/* $Id$ */
/** @file
* All actions handling saving and loading goes on in this file. The general actions
* are as follows for saving a game (loading is analogous):
*
* - initialize the writer by creating a temporary memory-buffer for it
*
- go through all to-be saved elements, each 'chunk' (ChunkHandler) prefixed by a label
*
- use their description array (SaveLoad) to know what elements to save and in what version
* of the game it was active (used when loading)
*
- write all data byte-by-byte to the temporary buffer so it is endian-safe
*
- when the buffer is full; flush it to the output (eg save to file) (_sl.buf, _sl.bufp, _sl.bufe)
*
- repeat this until everything is done, and flush any remaining output to file
*
* @see ChunkHandler
* @see SaveLoad
*/
#include "stdafx.h"
#include "openttd.h"
#include "debug.h"
#include "functions.h"
#include "hal.h"
#include "vehicle.h"
#include "station.h"
#include "thread.h"
#include "town.h"
#include "player.h"
#include "saveload.h"
#include "network/network.h"
#include "variables.h"
#include
extern const uint16 SAVEGAME_VERSION = 44;
uint16 _sl_version; /// the major savegame version identifier
byte _sl_minor_version; /// the minor savegame version, DO NOT USE!
typedef void WriterProc(uint len);
typedef uint ReaderProc(void);
/** The saveload struct, containing reader-writer functions, bufffer, version, etc. */
static struct {
bool save; /// are we doing a save or a load atm. True when saving
byte need_length; /// ???
byte block_mode; /// ???
bool error; /// did an error occur or not
int obj_len; /// the length of the current object we are busy with
int array_index, last_array_index; /// in the case of an array, the current and last positions
uint32 offs_base; /// the offset in number of bytes since we started writing data (eg uncompressed savegame size)
WriterProc *write_bytes; /// savegame writer function
ReaderProc *read_bytes; /// savegame loader function
const ChunkHandler* const *chs; /// the chunk of data that is being processed atm (vehicles, signs, etc.)
const SaveLoad* const *includes; /// the internal layouf of the given chunk
/** When saving/loading savegames, they are always saved to a temporary memory-place
* to be flushed to file (save) or to final place (load) when full. */
byte *bufp, *bufe; /// bufp(ointer) gives the current position in the buffer bufe(nd) gives the end of the buffer
// these 3 may be used by compressor/decompressors.
byte *buf; /// pointer to temporary memory to read/write, initialized by SaveLoadFormat->initread/write
byte *buf_ori; /// pointer to the original memory location of buf, used to free it afterwards
uint bufsize; /// the size of the temporary memory *buf
FILE *fh; /// the file from which is read or written to
void (*excpt_uninit)(void); /// the function to execute on any encountered error
const char *excpt_msg; /// the error message
jmp_buf excpt; /// @todo used to jump to "exception handler"; really ugly
} _sl;
enum NeedLengthValues {NL_NONE = 0, NL_WANTLENGTH = 1, NL_CALCLENGTH = 2};
/**
* Fill the input buffer by reading from the file with the given reader
*/
static void SlReadFill(void)
{
uint len = _sl.read_bytes();
assert(len != 0);
_sl.bufp = _sl.buf;
_sl.bufe = _sl.buf + len;
_sl.offs_base += len;
}
static inline uint32 SlGetOffs(void) {return _sl.offs_base - (_sl.bufe - _sl.bufp);}
/** Return the size in bytes of a certain type of normal/atomic variable
* as it appears in memory. @see VarTypes
* @param conv @VarType type of variable that is used for calculating the size
* @return Return the size of this type in bytes */
static inline byte SlCalcConvMemLen(VarType conv)
{
static const byte conv_mem_size[] = {1, 1, 1, 2, 2, 4, 4, 8, 8, 0};
byte length = GB(conv, 4, 4);
assert(length < lengthof(conv_mem_size));
return conv_mem_size[length];
}
/** Return the size in bytes of a certain type of normal/atomic variable
* as it appears in a saved game. @see VarTypes
* @param conv @VarType type of variable that is used for calculating the size
* @return Return the size of this type in bytes */
static inline byte SlCalcConvFileLen(VarType conv)
{
static const byte conv_file_size[] = {1, 1, 2, 2, 4, 4, 8, 8, 2};
byte length = GB(conv, 0, 4);
assert(length < lengthof(conv_file_size));
return conv_file_size[length];
}
/* Return the size in bytes of a reference (pointer) */
static inline size_t SlCalcRefLen(void) {return 2;}
/** Flush the output buffer by writing to disk with the given reader.
* If the buffer pointer has not yet been set up, set it up now. Usually
* only called when the buffer is full, or there is no more data to be processed
*/
static void SlWriteFill(void)
{
// flush the buffer to disk (the writer)
if (_sl.bufp != NULL) {
uint len = _sl.bufp - _sl.buf;
_sl.offs_base += len;
if (len) _sl.write_bytes(len);
}
/* All the data from the buffer has been written away, rewind to the beginning
* to start reading in more data */
_sl.bufp = _sl.buf;
_sl.bufe = _sl.buf + _sl.bufsize;
}
/** Error handler, calls longjmp to simulate an exception.
* @todo this was used to have a central place to handle errors, but it is
* pretty ugly, and seriously interferes with any multithreaded approaches */
static void NORETURN SlError(const char *msg)
{
_sl.excpt_msg = msg;
longjmp(_sl.excpt, 0);
}
/** Read in a single byte from file. If the temporary buffer is full,
* flush it to its final destination
* @return return the read byte from file
*/
static inline byte SlReadByteInternal(void)
{
if (_sl.bufp == _sl.bufe) SlReadFill();
return *_sl.bufp++;
}
/** Wrapper for SlReadByteInternal */
byte SlReadByte(void) {return SlReadByteInternal();}
/** Write away a single byte from memory. If the temporary buffer is full,
* flush it to its destination (file)
* @param b the byte that is currently written
*/
static inline void SlWriteByteInternal(byte b)
{
if (_sl.bufp == _sl.bufe) SlWriteFill();
*_sl.bufp++ = b;
}
/** Wrapper for SlWriteByteInternal */
void SlWriteByte(byte b) {SlWriteByteInternal(b);}
static inline int SlReadUint16(void)
{
int x = SlReadByte() << 8;
return x | SlReadByte();
}
static inline uint32 SlReadUint32(void)
{
uint32 x = SlReadUint16() << 16;
return x | SlReadUint16();
}
static inline uint64 SlReadUint64(void)
{
uint32 x = SlReadUint32();
uint32 y = SlReadUint32();
return (uint64)x << 32 | y;
}
static inline void SlWriteUint16(uint16 v)
{
SlWriteByte(GB(v, 8, 8));
SlWriteByte(GB(v, 0, 8));
}
static inline void SlWriteUint32(uint32 v)
{
SlWriteUint16(GB(v, 16, 16));
SlWriteUint16(GB(v, 0, 16));
}
static inline void SlWriteUint64(uint64 x)
{
SlWriteUint32((uint32)(x >> 32));
SlWriteUint32((uint32)x);
}
/**
* Read in the header descriptor of an object or an array.
