1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
|
#include "../stdafx.h"
#include "../zoom.hpp"
#include "../gfx.h"
#include "../debug.h"
#include "8bpp_optimized.hpp"
static FBlitter_8bppOptimized iFBlitter_8bppOptimized;
void Blitter_8bppOptimized::Draw(Blitter::BlitterParams *bp, BlitterMode mode, ZoomLevel zoom)
{
const byte *src, *src_next;
Pixel8 *dst, *dst_line;
uint offset = 0;
/* Find the offset of this zoom-level */
offset = ((const byte *)bp->sprite)[(int)zoom * 2] | ((const byte *)bp->sprite)[(int)zoom * 2 + 1] << 8;
/* Find where to start reading in the source sprite */
src = (const byte *)bp->sprite + offset;
dst_line = (Pixel8 *)bp->dst + bp->top * bp->pitch + bp->left;
/* Skip over the top lines in the source image */
for (int y = 0; y < bp->skip_top; y++) {
uint trans, pixels;
for (;;) {
trans = *src++;
pixels = *src++;
if (trans == 0 && pixels == 0) break;
src += pixels;
}
}
src_next = src;
for (int y = 0; y < bp->height; y++) {
dst = dst_line;
dst_line += bp->pitch;
uint skip_left = bp->skip_left;
int width = bp->width;
for (;;) {
src = src_next;
uint8 trans = *src++;
uint8 pixels = *src++;
src_next = src + pixels;
if (trans == 0 && pixels == 0) break;
if (width <= 0) continue;
if (skip_left != 0) {
if (skip_left < trans) {
trans -= skip_left;
skip_left = 0;
} else {
skip_left -= trans;
trans = 0;
}
if (skip_left < pixels) {
src += skip_left;
pixels -= skip_left;
skip_left = 0;
} else {
src += pixels;
skip_left -= pixels;
pixels = 0;
}
}
if (skip_left != 0) continue;
/* Skip transparent pixels */
dst += trans;
width -= trans;
if (width <= 0) continue;
if (pixels > width) pixels = width;
width -= pixels;
switch (mode) {
case BM_COLOUR_REMAP:
for (uint x = 0; x < pixels; x++) {
if (bp->remap[*src] != 0) *dst = bp->remap[*src];
dst++; src++;
}
break;
case BM_TRANSPARENT:
for (uint x = 0; x < pixels; x++) {
*dst = bp->remap[*dst];
dst++; src++;
}
break;
default:
memcpy(dst, src, pixels);
dst += pixels; src += pixels;
break;
}
}
}
}
Sprite *Blitter_8bppOptimized::Encode(SpriteLoader::Sprite *sprite, Blitter::AllocatorProc *allocator)
{
Sprite *dest_sprite;
byte *temp_dst;
uint memory = 0;
uint index = 0;
/* Make memory for all zoom-levels */
memory += (int)ZOOM_LVL_END * sizeof(uint16);
for (int i = 0; i < (int)ZOOM_LVL_END; i++) {
memory += UnScaleByZoom(sprite->height, (ZoomLevel)i) * UnScaleByZoom(sprite->width, (ZoomLevel)i);
index += 2;
}
/* We have no idea how much memory we really need, so just guess something */
memory *= 5;
temp_dst = MallocT<byte>(memory);
/* Make the sprites per zoom-level */
for (int i = 0; i < (int)ZOOM_LVL_END; i++) {
/* Store the scaled image */
const SpriteLoader::CommonPixel *src;
/* Store the index table */
temp_dst[i * 2] = index & 0xFF;
temp_dst[i * 2 + 1] = (index >> 8) & 0xFF;
byte *dst = &temp_dst[index];
for (int y = 0; y < UnScaleByZoom(sprite->height, (ZoomLevel)i); y++) {
uint trans = 0;
uint pixels = 0;
uint last_color = 0;
uint count_index = 0;
uint rx = 0;
src = &sprite->data[ScaleByZoom(y, (ZoomLevel)i) * sprite->width];
for (int x = 0; x < UnScaleByZoom(sprite->width, (ZoomLevel)i); x++) {
uint color = 0;
/* Get the color keeping in mind the zoom-level */
for (int j = 0; j < ScaleByZoom(1, (ZoomLevel)i); j++) {
if (src->m != 0) color = src->m;
src++;
rx++;
/* Because of the scaling it might happen we read outside the buffer. Avoid that. */
if (rx == sprite->width) break;
}
if (last_color == 0 || color == 0) {
if (count_index != 0) {
/* Write how many non-transparent bytes we get */
temp_dst[count_index] = pixels;
pixels = 0;
count_index = 0;
}
/* As long as we find transparency bytes, keep counting */
if (color == 0) {
last_color = 0;
trans++;
continue;
}
/* No longer transparency, so write the amount of transparent bytes */
*dst = trans;
dst++; index++;
trans = 0;
/* Reserve a byte for the pixel counter */
count_index = index;
dst++; index++;
}
last_color = color;
pixels++;
*dst = color;
dst++; index++;
}
if (count_index != 0) temp_dst[count_index] = pixels;
/* Write line-ending */
*dst = 0; dst++; index++;
*dst = 0; dst++; index++;
}
}
/* Safety check, to make sure we guessed the size correctly */
assert(index < memory);
/* Allocate the exact amount of memory we need */
dest_sprite = (Sprite *)allocator(sizeof(*dest_sprite) + index);
dest_sprite->height = sprite->height;
dest_sprite->width = sprite->width;
dest_sprite->x_offs = sprite->x_offs;
dest_sprite->y_offs = sprite->y_offs;
memcpy(dest_sprite->data, temp_dst, index);
return dest_sprite;
}
|