorage_t storage; ///< storage type (i.e. byte)
static const Tenum_t begin = Tbegin; ///< lowest valid value (i.e. TRACKDIR_BEGIN)
static const Tenum_t end = Tend; ///< one after the last valid value (i.e. TRACKDIR_END)
static const Tenum_t invalid = Tinvalid; ///< what value is used as invalid value (i.e. INVALID_TRACKDIR)
};
/** In some cases we use byte or uint16 to store values that are defined as enum. It is
* necessary in order to control the sizeof() such values. Some compilers make enum
* the same size as int (4 or 8 bytes instead of 1 or 2). As a consequence the strict
* compiler type-checking causes errors like:
* 'HasPowerOnRail' : cannot convert parameter 1 from 'byte' to 'RailType' when
* u->u.rail.railtype is passed as argument or type RailType. In such cases it is better
* to teach the compiler that u->u.rail.railtype is to be treated as RailType. */
template <typename Tenum_t> struct TinyEnumT;
/** The general declaration of TinyEnumT<> (above) */
template <typename Tenum_t> struct TinyEnumT
{
typedef Tenum_t enum_type; ///< expose our enumeration type (i.e. Trackdir) to outside
typedef EnumPropsT<Tenum_t> Props; ///< make easier access to our enumeration propeties
typedef typename Props::storage storage_type; ///< small storage type
static const enum_type begin = Props::begin; ///< enum beginning (i.e. TRACKDIR_BEGIN)
static const enum_type end = Props::end; ///< enum end (i.e. TRACKDIR_END)
static const enum_type invalid = Props::invalid;///< invalid value (i.e. INVALID_TRACKDIR)
storage_type m_val; ///< here we hold the actual value in small (i.e. byte) form
/** Cast operator - invoked then the value is assigned to the Tenum_t type */
FORCEINLINE operator enum_type () const
{
return (enum_type)m_val;
}
/** Assignment operator (from Tenum_t type) */
FORCEINLINE TinyEnumT& operator = (enum_type e)
{
m_val = (storage_type)e; return *this;
}
/** postfix ++ operator on tiny type */
FORCEINLINE TinyEnumT operator ++ (int)
{
TinyEnumT org = *this;
if (++m_val >= end) m_val -= (storage_type)(end - begin);
return org;
}
/** prefix ++ operator on tiny type */
FORCEINLINE TinyEnumT& operator ++ ()
{
if (++m_val >= end) m_val -= (storage_type)(end - begin);
return *this;
}
};
/**
* Overflow safe template for integers, i.e. integers that will never overflow
* you multiply the maximum value with 2, or add 2, or substract somethng from
* the minimum value, etc.
* @param T the type these integers are stored with.
* @param T_MAX the maximum value for the integers.
* @param T_MIN the minimum value for the integers.
*/
template <class T, T T_MAX, T T_MIN>
class OverflowSafeInt
{
private:
/** The non-overflow safe backend to store the value in. */
T m_value;
public:
OverflowSafeInt() : m_value(0) { }
OverflowSafeInt(const OverflowSafeInt& other) { this->m_value = other.m_value; }
OverflowSafeInt(const int64 int_) { this->m_value = int_; }
FORCEINLINE OverflowSafeInt& operator = (const OverflowSafeInt& other) { this->m_value = other.m_value; return *this; }
FORCEINLINE OverflowSafeInt operator - () const { return OverflowSafeInt(-this->m_value); }
/**
* Safe implementation of addition.
* @param other the amount to add
* @note when the addition would yield more than T_MAX (or less than T_MIN),
* it will be T_MAX (respectively T_MIN).
*/
FORCEINLINE OverflowSafeInt& operator += (const OverflowSafeInt& other)
{
if ((T_MAX - abs(other.m_value)) < abs(this->m_value) &&
(this->m_value < 0) == (other.m_value < 0)) {
this->m_value = (this->m_value < 0) ? T_MIN : T_MAX ;
} else {
this->m_value += other.m_value;
}
return *this;
}
/* Operators for addition and substraction */
FORCEINLINE OverflowSafeInt operator + (const OverflowSafeInt& other) const { OverflowSafeInt result = *this; result += other; return result; }
FORCEINLINE OverflowSafeInt operator + (const int other) const { OverflowSafeInt result = *this; result += (int64)other; return result; }
FORCEINLINE OverflowSafeInt operator + (const uint other) const { OverflowSafeInt result = *this; result += (int64)other; return result; }
FORCEINLINE OverflowSafeInt& operator -= (const OverflowSafeInt& other) { return *this += (-other); }
FORCEINLINE OverflowSafeInt operator - (const OverflowSafeInt& other) const { OverflowSafeInt result = *this; result -= other; return result; }
FORCEINLINE OverflowSafeInt operator - (const int other) const { OverflowSafeInt result = *this; result -= (int64)other; return result; }
FORCEINLINE OverflowSafeInt operator - (const uint other) const { OverflowSafeInt result = *this; result -= (int64)other; return result; }
FORCEINLINE OverflowSafeInt& operator ++ () { return *this += 1; }
FORCEINLINE OverflowSafeInt& operator -- () { return *this += -1; }
FORCEINLINE OverflowSafeInt operator ++ (int) { OverflowSafeInt org = *this; *this += 1; return org; }
FORCEINLINE OverflowSafeInt operator -- (int) { OverflowSafeInt org = *this; *this += -1; return org; }
/**
* Safe implementation of multiplication.