* If the highest bit is set (7), then the index is bigger than 127
* elements, so use the next byte to read in the real value.
* The actual value is then both bytes added with the first shifted
* 8 bits to the left, and dropping the highest bit (which only indicated a big index).
* x = ((x & 0x7F) << 8) + SlReadByte();
* @return Return the value of the index
*/
static uint SlReadSimpleGamma(void)
{
uint i = SlReadByte();
if (HASBIT(i, 7)) {
i &= ~0x80;
if (HASBIT(i, 6)) {
i &= ~0x40;
if (HASBIT(i, 5)) {
i &= ~0x20;
if (HASBIT(i, 4))
SlError("Unsupported gamma");
i = (i << 8) | SlReadByte();
}
i = (i << 8) | SlReadByte();
}
i = (i << 8) | SlReadByte();
}
return i;
}
/**
* Write the header descriptor of an object or an array.
* If the element is bigger than 127, use 2 bytes for saving
* and use the highest byte of the first written one as a notice
* that the length consists of 2 bytes, etc.. like this:
* 0xxxxxxx
* 10xxxxxx xxxxxxxx
* 110xxxxx xxxxxxxx xxxxxxxx
* 1110xxxx xxxxxxxx xxxxxxxx xxxxxxxx
* @param i Index being written
*/
static void SlWriteSimpleGamma(uint i)
{
if (i >= (1 << 7)) {
if (i >= (1 << 14)) {
if (i >= (1 << 21)) {
assert(i < (1 << 28));
SlWriteByte((byte)0xE0 | (i>>24));
SlWriteByte((byte)(i>>16));
} else {
SlWriteByte((byte)0xC0 | (i>>16));
}
SlWriteByte((byte)(i>>8));
} else {
SlWriteByte((byte)(0x80 | (i>>8)));
}
}
SlWriteByte(i);
}
/** Return how many bytes used to encode a gamma value */
static inline uint SlGetGammaLength(uint i) {
return 1 + (i >= (1 << 7)) + (i >= (1 << 14)) + (i >= (1 << 21));
}
static inline uint SlReadSparseIndex(void) {return SlReadSimpleGamma();}
static inline void SlWriteSparseIndex(uint index) {SlWriteSimpleGamma(index);}
static inline uint SlReadArrayLength(void) {return SlReadSimpleGamma();}
static inline void SlWriteArrayLength(uint length) {SlWriteSimpleGamma(length);}
static inline uint SlGetArrayLength(uint length) {return SlGetGammaLength(length);}
void SlSetArrayIndex(uint index)
{
_sl.need_length = NL_WANTLENGTH;
_sl.array_index = index;
}
/**
* Iterate through the elements of an array and read the whole thing
* @return The index of the object, or -1 if we have reached the end of current block
*/
int SlIterateArray(void)
{
int index;
static uint32 next_offs;
/* After reading in the whole array inside the loop
* we must have read in all the data, so we must be at end of current block. */
assert(next_offs == 0 || SlGetOffs() == next_offs);
while (true) {
uint length = SlReadArrayLength();
if (length == 0) {
next_offs = 0;
return -1;
}
_sl.obj_len = --length;
next_offs = SlGetOffs() + length;
switch (_sl.block_mode) {
case CH_SPARSE_ARRAY: index = (int)SlReadSparseIndex(); break;
case CH_ARRAY: index = _sl.array_index++; break;
default:
DEBUG(sl, 0, "SlIterateArray error");
return -1; // error
}
if (length != 0) return index;
}
}
/**
* Sets the length of either a RIFF object or the number of items in an array.
* This lets us load an object or an array of arbitrary size
* @param length The length of the sought object/array
*/
void SlSetLength(size_t length)
{
assert(_sl.save);
switch (_sl.need_length) {
case NL_WANTLENGTH:
_sl.need_length = NL_NONE;
switch (_sl.block_mode) {
case CH_RIFF:
// Ugly encoding of >16M RIFF chunks
// The lower 24 bits are normal
// The uppermost 4 bits are bits 24:27
assert(length < (1<<28));
SlWriteUint32((length & 0xFFFFFF) | ((length >> 24) << 28));
break;
case CH_ARRAY:
assert(_sl.last_array_index <= _sl.array_index);
while (++_sl.last_array_index <= _sl.array_index)
SlWriteArrayLength(1);
SlWriteArrayLength(length + 1);
break;
case CH_SPARSE_ARRAY:
SlWriteArrayLength(length + 1 + SlGetArrayLength(_sl.array_index)); // Also include length of sparse index.
SlWriteSparseIndex(_sl.array_index);
break;
default: NOT_REACHED();
} break;
case NL_CALCLENGTH:
_sl.obj_len += length;
break;
}
}
/**
* Save/Load bytes. These do not need to be converted to Little/Big Endian
* so directly write them or read them to/from file
* @param ptr The source or destination of the object being manipulated
* @param length number of bytes this fast CopyBytes lasts
*/
static void SlCopyBytes(void *ptr, size_t length)
{
byte *p = (byte*)ptr;
if (_sl.save) {
for (; length != 0; length--) {SlWriteByteInternal(*p++);}
} else {
for (; length != 0; length--) {*p++ = SlReadByteInternal();}
}
}
/** Read in bytes from the file/data structure but don't do
* anything with them, discarding them in effect
* @param length The amount of bytes that is being treated this way
*/
static inline void SlSkipBytes(size_t length)
{
for (; length != 0; length--) SlReadByte();
}
/* Get the length of the current object */
uint SlGetFieldLength(void) {return _sl.obj_len;}
/** Return a signed-long version of the value of a setting
* @param ptr pointer to the variable
* @param conv type of variable, can be a non-clean
* type, eg one with other flags because it is parsed
* @return returns the value of the pointer-setting */
int64 ReadValue(const void *ptr, VarType conv)
{
switch (GetVarMemType(conv)) {
case SLE_VAR_BL: return (*(bool*)ptr != 0);
case SLE_VAR_I8: return *(int8* )ptr;
case SLE_VAR_U8: return *(byte* )ptr;
case SLE_VAR_I16: return *(int16* )ptr;
case SLE_VAR_U16: return *(uint16*)ptr;
case SLE_VAR_I32: return *(int32* )ptr;
case SLE_VAR_U32: return *(uint32*)ptr;
case SLE_VAR_I64: return *(int64* )ptr;
case SLE_VAR_U64: return *(uint64*)ptr;
case SLE_VAR_NULL:return 0;
default: NOT_REACHED();
}
/* useless, but avoids compiler warning this way */
return 0;
}
/** Write the value of a setting
* @param ptr pointer to the variable
* @param conv type of variable, can be a non-clean type, eg
* with other flags. It is parsed upon read
* @param var the new value being given to the variable */
void WriteValue(void *ptr, VarType conv, int64 val)
{
switch (GetVarMemType(conv)) {
case SLE_VAR_BL: *(bool *)ptr = (val != 0); break;
case SLE_VAR_I8: *(int8 *)ptr = val; break;
case SLE_VAR_U8: *(byte *)ptr = val; break;
case SLE_VAR_I16: *(int16 *)ptr = val; break;
case SLE_VAR_U16: *(uint16*)ptr = val; break;
case SLE_VAR_I32: *(int32 *)ptr = val; break;
case SLE_VAR_U32: *(uint32*)ptr = val; break;
case SLE_VAR_I64: *(int64 *)ptr = val; break;
case SLE_VAR_U64: *(uint64*)ptr = val; break;
case SLE_VAR_NULL: break;
default: NOT_REACHED();
}
}
/**
* Handle all conversion and typechecking of variables here.
