1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
|
/* $Id$ */
/**
* A Rail Pathfinder.
*/
class Rail
{
_aystar_class = import("graph.aystar", "", 4);
_max_cost = null; ///< The maximum cost for a route.
_cost_tile = null; ///< The cost for a single tile.
_cost_diagonal_tile = null; ///< The cost for a diagonal tile.
_cost_turn = null; ///< The cost that is added to _cost_tile if the direction changes.
_cost_slope = null; ///< The extra cost if a rail tile is sloped.
_cost_bridge_per_tile = null; ///< The cost per tile of a new bridge, this is added to _cost_tile.
_cost_tunnel_per_tile = null; ///< The cost per tile of a new tunnel, this is added to _cost_tile.
_cost_coast = null; ///< The extra cost for a coast tile.
_pathfinder = null; ///< A reference to the used AyStar object.
_max_bridge_length = null; ///< The maximum length of a bridge that will be build.
_max_tunnel_length = null; ///< The maximum length of a tunnel that will be build.
cost = null; ///< Used to change the costs.
_running = null;
_goals = null;
constructor()
{
this._max_cost = 10000000;
this._cost_tile = 100;
this._cost_diagonal_tile = 70;
this._cost_turn = 50;
this._cost_slope = 100;
this._cost_bridge_per_tile = 150;
this._cost_tunnel_per_tile = 120;
this._cost_coast = 20;
this._max_bridge_length = 6;
this._max_tunnel_length = 6;
this._pathfinder = this._aystar_class(this._Cost, this._Estimate, this._Neighbours, this._CheckDirection, this, this, this, this);
this.cost = this.Cost(this);
this._running = false;
}
/**
* Initialize a path search between sources and goals.
* @param sources The source tiles.
* @param goals The target tiles.
* @param ignored_tiles An array of tiles that cannot occur in the final path.
* @see AyStar::InitializePath()
*/
function InitializePath(sources, goals, ignored_tiles = []) {
local nsources = [];
foreach (node in sources) {
local path = this._pathfinder.Path(null, node[1], 0xFF, this._Cost, this);
path = this._pathfinder.Path(path, node[0], 0xFF, this._Cost, this);
nsources.push(path);
}
this._goals = goals;
this._pathfinder.InitializePath(nsources, goals, ignored_tiles);
}
/**
* Try to find the path as indicated with InitializePath with the lowest cost.
* @param iterations After how many iterations it should abort for a moment.
* This value should either be -1 for infinite, or > 0. Any other value
* aborts immediatly and will never find a path.
* @return A route if one was found, or false if the amount of iterations was
* reached, or null if no path was found.
* You can call this function over and over as long as it returns false,
* which is an indication it is not yet done looking for a route.
* @see AyStar::FindPath()
*/
function FindPath(iterations);
};
class Rail.Cost
{
_main = null;
function _set(idx, val)
{
if (this._main._running) throw("You are not allowed to change parameters of a running pathfinder.");
switch (idx) {
case "max_cost": this._main._max_cost = val; break;
case "tile": this._main._cost_tile = val; break;
case "diagonal_tile": this._cost_diagonal_tile = val; break;
case "turn": this._main._cost_turn = val; break;
case "slope": this._main._cost_slope = val; break;
case "bridge_per_tile": this._main._cost_bridge_per_tile = val; break;
case "tunnel_per_tile": this._main._cost_tunnel_per_tile = val; break;
case "coast": this._main._cost_coast = val; break;
case "max_bridge_length": this._main._max_bridge_length = val; break;
case "max_tunnel_length": this._main._max_tunnel_length = val; break;
default: throw("the index '" + idx + "' does not exist");
}
return val;
}
function _get(idx)
{
switch (idx) {
case "max_cost": return this._main._max_cost;
case "tile": return this._main._cost_tile;
case "diagonal_tile": return this._cost_diagonal_tile;
case "turn": return this._main._cost_turn;
case "slope": return this._main._cost_slope;