* @param factor the factor to multiply this with.
* @note when the multiplication would yield more than T_MAX (or less than T_MIN),
* it will be T_MAX (respectively T_MIN).
*/
FORCEINLINE OverflowSafeInt& operator *= (const int factor)
{
if (factor != 0 && (T_MAX / abs(factor)) < abs(this->m_value)) {
this->m_value = ((this->m_value < 0) == (factor < 0)) ? T_MAX : T_MIN ;
} else {
this->m_value *= factor ;
}
return *this;
}
/* Operators for multiplication */
FORCEINLINE OverflowSafeInt operator * (const int64 factor) const { OverflowSafeInt result = *this; result *= factor; return result; }
FORCEINLINE OverflowSafeInt operator * (const int factor) const { OverflowSafeInt result = *this; result *= (int64)factor; return result; }
FORCEINLINE OverflowSafeInt operator * (const uint factor) const { OverflowSafeInt result = *this; result *= (int64)factor; return result; }
FORCEINLINE OverflowSafeInt operator * (const uint16 factor) const { OverflowSafeInt result = *this; result *= (int64)factor; return result; }
FORCEINLINE OverflowSafeInt operator * (const byte factor) const { OverflowSafeInt result = *this; result *= (int64)factor; return result; }
/* Operators for division */
FORCEINLINE OverflowSafeInt& operator /= (const int divisor) { this->m_value /= divisor; return *this; }
FORCEINLINE OverflowSafeInt operator / (const OverflowSafeInt& divisor) const { OverflowSafeInt result = *this; result /= divisor.m_value; return result; }
FORCEINLINE OverflowSafeInt operator / (const int divisor) const { OverflowSafeInt result = *this; result /= divisor; return result; }
FORCEINLINE OverflowSafeInt operator / (const uint divisor) const { OverflowSafeInt result = *this; result /= (int)divisor; return result; }
/* Operators for modulo */
FORCEINLINE OverflowSafeInt& operator %= (const int divisor) { this->m_value %= divisor; return *this; }
FORCEINLINE OverflowSafeInt operator % (const int divisor) const { OverflowSafeInt result = *this; result %= divisor; return result; }
/* Operators for shifting */
FORCEINLINE OverflowSafeInt& operator <<= (const int shift) { this->m_value <<= shift; return *this; }
FORCEINLINE OverflowSafeInt operator << (const int shift) const { OverflowSafeInt result = *this; result <<= shift; return result; }
FORCEINLINE OverflowSafeInt& operator >>= (const int shift) { this->m_value >>= shift; return *this; }
FORCEINLINE OverflowSafeInt operator >> (const int shift) const { OverflowSafeInt result = *this; result >>= shift; return result; }
/* Operators for (in)equality when comparing overflow safe ints */
FORCEINLINE bool operator == (const OverflowSafeInt& other) const { return this->m_value == other.m_value; }
FORCEINLINE bool operator != (const OverflowSafeInt& other) const { return !(*this == other); }
FORCEINLINE bool operator > (const OverflowSafeInt& other) const { return this->m_value > other.m_value; }
FORCEINLINE bool operator >= (const OverflowSafeInt& other) const { return this->m_value >= other.m_value; }
FORCEINLINE bool operator < (const OverflowSafeInt& other) const { return !(*this >= other); }
FORCEINLINE bool operator <= (const OverflowSafeInt& other) const { return !(*this > other); }
/* Operators for (in)equality when comparing non-overflow safe ints */
FORCEINLINE bool operator == (const int other) const { return this->m_value == other; }
FORCEINLINE bool operator != (const int other) const { return !(*this == other); }
FORCEINLINE bool operator > (const int other) const { return this->m_value > other; }