* In the case of saving, read in the actual value from the struct
* and then write them to file, endian safely. Loading a value
* goes exactly the opposite way
* @param ptr The object being filled/read
* @param conv @VarType type of the current element of the struct
*/
static void SlSaveLoadConv(void *ptr, VarType conv)
{
int64 x = 0;
if (_sl.save) { /* SAVE values */
/* Read a value from the struct. These ARE endian safe. */
x = ReadValue(ptr, conv);
/* Write the value to the file and check if its value is in the desired range */
switch (GetVarFileType(conv)) {
case SLE_FILE_I8: assert(x >= -128 && x <= 127); SlWriteByte(x);break;
case SLE_FILE_U8: assert(x >= 0 && x <= 255); SlWriteByte(x);break;
case SLE_FILE_I16:assert(x >= -32768 && x <= 32767); SlWriteUint16(x);break;
case SLE_FILE_STRINGID:
case SLE_FILE_U16:assert(x >= 0 && x <= 65535); SlWriteUint16(x);break;
case SLE_FILE_I32:
case SLE_FILE_U32: SlWriteUint32((uint32)x);break;
case SLE_FILE_I64:
case SLE_FILE_U64: SlWriteUint64(x);break;
default: NOT_REACHED();
}
} else { /* LOAD values */
/* Read a value from the file */
switch (GetVarFileType(conv)) {
case SLE_FILE_I8: x = (int8 )SlReadByte(); break;
case SLE_FILE_U8: x = (byte )SlReadByte(); break;
case SLE_FILE_I16: x = (int16 )SlReadUint16(); break;
case SLE_FILE_U16: x = (uint16)SlReadUint16(); break;
case SLE_FILE_I32: x = (int32 )SlReadUint32(); break;
case SLE_FILE_U32: x = (uint32)SlReadUint32(); break;
case SLE_FILE_I64: x = (int64 )SlReadUint64(); break;
case SLE_FILE_U64: x = (uint64)SlReadUint64(); break;
case SLE_FILE_STRINGID: x = RemapOldStringID((uint16)SlReadUint16()); break;
default: NOT_REACHED();
}
/* Write The value to the struct. These ARE endian safe. */
WriteValue(ptr, conv, x);
}
}
/** Calculate the net length of a string. This is in almost all cases
* just strlen(), but if the string is not properly terminated, we'll
* resort to the maximum length of the buffer.
* @param ptr pointer to the stringbuffer
* @param length maximum length of the string (buffer). If -1 we don't care
* about a maximum length, but take string length as it is.
* @return return the net length of the string */
static inline size_t SlCalcNetStringLen(const char *ptr, size_t length)
{
return minu(strlen(ptr), length - 1);
}
/** Calculate the gross length of the string that it
* will occupy in the savegame. This includes the real length, returned
* by SlCalcNetStringLen and the length that the index will occupy.
* @param ptr pointer to the stringbuffer
* @param length maximum length of the string (buffer size, etc.)
* @return return the gross length of the string */
static inline size_t SlCalcStringLen(const void *ptr, size_t length, VarType conv)
{
size_t len;
const char *str;
switch (GetVarMemType(conv)) {
default: NOT_REACHED();
case SLE_VAR_STR:
case SLE_VAR_STRQ:
str = *(const char**)ptr;
len = SIZE_MAX;
break;
case SLE_VAR_STRB:
case SLE_VAR_STRBQ:
str = (const char*)ptr;
len = length;
break;
}
len = SlCalcNetStringLen(str, len);
return len + SlGetArrayLength(len); // also include the length of the index
}
/**
* Save/Load a string.
* @param ptr the string being manipulated
* @param the length of the string (full length)
* @param conv must be SLE_FILE_STRING */
static void SlString(void *ptr, size_t length, VarType conv)
{
size_t len;
if (_sl.save) { /* SAVE string */
switch (GetVarMemType(conv)) {
default: NOT_REACHED();
case SLE_VAR_STRB:
case SLE_VAR_STRBQ:
len = SlCalcNetStringLen((char*)ptr, length);
break;
case SLE_VAR_STR:
case SLE_VAR_STRQ:
ptr = *(char**)ptr;
len = SlCalcNetStringLen((char*)ptr, SIZE_MAX);
break;
}
SlWriteArrayLength(len);
SlCopyBytes(ptr, len);
} else { /* LOAD string */
len = SlReadArrayLength();
switch (GetVarMemType(conv)) {
default: NOT_REACHED();
case SLE_VAR_STRB:
case SLE_VAR_STRBQ:
if (len >= length) {
DEBUG(sl, 1, "String length in savegame is bigger than buffer, truncating");
SlCopyBytes(ptr, length);
SlSkipBytes(len - length);
len = length - 1;
} else {
SlCopyBytes(ptr, len);
}
break;
case SLE_VAR_STR:
case SLE_VAR_STRQ: /* Malloc'd string, free previous incarnation, and allocate */
free(*(char**)ptr);
*(char**)ptr = (char*)malloc(len + 1); // terminating '\0'
ptr = *(char**)ptr;
SlCopyBytes(ptr, len);
break;
}
((char*)ptr)[len] = '\0'; // properly terminate the string
}
}
/**
* Return the size in bytes of a certain type of atomic array
* @param length The length of the array counted in elements
* @param conv @VarType type of the variable that is used in calculating the size
*/
static inline size_t SlCalcArrayLen(uint length, VarType conv)
{
return SlCalcConvFileLen(conv) * length;
}
/**
* Save/Load an array.
* @param array The array being manipulated
* @param length The length of the array in elements
* @param conv @VarType type of the atomic array (int, byte, uint64, etc.)