case "bridge_per_tile": return this._main._cost_bridge_per_tile;
case "tunnel_per_tile": return this._main._cost_tunnel_per_tile;
case "coast": return this._main._cost_coast;
case "max_bridge_length": return this._main._max_bridge_length;
case "max_tunnel_length": return this._main._max_tunnel_length;
default: throw("the index '" + idx + "' does not exist");
}
}
constructor(main)
{
this._main = main;
}
};
function Rail::FindPath(iterations)
{
local test_mode = AITestMode();
local ret = this._pathfinder.FindPath(iterations);
this._running = (ret == false) ? true : false;
if (!this._running && ret != null) {
foreach (goal in this._goals) {
if (goal[0] == ret.GetTile()) {
return this._pathfinder.Path(ret, goal[1], 0, this._Cost, this);
}
}
}
return ret;
}
function Rail::_GetBridgeNumSlopes(end_a, end_b)
{
local slopes = 0;
local direction = (end_b - end_a) / AIMap.DistanceManhattan(end_a, end_b);
local slope = AITile.GetSlope(end_a);
if (!((slope == AITile.SLOPE_NE && direction == 1) || (slope == AITile.SLOPE_SE && direction == -AIMap.GetMapSizeX()) ||
(slope == AITile.SLOPE_SW && direction == -1) || (slope == AITile.SLOPE_NW && direction == AIMap.GetMapSizeX()) ||
slope == AITile.SLOPE_N || slope == AITile.SLOPE_E || slope == AITile.SLOPE_S || slope == AITile.SLOPE_W)) {
slopes++;
}
local slope = AITile.GetSlope(end_b);
direction = -direction;
if (!((slope == AITile.SLOPE_NE && direction == 1) || (slope == AITile.SLOPE_SE && direction == -AIMap.GetMapSizeX()) ||
(slope == AITile.SLOPE_SW && direction == -1) || (slope == AITile.SLOPE_NW && direction == AIMap.GetMapSizeX()) ||
slope == AITile.SLOPE_N || slope == AITile.SLOPE_E || slope == AITile.SLOPE_S || slope == AITile.SLOPE_W)) {
slopes++;
}
return slopes;
}
function Rail::_nonzero(a, b)
{
return a != 0 ? a : b;
}
function Rail::_Cost(path, new_tile, new_direction, self)
{
/* path == null means this is the first node of a path, so the cost is 0. */
if (path == null) return 0;
local prev_tile = path.GetTile();
/* If the new tile is a bridge / tunnel tile, check whether we came from the other
* end of the bridge / tunnel or if we just entered the bridge / tunnel. */
if (AIBridge.IsBridgeTile(new_tile)) {
if (AIBridge.GetOtherBridgeEnd(new_tile) != prev_tile) {
local cost = path.GetCost() + self._cost_tile;
if (path.GetParent() != null && path.GetParent().GetTile() - prev_tile != prev_tile - new_tile) cost += self._cost_turn;
return cost;
}
return path.GetCost() + AIMap.DistanceManhattan(new_tile, prev_tile) * self._cost_tile + self._GetBridgeNumSlopes(new_tile, prev_tile) * self._cost_slope;
}
if (AITunnel.IsTunnelTile(new_tile)) {
if (AITunnel.GetOtherTunnelEnd(new_tile) != prev_tile) {
local cost = path.GetCost() + self._cost_tile;
if (path.GetParent() != null && path.GetParent().GetTile() - prev_tile != prev_tile - new_tile) cost += self._cost_turn;
return cost;
}
return path.GetCost() + AIMap.DistanceManhattan(new_tile, prev_tile) * self._cost_tile;
}
/* If the two tiles are more then 1 tile apart, the pathfinder wants a bridge or tunnel
* to be build. It isn't an existing bridge / tunnel, as that case is already handled. */
if (AIMap.DistanceManhattan(new_tile, prev_tile) > 1) {
/* Check if we should build a bridge or a tunnel. */
local cost = path.GetCost();
if (AITunnel.GetOtherTunnelEnd(new_tile) == prev_tile) {
cost += AIMap.DistanceManhattan(new_tile, prev_tile) * (self._cost_tile + self._cost_tunnel_per_tile);
} else {
cost += AIMap.DistanceManhattan(new_tile, prev_tile) * (self._cost_tile + self._cost_bridge_per_tile) + self._GetBridgeNumSlopes(new_tile, prev_tile) * self._cost_slope;
}
if (path.GetParent() != null && path.GetParent().GetParent() != null &&
path.GetParent().GetParent().GetTile() - path.GetParent().GetTile() != max(AIMap.GetTileX(prev_tile) - AIMap.GetTileX(new_tile), AIMap.GetTileY(prev_tile) - AIMap.GetTileY(new_tile)) / AIMap.DistanceManhattan(new_tile, prev_tile)) {