FORCEINLINE bool operator >= (const int other) const { return this->m_value >= other; }
FORCEINLINE bool operator < (const int other) const { return !(*this >= other); }
FORCEINLINE bool operator <= (const int other) const { return !(*this > other); }
FORCEINLINE operator int64 () const { return this->m_value; }
};
/* Sometimes we got int64 operator OverflowSafeInt instead of vice versa. Handle that properly */
template <class T, int64 T_MAX, int64 T_MIN> FORCEINLINE OverflowSafeInt<T, T_MAX, T_MIN> operator + (int64 a, OverflowSafeInt<T, T_MAX, T_MIN> b) { return b + a; }
template <class T, int64 T_MAX, int64 T_MIN> FORCEINLINE OverflowSafeInt<T, T_MAX, T_MIN> operator - (int64 a, OverflowSafeInt<T, T_MAX, T_MIN> b) { return -b + a; }
template <class T, int64 T_MAX, int64 T_MIN> FORCEINLINE OverflowSafeInt<T, T_MAX, T_MIN> operator * (int64 a, OverflowSafeInt<T, T_MAX, T_MIN> b) { return b * a; }
template <class T, int64 T_MAX, int64 T_MIN> FORCEINLINE OverflowSafeInt<T, T_MAX, T_MIN> operator / (int64 a, OverflowSafeInt<T, T_MAX, T_MIN> b) { return (OverflowSafeInt<T, T_MAX, T_MIN>)a / (int)b; }
/* Sometimes we got int operator OverflowSafeInt instead of vice versa. Handle that properly */
template <class T, int64 T_MAX, int64 T_MIN> FORCEINLINE OverflowSafeInt<T, T_MAX, T_MIN> operator + (int a, OverflowSafeInt<T, T_MAX, T_MIN> b) { return b + a; }
template <class T, int64 T_MAX, int64 T_MIN> FORCEINLINE OverflowSafeInt<T, T_MAX, T_MIN> operator - (int a, OverflowSafeInt<T, T_MAX, T_MIN> b) { return -b + a; }
template <class T, int64 T_MAX, int64 T_MIN> FORCEINLINE OverflowSafeInt<T, T_MAX, T_MIN> operator * (int a, OverflowSafeInt<T, T_MAX, T_MIN> b) { return b * a; }
template <class T, int64 T_MAX, int64 T_MIN> FORCEINLINE OverflowSafeInt<T, T_MAX, T_MIN> operator / (int a, OverflowSafeInt<T, T_MAX, T_MIN> b) { return (OverflowSafeInt<T, T_MAX, T_MIN>)a / (int)b; }
/* Sometimes we got uint operator OverflowSafeInt instead of vice versa. Handle that properly */
template <class T, int64 T_MAX, int64 T_MIN> FORCEINLINE OverflowSafeInt<T, T_MAX, T_MIN> operator + (uint a, OverflowSafeInt<T, T_MAX, T_MIN> b) { return b + a; }
template <class T, int64 T_MAX, int64 T_MIN> FORCEINLINE OverflowSafeInt<T, T_MAX, T_MIN> operator - (uint a, OverflowSafeInt<T, T_MAX, T_MIN> b) { return -b + a; }
template <class T, int64 T_MAX, int64 T_MIN> FORCEINLINE OverflowSafeInt<T, T_MAX, T_MIN> operator * (uint a, OverflowSafeInt<T, T_MAX, T_MIN> b) { return b * a; }
template <class T, int64 T_MAX, int64 T_MIN> FORCEINLINE OverflowSafeInt<T, T_MAX, T_MIN> operator / (uint a, OverflowSafeInt<T, T_MAX, T_MIN> b) { return (OverflowSafeInt<T, T_MAX, T_MIN>)a / (int)b; }
/* Sometimes we got byte operator OverflowSafeInt instead of vice versa. Handle that properly */
template <class T, int64 T_MAX, int64 T_MIN> FORCEINLINE OverflowSafeInt<T, T_MAX, T_MIN> operator + (byte a, OverflowSafeInt<T, T_MAX, T_MIN> b) { return b + a; }
template <class T, int64 T_MAX, int64 T_MIN> FORCEINLINE OverflowSafeInt<T, T_MAX, T_MIN> operator - (byte a, OverflowSafeInt<T, T_MAX, T_MIN> b) { return -b + a; }
template <class T, int64 T_MAX, int64 T_MIN> FORCEINLINE OverflowSafeInt<T, T_MAX, T_MIN> operator * (byte a, OverflowSafeInt<T, T_MAX, T_MIN> b) { return b * a; }
template <class T, int64 T_MAX, int64 T_MIN> FORCEINLINE OverflowSafeInt<T, T_MAX, T_MIN> operator / (byte a, OverflowSafeInt<T, T_MAX, T_MIN> b) { return (OverflowSafeInt<T, T_MAX, T_MIN>)a / (int)b; }
#endif /* HELPERS_HPP */
|