*/
void SlArray(void *array, uint length, VarType conv)
{
// Automatically calculate the length?
if (_sl.need_length != NL_NONE) {
SlSetLength(SlCalcArrayLen(length, conv));
// Determine length only?
if (_sl.need_length == NL_CALCLENGTH) return;
}
/* NOTICE - handle some buggy stuff, in really old versions everything was saved
* as a byte-type. So detect this, and adjust array size accordingly */
if (!_sl.save && _sl_version == 0) {
if (conv == SLE_INT16 || conv == SLE_UINT16 || conv == SLE_STRINGID ||
conv == SLE_INT32 || conv == SLE_UINT32) {
length *= SlCalcConvFileLen(conv);
conv = SLE_INT8;
}
}
/* If the size of elements is 1 byte both in file and memory, no special
* conversion is needed, use specialized copy-copy function to speed up things */
if (conv == SLE_INT8 || conv == SLE_UINT8) {
SlCopyBytes(array, length);
} else {
byte *a = (byte*)array;
byte mem_size = SlCalcConvMemLen(conv);
for (; length != 0; length --) {
SlSaveLoadConv(a, conv);
a += mem_size; // get size
}
}
}
/* Are we going to save this object or not? */
static inline bool SlIsObjectValidInSavegame(const SaveLoad *sld)
{
if (_sl_version < sld->version_from || _sl_version > sld->version_to) return false;
if (sld->conv & SLF_SAVE_NO) return false;
return true;
}
/** Are we going to load this variable when loading a savegame or not?
* @note If the variable is skipped it is skipped in the savegame
* bytestream itself as well, so there is no need to skip it somewhere else */
static inline bool SlSkipVariableOnLoad(const SaveLoad *sld)
{
if ((sld->conv & SLF_NETWORK_NO) && !_sl.save && _networking && !_network_server) {
SlSkipBytes(SlCalcConvMemLen(sld->conv) * sld->length);
return true;
}
return false;
}
/**
* Calculate the size of an object.
* @param sld The @SaveLoad description of the object so we know how to manipulate it
*/
static size_t SlCalcObjLength(const void *object, const SaveLoad *sld)
{
size_t length = 0;
// Need to determine the length and write a length tag.
for (; sld->cmd != SL_END; sld++) {
length += SlCalcObjMemberLength(object, sld);
}
return length;
}
size_t SlCalcObjMemberLength(const void *object, const SaveLoad *sld)
{
assert(_sl.save);
switch (sld->cmd) {
case SL_VAR:
case SL_REF:
case SL_ARR:
case SL_STR:
/* CONDITIONAL saveload types depend on the savegame version */
if (!SlIsObjectValidInSavegame(sld)) break;
switch (sld->cmd) {
case SL_VAR: return SlCalcConvFileLen(sld->conv);
case SL_REF: return SlCalcRefLen();
case SL_ARR: return SlCalcArrayLen(sld->length, sld->conv);
case SL_STR: return SlCalcStringLen(GetVariableAddress(object, sld), sld->length, sld->conv);
default: NOT_REACHED();
}
break;
case SL_WRITEBYTE: return 1; // a byte is logically of size 1
case SL_INCLUDE: return SlCalcObjLength(object, _sl.includes[sld->version_from]);
default: NOT_REACHED();
}
return 0;
}
static uint ReferenceToInt(const void* obj, SLRefType rt);
static void* IntToReference(uint index, SLRefType rt);
bool SlObjectMember(void *ptr, const SaveLoad *sld)
{
VarType conv = GB(sld->conv, 0, 8);
switch (sld->cmd) {
case SL_VAR:
case SL_REF:
case SL_ARR:
case SL_STR:
/* CONDITIONAL saveload types depend on the savegame version */
if (!SlIsObjectValidInSavegame(sld)) return false;
if (SlSkipVariableOnLoad(sld)) return false;
switch (sld->cmd) {
case SL_VAR: SlSaveLoadConv(ptr, conv); break;
case SL_REF: /* Reference variable, translate */
/// @todo XXX - another artificial limitof 65K elements of pointers?
if (_sl.save) { // XXX - read/write pointer as uint16? What is with higher indeces?
SlWriteUint16(ReferenceToInt(*(void**)ptr, (SLRefType)conv));
} else {
*(void**)ptr = IntToReference(SlReadUint16(), (SLRefType)conv);
}
break;
case SL_ARR: SlArray(ptr, sld->length, conv); break;
case SL_STR: SlString(ptr, sld->length, conv); break;
default: NOT_REACHED();
}
break;
/* SL_WRITEBYTE translates a value of a variable to another one upon
* saving or loading.
* XXX - variable renaming abuse
* game_value: the value of the variable ingame is abused by sld->version_from
* file_value: the value of the variable in the savegame is abused by sld->version_to */
case SL_WRITEBYTE:
if (_sl.save) {
SlWriteByte(sld->version_to);
} else {
*(byte*)ptr = sld->version_from;
}
break;
/* SL_INCLUDE loads common code for a type
* XXX - variable renaming abuse
* include_index: common code to include from _desc_includes[], abused by sld->version_from */
case SL_INCLUDE:
SlObject(ptr, _sl.includes[sld->version_from]);
break;
default: NOT_REACHED();
}
return true;
}
/**
* Main SaveLoad function.
* @param object The object that is being saved or loaded
* @param sld The @SaveLoad description of the object so we know how to manipulate it
*/
void SlObject(void *object, const SaveLoad *sld)
{
// Automatically calculate the length?
if (_sl.need_length != NL_NONE) {
SlSetLength(SlCalcObjLength(object, sld));
if (_sl.need_length == NL_CALCLENGTH) return;
}
for (; sld->cmd != SL_END; sld++) {
void *ptr = GetVariableAddress(object, sld);
SlObjectMember(ptr, sld);
}
}
/**
* Save or Load (a list of) global variables
* @param desc The global variable that is being loaded or saved
*/
void SlGlobList(const SaveLoadGlobVarList *sldg)
{
if (_sl.need_length != NL_NONE) {
SlSetLength(SlCalcObjLength(NULL, (const SaveLoad*)sldg));
if (_sl.need_length == NL_CALCLENGTH) return;
}
for (; sldg->cmd != SL_END; sldg++) {
SlObjectMember(sldg->address, (const SaveLoad*)sldg);
}
}
/**
* Do something of which I have no idea what it is :P
* @param proc The callback procedure that is called
* @param arg The variable that will be used for the callback procedure
*/
void SlAutolength(AutolengthProc *proc, void *arg)
{
uint32 offs;
assert(_sl.save);
// Tell it to calculate the length
_sl.need_length = NL_CALCLENGTH;
_sl.obj_len = 0;
proc(arg);
// Setup length
_sl.need_length = NL_WANTLENGTH;
SlSetLength(_sl.obj_len);
offs = SlGetOffs() + _sl.obj_len;
// And write the stuff
proc(arg);
assert(offs == SlGetOffs());
}
/**
* Load a chunk of data (eg vehicles, stations, etc.)