cost += self._cost_turn;
}
return cost;
}
/* Check for a turn. We do this by substracting the TileID of the current
* node from the TileID of the previous node and comparing that to the
* difference between the tile before the previous node and the node before
* that. */
local cost = self._cost_tile;
if (path.GetParent() != null && AIMap.DistanceManhattan(path.GetParent().GetTile(), prev_tile) == 1 && path.GetParent().GetTile() - prev_tile != prev_tile - new_tile) cost = self._cost_diagonal_tile;
if (path.GetParent() != null && path.GetParent().GetParent() != null &&
AIMap.DistanceManhattan(new_tile, path.GetParent().GetParent().GetTile()) == 3 &&
path.GetParent().GetParent().GetTile() - path.GetParent().GetTile() != prev_tile - new_tile) {
cost += self._cost_turn;
}
/* Check if the new tile is a coast tile. */
if (AITile.IsCoastTile(new_tile)) {
cost += self._cost_coast;
}
/* Check if the last tile was sloped. */
if (path.GetParent() != null && !AIBridge.IsBridgeTile(prev_tile) && !AITunnel.IsTunnelTile(prev_tile) &&
self._IsSlopedRail(path.GetParent().GetTile(), prev_tile, new_tile)) {
cost += self._cost_slope;
}
/* We don't use already existing rail, so the following code is unused. It
* assigns if no rail exists along the route. */
/*
if (path.GetParent() != null && !AIRail.AreTilesConnected(path.GetParent().GetTile(), prev_tile, new_tile)) {
cost += self._cost_no_existing_rail;
}
*/
return path.GetCost() + cost;
}
function Rail::_Estimate(cur_tile, cur_direction, goal_tiles, self)
{
local min_cost = self._max_cost;
/* As estimate we multiply the lowest possible cost for a single tile with
* with the minimum number of tiles we need to traverse. */
foreach (tile in goal_tiles) {
local dx = abs(AIMap.GetTileX(cur_tile) - AIMap.GetTileX(tile[0]));
local dy = abs(AIMap.GetTileY(cur_tile) - AIMap.GetTileY(tile[0]));
min_cost = min(min_cost, min(dx, dy) * self._cost_diagonal_tile * 2 + (max(dx, dy) - min(dx, dy)) * self._cost_tile);
}
return min_cost;
}
function Rail::_Neighbours(path, cur_node, self)
{
if (AITile.HasTransportType(cur_node, AITile.TRANSPORT_RAIL)) return [];
/* self._max_cost is the maximum path cost, if we go over it, the path isn't valid. */
if (path.GetCost() >= self._max_cost) return [];
local tiles = [];
local offsets = [AIMap.GetTileIndex(0, 1), AIMap.GetTileIndex(0, -1),
AIMap.GetTileIndex(1, 0), AIMap.GetTileIndex(-1, 0)];
/* Check if the current tile is part of a bridge or tunnel. */
if (AIBridge.IsBridgeTile(cur_node) || AITunnel.IsTunnelTile(cur_node)) {
/* We don't use existing rails, so neither existing bridges / tunnels. */
} else if (path.GetParent() != null && AIMap.DistanceManhattan(cur_node, path.GetParent().GetTile()) > 1) {
local other_end = path.GetParent().GetTile();
local next_tile = cur_node + (cur_node - other_end) / AIMap.DistanceManhattan(cur_node, other_end);
foreach (offset in offsets) {
if (AIRail.BuildRail(cur_node, next_tile, next_tile + offset)) {
tiles.push([next_tile, self._GetDirection(other_end, cur_node, next_tile, true)]);
}
}
} else {
/* Check all tiles adjacent to the current tile. */
foreach (offset in offsets) {
local next_tile = cur_node + offset;
/* Don't turn back */
if (path.GetParent() != null && next_tile == path.GetParent().GetTile()) continue;
/* Disallow 90 degree turns */
if (path.GetParent() != null && path.GetParent().GetParent() != null &&
next_tile - cur_node == path.GetParent().GetParent().GetTile() - path.GetParent().GetTile()) continue;
/* We add them to the to the neighbours-list if we can build a rail to
* them and no rail exists there. */
if ((path.GetParent() == null || AIRail.BuildRail(path.GetParent().GetTile(), cur_node, next_tile))) {
if (path.GetParent() != null) {
tiles.push([next_tile, self._GetDirection(path.GetParent().GetTile(), cur_node, next_tile, false)]);