* @param ch The chunkhandler that will be used for the operation
*/
static void SlLoadChunk(const ChunkHandler *ch)
{
byte m = SlReadByte();
size_t len;
uint32 endoffs;
_sl.block_mode = m;
_sl.obj_len = 0;
switch (m) {
case CH_ARRAY:
_sl.array_index = 0;
ch->load_proc();
break;
case CH_SPARSE_ARRAY:
ch->load_proc();
break;
default:
if ((m & 0xF) == CH_RIFF) {
// Read length
len = (SlReadByte() << 16) | ((m >> 4) << 24);
len += SlReadUint16();
_sl.obj_len = len;
endoffs = SlGetOffs() + len;
ch->load_proc();
assert(SlGetOffs() == endoffs);
} else {
SlError("Invalid chunk type");
}
break;
}
}
/* Stub Chunk handlers to only calculate length and do nothing else */
static ChunkSaveLoadProc *_tmp_proc_1;
static inline void SlStubSaveProc2(void *arg) {_tmp_proc_1();}
static void SlStubSaveProc(void) {SlAutolength(SlStubSaveProc2, NULL);}
/** Save a chunk of data (eg. vehicles, stations, etc.). Each chunk is
* prefixed by an ID identifying it, followed by data, and terminator where appropiate
* @param ch The chunkhandler that will be used for the operation
*/
static void SlSaveChunk(const ChunkHandler *ch)
{
ChunkSaveLoadProc *proc = ch->save_proc;
SlWriteUint32(ch->id);
DEBUG(sl, 2, "Saving chunk %c%c%c%c", ch->id >> 24, ch->id >> 16, ch->id >> 8, ch->id);
if (ch->flags & CH_AUTO_LENGTH) {
// Need to calculate the length. Solve that by calling SlAutoLength in the save_proc.
_tmp_proc_1 = proc;
proc = SlStubSaveProc;
}
_sl.block_mode = ch->flags & CH_TYPE_MASK;
switch (ch->flags & CH_TYPE_MASK) {
case CH_RIFF:
_sl.need_length = NL_WANTLENGTH;
proc();
break;
case CH_ARRAY:
_sl.last_array_index = 0;
SlWriteByte(CH_ARRAY);
proc();
SlWriteArrayLength(0); // Terminate arrays
break;
case CH_SPARSE_ARRAY:
SlWriteByte(CH_SPARSE_ARRAY);
proc();
SlWriteArrayLength(0); // Terminate arrays
break;
default: NOT_REACHED();
}
}
/** Save all chunks */
static void SlSaveChunks(void)
{
const ChunkHandler *ch;
const ChunkHandler* const *chsc;
uint p;
for (p = 0; p != CH_NUM_PRI_LEVELS; p++) {
for (chsc = _sl.chs; (ch = *chsc++) != NULL;) {
while (true) {
if (((ch->flags >> CH_PRI_SHL) & (CH_NUM_PRI_LEVELS - 1)) == p)
SlSaveChunk(ch);
if (ch->flags & CH_LAST)
break;
ch++;
}
}
}
// Terminator
SlWriteUint32(0);
}
/** Find the ChunkHandler that will be used for processing the found
* chunk in the savegame or in memory
* @param id the chunk in question
* @return returns the appropiate chunkhandler
*/
static const ChunkHandler *SlFindChunkHandler(uint32 id)
{
const ChunkHandler *ch;
const ChunkHandler *const *chsc;
for (chsc = _sl.chs; (ch=*chsc++) != NULL;) {
for (;;) {
if (ch->id == id) return ch;
if (ch->flags & CH_LAST) break;
ch++;
}
}
return NULL;
}
/** Load all chunks */
static void SlLoadChunks(void)
{
uint32 id;
const ChunkHandler *ch;
for (id = SlReadUint32(); id != 0; id = SlReadUint32()) {
DEBUG(sl, 2, "Loading chunk %c%c%c%c", id >> 24, id >> 16, id >> 8, id);
ch = SlFindChunkHandler(id);
if (ch == NULL) SlError("found unknown tag in savegame (sync error)");
SlLoadChunk(ch);
}
}
//*******************************************
//********** START OF LZO CODE **************
//*******************************************
#define LZO_SIZE 8192
#include "minilzo.h"
static uint ReadLZO(void)
{
byte out[LZO_SIZE + LZO_SIZE / 64 + 16 + 3 + 8];
uint32 tmp[2];
uint32 size;
uint len;
// Read header
if (fread(tmp, sizeof(tmp), 1, _sl.fh) != 1) SlError("file read failed");
// Check if size is bad
((uint32*)out)[0] = size = tmp[1];
if (_sl_version != 0) {
tmp[0] = TO_BE32(tmp[0]);
size = TO_BE32(size);
}
if (size >= sizeof(out)) SlError("inconsistent size");
// Read block
if (fread(out + sizeof(uint32), size, 1, _sl.fh) != 1) SlError("file read failed");
// Verify checksum
if (tmp[0] != lzo_adler32(0, out, size + sizeof(uint32))) SlError("bad checksum");
// Decompress
lzo1x_decompress(out + sizeof(uint32)*1, size, _sl.buf, &len, NULL);
return len;
}
// p contains the pointer to the buffer, len contains the pointer to the length.
// len bytes will be written, p and l will be updated to reflect the next buffer.
static void WriteLZO(uint size)
{
byte out[LZO_SIZE + LZO_SIZE / 64 + 16 + 3 + 8];
byte wrkmem[sizeof(byte*)*4096];
uint outlen;
lzo1x_1_compress(_sl.buf, size, out + sizeof(uint32)*2, &outlen, wrkmem);
((uint32*)out)[1] = TO_BE32(outlen);
((uint32*)out)[0] = TO_BE32(lzo_adler32(0, out + sizeof(uint32), outlen + sizeof(uint32)));
if (fwrite(out, outlen + sizeof(uint32)*2, 1, _sl.fh) != 1) SlError("file write failed");
}
static bool InitLZO(void)
{
_sl.bufsize = LZO_SIZE;
_sl.buf = _sl.buf_ori = (byte*)malloc(LZO_SIZE);
return true;
}
static void UninitLZO(void)
{
free(_sl.buf_ori);
}
//*********************************************
//******** START OF NOCOMP CODE (uncompressed)*
//*********************************************
static uint ReadNoComp(void)
{
return fread(_sl.buf, 1, LZO_SIZE, _sl.fh);
}
static void WriteNoComp(uint size)
{
fwrite(_sl.buf, 1, size, _sl.fh);
}
static bool InitNoComp(void)
{
_sl.bufsize = LZO_SIZE;
_sl.buf = _sl.buf_ori =(byte*)malloc(LZO_SIZE);
return true;
}
static void UninitNoComp(void)
{
free(_sl.buf_ori);
}
//********************************************
//********** START OF MEMORY CODE (in ram)****
//********************************************
#include "table/strings.h"
#include "table/sprites.h"
#include "gfx.h"
#include "gui.h"
typedef struct ThreadedSave {
uint count;
byte ff_state;
bool saveinprogress;
CursorID cursor;
} ThreadedSave;
/* A maximum size of of 128K * 500 = 64.000KB savegames */
STATIC_OLD_POOL(Savegame, byte, 17, 500, NULL, NULL)
static ThreadedSave _ts;
static bool InitMem(void)
{
_ts.count = 0;
CleanPool(&_Savegame_pool);
AddBlockToPool(&_Savegame_pool);
/* A block from the pool is a contigious area of memory, so it is safe to write to it sequentially */
_sl.bufsize = GetSavegamePoolSize();
_sl.buf = GetSavegame(_ts.count);
return true;
}
static void UnInitMem(void)
{
CleanPool(&_Savegame_pool);
}
static void WriteMem(uint size)
{
_ts.count += size;
/* Allocate new block and new buffer-pointer */
AddBlockIfNeeded(&_Savegame_pool, _ts.count);
_sl.buf = GetSavegame(_ts.count);
}
//********************************************
//********** START OF ZLIB CODE **************
//********************************************
#if defined(WITH_ZLIB)
#include
static z_stream _z;
static bool InitReadZlib(void)
{
memset(&_z, 0, sizeof(_z));
if (inflateInit(&_z) != Z_OK) return false;
_sl.bufsize = 4096;
_sl.buf = _sl.buf_ori = (byte*)malloc(4096 + 4096); // also contains fread buffer
return true;
}
static uint ReadZlib(void)
{
int r;
_z.next_out = _sl.buf;
_z.avail_out = 4096;
do {
// read more bytes from the file?
if (_z.avail_in == 0) {
_z.avail_in = fread(_z.next_in = _sl.buf + 4096, 1, 4096, _sl.fh);
}
// inflate the data
r = inflate(&_z, 0);
if (r == Z_STREAM_END)
break;
if (r != Z_OK)
SlError("inflate() failed");
} while (_z.avail_out);
return 4096 - _z.avail_out;
}
static void UninitReadZlib(void)
{
inflateEnd(&_z);
free(_sl.buf_ori);
}
static bool InitWriteZlib(void)
{
memset(&_z, 0, sizeof(_z));
if (deflateInit(&_z, 6) != Z_OK) return false;
_sl.bufsize = 4096;
_sl.buf = _sl.buf_ori = (byte*)malloc(4096); // also contains fread buffer
return true;
}
static void WriteZlibLoop(z_streamp z, byte *p, uint len, int mode)
{
byte buf[1024]; // output buffer
int r;
uint n;
z->next_in = p;
z->avail_in = len;
do {
z->next_out = buf;
z->avail_out = sizeof(buf);
r = deflate(z, mode);
// bytes were emitted?
if ((n=sizeof(buf) - z->avail_out) != 0) {
if (fwrite(buf, n, 1, _sl.fh) != 1) SlError("file write error");
}
if (r == Z_STREAM_END)
break;
if (r != Z_OK) SlError("zlib returned error code");
} while (z->avail_in || !z->avail_out);
}
static void WriteZlib(uint len)
{
WriteZlibLoop(&_z, _sl.buf, len, 0);
}
static void UninitWriteZlib(void)
{
// flush any pending output.
if (_sl.fh) WriteZlibLoop(&_z, NULL, 0, Z_FINISH);
deflateEnd(&_z);
free(_sl.buf_ori);
}
#endif /* WITH_ZLIB */
//*******************************************
//************* END OF CODE *****************
//*******************************************
// these define the chunks
extern const ChunkHandler _misc_chunk_handlers[];
extern const ChunkHandler _setting_chunk_handlers[];
extern const ChunkHandler _player_chunk_handlers[];
extern const ChunkHandler _engine_chunk_handlers[];
extern const ChunkHandler _veh_chunk_handlers[];
extern const ChunkHandler _waypoint_chunk_handlers[];
extern const ChunkHandler _depot_chunk_handlers[];
extern const ChunkHandler _order_chunk_handlers[];
extern const ChunkHandler _town_chunk_handlers[];
extern const ChunkHandler _sign_chunk_handlers[];
extern const ChunkHandler _station_chunk_handlers[];
extern const ChunkHandler _industry_chunk_handlers[];
extern const ChunkHandler _economy_chunk_handlers[];
extern const ChunkHandler _animated_tile_chunk_handlers[];
extern const ChunkHandler _newgrf_chunk_handlers[];
static const ChunkHandler * const _chunk_handlers[] = {
_misc_chunk_handlers,
_setting_chunk_handlers,
_veh_chunk_handlers,
_waypoint_chunk_handlers,
_depot_chunk_handlers,
_order_chunk_handlers,
_industry_chunk_handlers,
_economy_chunk_handlers,
_engine_chunk_handlers,
_town_chunk_handlers,
_sign_chunk_handlers,
_station_chunk_handlers,
_player_chunk_handlers,
_animated_tile_chunk_handlers,
_newgrf_chunk_handlers,
NULL,
};
// used to include a vehicle desc in another desc.
extern const SaveLoad _common_veh_desc[];
static const SaveLoad* const _desc_includes[] = {
_common_veh_desc
};
/**
* Pointers cannot be saved to a savegame, so this functions gets
* the index of the item, and if not available, it hussles with
* pointers (looks really bad :()
* Remember that a NULL item has value 0, and all
* indeces have +1, so vehicle 0 is saved as index 1.
* @param obj The object that we want to get the index of
* @param rt @SLRefType type of the object the index is being sought of
* @return Return the pointer converted to an index of the type pointed to
*/
static uint ReferenceToInt(const void *obj, SLRefType rt)
{
if (obj == NULL) return 0;
switch (rt) {
case REF_VEHICLE_OLD: // Old vehicles we save as new onces
case REF_VEHICLE: return ((const Vehicle*)obj)->index + 1;
case REF_STATION: return ((const Station*)obj)->index + 1;
case REF_TOWN: return ((const Town*)obj)->index + 1;
case REF_ORDER: return ((const Order*)obj)->index + 1;
case REF_ROADSTOPS: return ((const RoadStop*)obj)->index + 1;
case REF_ENGINE_RENEWS: return ((const EngineRenew*)obj)->index + 1;
default: NOT_REACHED();
}
return 0; // avoid compiler warning
}
/**
* Pointers cannot be loaded from a savegame, so this function
* gets the index from the savegame and returns the appropiate
* pointer from the already loaded base.
* Remember that an index of 0 is a NULL pointer so all indeces
* are +1 so vehicle 0 is saved as 1.