} else {
tiles.push([next_tile, self._GetDirection(null, cur_node, next_tile, false)]);
}
}
}
if (path.GetParent() != null && path.GetParent().GetParent() != null) {
local bridges = self._GetTunnelsBridges(path.GetParent().GetTile(), cur_node, self._GetDirection(path.GetParent().GetParent().GetTile(), path.GetParent().GetTile(), cur_node, true));
foreach (tile in bridges) {
tiles.push(tile);
}
}
}
return tiles;
}
function Rail::_CheckDirection(tile, existing_direction, new_direction, self)
{
return false;
}
function Rail::_dir(from, to)
{
if (from - to == 1) return 0;
if (from - to == -1) return 1;
if (from - to == AIMap.GetMapSizeX()) return 2;
if (from - to == -AIMap.GetMapSizeX()) return 3;
throw("Shouldn't come here in _dir");
}
function Rail::_GetDirection(pre_from, from, to, is_bridge)
{
if (is_bridge) {
if (from - to == 1) return 1;
if (from - to == -1) return 2;
if (from - to == AIMap.GetMapSizeX()) return 4;
if (from - to == -AIMap.GetMapSizeX()) return 8;
}
return 1 << (4 + (pre_from == null ? 0 : 4 * this._dir(pre_from, from)) + this._dir(from, to));
}
/**
* Get a list of all bridges and tunnels that can be build from the
* current tile. Bridges will only be build starting on non-flat tiles
* for performance reasons. Tunnels will only be build if no terraforming
* is needed on both ends.
*/
function Rail::_GetTunnelsBridges(last_node, cur_node, bridge_dir)
{
local slope = AITile.GetSlope(cur_node);
if (slope == AITile.SLOPE_FLAT && AITile.IsBuildable(cur_node + (cur_node - last_node))) return [];
local tiles = [];
for (local i = 2; i < this._max_bridge_length; i++) {
local bridge_list = AIBridgeList_Length(i + 1);
local target = cur_node + i * (cur_node - last_node);
if (!bridge_list.IsEmpty() && AIBridge.BuildBridge(AIVehicle.VEHICLE_RAIL, bridge_list.Begin(), cur_node, target)) {
tiles.push([target, bridge_dir]);
}
}
if (slope != AITile.SLOPE_SW && slope != AITile.SLOPE_NW && slope != AITile.SLOPE_SE && slope != AITile.SLOPE_NE) return tiles;
local other_tunnel_end = AITunnel.GetOtherTunnelEnd(cur_node);
if (!AIMap.IsValidTile(other_tunnel_end)) return tiles;
local tunnel_length = AIMap.DistanceManhattan(cur_node, other_tunnel_end);
local prev_tile = cur_node + (cur_node - other_tunnel_end) / tunnel_length;
if (AITunnel.GetOtherTunnelEnd(other_tunnel_end) == cur_node && tunnel_length >= 2 &&
prev_tile == last_node && tunnel_length < _max_tunnel_length && AITunnel.BuildTunnel(AIVehicle.VEHICLE_RAIL, cur_node)) {
tiles.push([other_tunnel_end, bridge_dir]);
}
return tiles;
}
function Rail::_IsSlopedRail(start, middle, end)
{
local NW = 0; // Set to true if we want to build a rail to / from the north-west
local NE = 0; // Set to true if we want to build a rail to / from the north-east
local SW = 0; // Set to true if we want to build a rail to / from the south-west
local SE = 0; // Set to true if we want to build a rail to / from the south-east
if (middle - AIMap.GetMapSizeX() == start || middle - AIMap.GetMapSizeX() == end) NW = 1;
if (middle - 1 == start || middle - 1 == end) NE = 1;
if (middle + AIMap.GetMapSizeX() == start || middle + AIMap.GetMapSizeX() == end) SE = 1;
if (middle + 1 == start || middle + 1 == end) SW = 1;
/* If there is a turn in the current tile, it can't be sloped. */
if ((NW || SE) && (NE || SW)) return false;
local slope = AITile.GetSlope(middle);
/* A rail on a steep slope is always sloped. */
if (AITile.IsSteepSlope(slope)) return true;
/* If only one corner is raised, the rail is sloped. */
if (slope == AITile.SLOPE_N || slope == AITile.SLOPE_W) return true;
if (slope == AITile.SLOPE_S || slope == AITile.SLOPE_E) return true;
if (NW && (slope == AITile.SLOPE_NW || slope == AITile.SLOPE_SE)) return true;
if (NE && (slope == AITile.SLOPE_NE || slope == AITile.SLOPE_SW)) return true;
return false;
}
|