* @param index The index that is being converted to a pointer
* @param rt @SLRefType type of the object the pointer is sought of
* @return Return the index converted to a pointer of any type
*/
static void *IntToReference(uint index, SLRefType rt)
{
/* After version 4.3 REF_VEHICLE_OLD is saved as REF_VEHICLE,
* and should be loaded like that */
if (rt == REF_VEHICLE_OLD && !CheckSavegameVersionOldStyle(4, 4))
rt = REF_VEHICLE;
/* No need to look up NULL pointers, just return immediately */
if (rt != REF_VEHICLE_OLD && index == 0)
return NULL;
index--; // correct for the NULL index
switch (rt) {
case REF_ORDER: {
if (!AddBlockIfNeeded(&_Order_pool, index))
error("Orders: failed loading savegame: too many orders");
return GetOrder(index);
}
case REF_VEHICLE: {
if (!AddBlockIfNeeded(&_Vehicle_pool, index))
error("Vehicles: failed loading savegame: too many vehicles");
return GetVehicle(index);
}
case REF_STATION: {
if (!AddBlockIfNeeded(&_Station_pool, index))
error("Stations: failed loading savegame: too many stations");
return GetStation(index);
}
case REF_TOWN: {
if (!AddBlockIfNeeded(&_Town_pool, index))
error("Towns: failed loading savegame: too many towns");
return GetTown(index);
}
case REF_ROADSTOPS: {
if (!AddBlockIfNeeded(&_RoadStop_pool, index))
error("RoadStops: failed loading savegame: too many RoadStops");
return GetRoadStop(index);
}
case REF_ENGINE_RENEWS: {
if (!AddBlockIfNeeded(&_EngineRenew_pool, index))
error("EngineRenews: failed loading savegame: too many EngineRenews");
return GetEngineRenew(index);
}
case REF_VEHICLE_OLD: {
/* Old vehicles were saved differently:
* invalid vehicle was 0xFFFF,
* and the index was not - 1.. correct for this */
index++;
if (index == INVALID_VEHICLE)
return NULL;
if (!AddBlockIfNeeded(&_Vehicle_pool, index))
error("Vehicles: failed loading savegame: too many vehicles");
return GetVehicle(index);
}
default: NOT_REACHED();
}
return NULL;
}
/** The format for a reader/writer type of a savegame */
typedef struct {
const char *name; /// name of the compressor/decompressor (debug-only)
uint32 tag; /// the 4-letter tag by which it is identified in the savegame
bool (*init_read)(void); /// function executed upon initalization of the loader
ReaderProc *reader; /// function that loads the data from the file
void (*uninit_read)(void); /// function executed when reading is finished
bool (*init_write)(void); /// function executed upon intialization of the saver
WriterProc *writer; /// function that saves the data to the file
void (*uninit_write)(void); /// function executed when writing is done
} SaveLoadFormat;
static const SaveLoadFormat _saveload_formats[] = {
{"memory", 0, NULL, NULL, NULL, InitMem, WriteMem, UnInitMem},
{"lzo", TO_BE32X('OTTD'), InitLZO, ReadLZO, UninitLZO, InitLZO, WriteLZO, UninitLZO},
{"none", TO_BE32X('OTTN'), InitNoComp, ReadNoComp, UninitNoComp, InitNoComp, WriteNoComp, UninitNoComp},
#if defined(WITH_ZLIB)
{"zlib", TO_BE32X('OTTZ'), InitReadZlib, ReadZlib, UninitReadZlib, InitWriteZlib, WriteZlib, UninitWriteZlib},
#else
{"zlib", TO_BE32X('OTTZ'), NULL, NULL, NULL, NULL, NULL, NULL},
#endif
};
/**
* Return the savegameformat of the game. Whether it was create with ZLIB compression
* uncompressed, or another type
* @param s Name of the savegame format. If NULL it picks the first available one
* @return Pointer to @SaveLoadFormat struct giving all characteristics of this type of savegame
*/
static const SaveLoadFormat *GetSavegameFormat(const char *s)
{
const SaveLoadFormat *def = endof(_saveload_formats) - 1;
// find default savegame format, the highest one with which files can be written
while (!def->init_write) def--;
if (s != NULL && s[0] != '\0') {
const SaveLoadFormat *slf;
for (slf = &_saveload_formats[0]; slf != endof(_saveload_formats); slf++) {
if (slf->init_write != NULL && strcmp(s, slf->name) == 0)
return slf;
}
ShowInfoF("Savegame format '%s' is not available. Reverting to '%s'.", s, def->name);
}
return def;
}
// actual loader/saver function
void InitializeGame(int mode, uint size_x, uint size_y);
extern bool AfterLoadGame(void);
extern void BeforeSaveGame(void);
extern bool LoadOldSaveGame(const char *file);
/** Small helper function to close the to be loaded savegame an signal error */
static inline SaveOrLoadResult AbortSaveLoad(void)
{
if (_sl.fh != NULL) fclose(_sl.fh);
_sl.fh = NULL;
return SL_ERROR;
}
/** Update the gui accordingly when starting saving
* and set locks on saveload. Also turn off fast-forward cause with that
* saving takes Aaaaages */
void SaveFileStart(void)
{
_ts.ff_state = _fast_forward;
_fast_forward = 0;
if (_cursor.sprite == SPR_CURSOR_MOUSE) SetMouseCursor(SPR_CURSOR_ZZZ, PAL_NONE);
SendWindowMessage(WC_STATUS_BAR, 0, true, 0, 0);
_ts.saveinprogress = true;
}
/** Update the gui accordingly when saving is done and release locks
* on saveload */
void SaveFileDone(void)
{
_fast_forward = _ts.ff_state;
if (_cursor.sprite == SPR_CURSOR_ZZZ) SetMouseCursor(SPR_CURSOR_MOUSE, PAL_NONE);
SendWindowMessage(WC_STATUS_BAR, 0, false, 0, 0);
_ts.saveinprogress = false;
}
/** Show a gui message when saving has failed */
void SaveFileError(void)
{
ShowErrorMessage(STR_4007_GAME_SAVE_FAILED, STR_NULL, 0, 0);
SaveFileDone();
}
static OTTDThread* save_thread;
/** We have written the whole game into memory, _Savegame_pool, now find
* and appropiate compressor and start writing to file.
*/
static SaveOrLoadResult SaveFileToDisk(bool threaded)
{
const SaveLoadFormat *fmt;
uint32 hdr[2];
/* XXX - Setup setjmp error handler if an error occurs anywhere deep during
* loading/saving execute a longjmp() and continue execution here */
if (setjmp(_sl.excpt)) {
AbortSaveLoad();
_sl.excpt_uninit();
fprintf(stderr, "Save game failed: %s.", _sl.excpt_msg);
if (threaded) {
OTTD_SendThreadMessage(MSG_OTTD_SAVETHREAD_ERROR);
} else {
SaveFileError();
}
return SL_ERROR;
}
fmt = GetSavegameFormat(_savegame_format);
/* We have written our stuff to memory, now write it to file! */
hdr[0] = fmt->tag;
hdr[1] = TO_BE32(SAVEGAME_VERSION << 16);
if (fwrite(hdr, sizeof(hdr), 1, _sl.fh) != 1) SlError("file write failed");
if (!fmt->init_write()) SlError("cannot initialize compressor");
{
uint i;
uint count = 1 << Savegame_POOL_BLOCK_SIZE_BITS;
assert(_ts.count == _sl.offs_base);
for (i = 0; i != _Savegame_pool.current_blocks - 1; i++) {
_sl.buf = _Savegame_pool.blocks[i];
fmt->writer(count);
}
/* The last block is (almost) always not fully filled, so only write away
* as much data as it is in there */
_sl.buf = _Savegame_pool.blocks[i];
fmt->writer(_ts.count - (i * count));
}
fmt->uninit_write();
assert(_ts.count == _sl.offs_base);
GetSavegameFormat("memory")->uninit_write(); // clean the memorypool
fclose(_sl.fh);
if (threaded) OTTD_SendThreadMessage(MSG_OTTD_SAVETHREAD_DONE);
return SL_OK;
}
static void* SaveFileToDiskThread(void *arg)
{
SaveFileToDisk(true);
return NULL;
}
void WaitTillSaved(void)
{
OTTDJoinThread(save_thread);
save_thread = NULL;
}
/**
* Main Save or Load function where the high-level saveload functions are
* handled. It opens the savegame, selects format and checks versions
* @param filename The name of the savegame being created/loaded
* @param mode Save or load. Load can also be a TTD(Patch) game. Use SL_LOAD, SL_OLD_LOAD or SL_SAVE
* @return Return the results of the action. SL_OK, SL_ERROR or SL_REINIT ("unload" the game)
*/
SaveOrLoadResult SaveOrLoad(const char *filename, int mode)
{
uint32 hdr[2];
const SaveLoadFormat *fmt;
/* An instance of saving is already active, so don't go saving again */
if (_ts.saveinprogress && mode == SL_SAVE) {
// if not an autosave, but a user action, show error message
if (!_do_autosave) ShowErrorMessage(INVALID_STRING_ID, STR_SAVE_STILL_IN_PROGRESS, 0, 0);
return SL_OK;
}
WaitTillSaved();
/* Load a TTDLX or TTDPatch game */
if (mode == SL_OLD_LOAD) {
InitializeGame(IG_DATE_RESET, 256, 256); // set a mapsize of 256x256 for TTDPatch games or it might get confused
if (!LoadOldSaveGame(filename)) return SL_REINIT;
_sl_version = 0;
AfterLoadGame();
return SL_OK;
}
_sl.fh = (mode == SL_SAVE) ? fopen(filename, "wb") : fopen(filename, "rb");
if (_sl.fh == NULL) {
DEBUG(sl, 0, "Cannot open savegame '%s' for saving/loading.", filename);
return SL_ERROR;
}
_sl.bufe = _sl.bufp = NULL;
_sl.offs_base = 0;
_sl.save = (mode != 0);
_sl.includes = _desc_includes;
_sl.chs = _chunk_handlers;
/* XXX - Setup setjmp error handler if an error occurs anywhere deep during
* loading/saving execute a longjmp() and continue execution here */
if (setjmp(_sl.excpt)) {
AbortSaveLoad();
// deinitialize compressor.
_sl.excpt_uninit();
/* A saver/loader exception!! reinitialize all variables to prevent crash! */
if (mode == SL_LOAD) {
ShowInfoF("Load game failed: %s.", _sl.excpt_msg);
return SL_REINIT;
}
ShowInfoF("Save game failed: %s.", _sl.excpt_msg);
return SL_ERROR;
}
/* General tactic is to first save the game to memory, then use an available writer
* to write it to file, either in threaded mode if possible, or single-threaded */
if (mode == SL_SAVE) { /* SAVE game */
fmt = GetSavegameFormat("memory"); // write to memory
_sl.write_bytes = fmt->writer;
_sl.excpt_uninit = fmt->uninit_write;
if (!fmt->init_write()) {
DEBUG(sl, 0, "Initializing writer '%s' failed.", fmt->name);
return AbortSaveLoad();
}
_sl_version = SAVEGAME_VERSION;
BeforeSaveGame();
SlSaveChunks();
SlWriteFill(); // flush the save buffer
SaveFileStart();
if (_network_server ||
(save_thread = OTTDCreateThread(&SaveFileToDiskThread, NULL)) == NULL) {
if (!_network_server) DEBUG(sl, 1, "Cannot create savegame thread, reverting to single-threaded mode...");
SaveOrLoadResult result = SaveFileToDisk(false);
SaveFileDone();
return result;
}
} else { /* LOAD game */
assert(mode == SL_LOAD);
if (fread(hdr, sizeof(hdr), 1, _sl.fh) != 1) {
DEBUG(sl, 0, "Cannot read savegame header, aborting");
return AbortSaveLoad();
}
// see if we have any loader for this type.
for (fmt = _saveload_formats; ; fmt++) {
/* No loader found, treat as version 0 and use LZO format */
if (fmt == endof(_saveload_formats)) {
DEBUG(sl, 0, "Unknown savegame type, trying to load it as the buggy format");
rewind(_sl.fh);
_sl_version = 0;
_sl_minor_version = 0;
fmt = _saveload_formats + 1; // LZO
break;
}
if (fmt->tag == hdr[0]) {
// check version number
_sl_version = TO_BE32(hdr[1]) >> 16;
/* Minor is not used anymore from version 18.0, but it is still needed
* in versions before that (4 cases) which can't be removed easy.
* Therefor it is loaded, but never saved (or, it saves a 0 in any scenario).
* So never EVER use this minor version again. -- TrueLight -- 22-11-2005 */
_sl_minor_version = (TO_BE32(hdr[1]) >> 8) & 0xFF;
DEBUG(sl, 1, "Loading savegame version %d", _sl_version);
/* Is the version higher than the current? */
if (_sl_version > SAVEGAME_VERSION) {
DEBUG(sl, 0, "Savegame version invalid");
return AbortSaveLoad();
}
break;
}
}
_sl.read_bytes = fmt->reader;
_sl.excpt_uninit = fmt->uninit_read;
// loader for this savegame type is not implemented?
if (fmt->init_read == NULL) {
ShowInfoF("Loader for '%s' is not available.", fmt->name);
return AbortSaveLoad();
}
if (!fmt->init_read()) {
DEBUG(sl, 0, "Initializing loader '%s' failed", fmt->name);
return AbortSaveLoad();
}
/* Old maps were hardcoded to 256x256 and thus did not contain
* any mapsize information. Pre-initialize to 256x256 to not to
* confuse old games */
InitializeGame(IG_DATE_RESET, 256, 256);
SlLoadChunks();
fmt->uninit_read();
fclose(_sl.fh);
/* After loading fix up savegame for any internal changes that
* might've occured since then. If it fails, load back the old game */
if (!AfterLoadGame()) return SL_REINIT;
}
return SL_OK;
}
/** Do a save when exiting the game (patch option) _patches.autosave_on_exit */
void DoExitSave(void)
{
char buf[200];
snprintf(buf, sizeof(buf), "%s%sexit.sav", _paths.autosave_dir, PATHSEP);
SaveOrLoad(buf, SL_SAVE);
}
#if 0
/**
* Function to get the type of the savegame by looking at the file header.
* NOTICE: Not used right now, but could be used if extensions of savegames are garbled
* @param file Savegame to be checked
* @return SL_OLD_LOAD or SL_LOAD of the file
*/
int GetSavegameType(char *file)
{
const SaveLoadFormat *fmt;
uint32 hdr;
FILE *f;
int mode = SL_OLD_LOAD;
f = fopen(file, "rb");
if (fread(&hdr, sizeof(hdr), 1, f) != 1) {
DEBUG(sl, 0, "Savegame is obsolete or invalid format");
mode = SL_LOAD; // don't try to get filename, just show name as it is written
} else {
// see if we have any loader for this type.
for (fmt = _saveload_formats; fmt != endof(_saveload_formats); fmt++) {
if (fmt->tag == hdr) {
mode = SL_LOAD; // new type of savegame
break;
}
}
}
fclose(f);
return mode;
}
#endif