/* $Id$ */
/*
* This file is part of OpenTTD.
* OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
* OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see .
*/
/** @file yapf_road.cpp The road pathfinding. */
#include "../../stdafx.h"
#include "yapf.hpp"
#include "yapf_node_road.hpp"
#include "../../roadstop_base.h"
#include "../../safeguards.h"
template
class CYapfCostRoadT
{
public:
typedef typename Types::Tpf Tpf; ///< pathfinder (derived from THIS class)
typedef typename Types::TrackFollower TrackFollower; ///< track follower helper
typedef typename Types::NodeList::Titem Node; ///< this will be our node type
typedef typename Node::Key Key; ///< key to hash tables
protected:
/** to access inherited path finder */
Tpf& Yapf()
{
return *static_cast(this);
}
int SlopeCost(TileIndex tile, TileIndex next_tile, Trackdir trackdir)
{
/* height of the center of the current tile */
int x1 = TileX(tile) * TILE_SIZE;
int y1 = TileY(tile) * TILE_SIZE;
int z1 = GetSlopePixelZ(x1 + TILE_SIZE / 2, y1 + TILE_SIZE / 2);
/* height of the center of the next tile */
int x2 = TileX(next_tile) * TILE_SIZE;
int y2 = TileY(next_tile) * TILE_SIZE;
int z2 = GetSlopePixelZ(x2 + TILE_SIZE / 2, y2 + TILE_SIZE / 2);
if (z2 - z1 > 1) {
/* Slope up */
return Yapf().PfGetSettings().road_slope_penalty;
}
return 0;
}
/** return one tile cost */
inline int OneTileCost(TileIndex tile, Trackdir trackdir)
{
int cost = 0;
/* set base cost */
if (IsDiagonalTrackdir(trackdir)) {
cost += YAPF_TILE_LENGTH;
switch (GetTileType(tile)) {
case MP_ROAD:
/* Increase the cost for level crossings */
if (IsLevelCrossing(tile)) {
cost += Yapf().PfGetSettings().road_crossing_penalty;
}
break;
case MP_STATION: {
const RoadStop *rs = RoadStop::GetByTile(tile, GetRoadStopType(tile));
if (IsDriveThroughStopTile(tile)) {
/* Increase the cost for drive-through road stops */
cost += Yapf().PfGetSettings().road_stop_penalty;
DiagDirection dir = TrackdirToExitdir(trackdir);
if (!RoadStop::IsDriveThroughRoadStopContinuation(tile, tile - TileOffsByDiagDir(dir))) {
/* When we're the first road stop in a 'queue' of them we increase
* cost based on the fill percentage of the whole queue. */
const RoadStop::Entry *entry = rs->GetEntry(dir);
cost += entry->GetOccupied() * Yapf().PfGetSettings().road_stop_occupied_penalty / entry->GetLength();
}
} else {
/* Increase cost for filled road stops */
cost += Yapf().PfGetSettings().road_stop_bay_occupied_penalty * (!rs->IsFreeBay(0) + !rs->IsFreeBay(1)) / 2;
}
break;
}
default:
break;
}
} else {
/* non-diagonal trackdir */
cost = YAPF_TILE_CORNER_LENGTH + Yapf().PfGetSettings().road_curve_penalty;
}
return cost;
}
public:
/**
* Called by YAPF to calculate the cost from the origin to the given node.
* Calculates only the cost of given node, adds it to the parent node cost
* and stores the result into Node::m_cost member
*/
inline bool PfCalcCost(Node &n, const TrackFollower *tf)
{
int segment_cost = 0;
uint tiles = 0;
/* start at n.m_key.m_tile / n.m_key.m_td and walk to the end of segment */
TileIndex tile = n.m_key.m_tile;
Trackdir trackdir = n.m_key.m_td;
for (;;) {
/* base tile cost depending on distance between edges */
segment_cost += Yapf().OneTileCost(tile, trackdir);
const RoadVehicle *v = Yapf().GetVehicle();
/* we have reached the vehicle's destination - segment should end here to avoid target skipping */
if (Yapf().PfDetectDestinationTile(tile, trackdir)) break;
/* stop if we have just entered the depot */
if (IsRoadDepotTile(tile) && trackdir == DiagDirToDiagTrackdir(ReverseDiagDir(GetRoadDepotDirection(tile)))) {
/* next time we will reverse and leave the depot */
break;
}
/* if there are no reachable trackdirs on new tile, we have end of road */
TrackFollower F(Yapf().GetVehicle());
if (!F.Follow(tile, trackdir)) break;
/* if there are more trackdirs available & reachable, we are at the end of segment */
if (KillFirstBit(F.m_new_td_bits) != TRACKDIR_BIT_NONE) break;
Trackdir new_td = (Trackdir)FindFirstBit2x64(F.m_new_td_bits);
/* stop if RV is on simple loop with no junctions */
if (F.m_new_tile == n.m_key.m_tile && new_td == n.m_key.m_td) return false;
/* if we skipped some tunnel tiles, add their cost */
segment_cost += F.m_tiles_skipped * YAPF_TILE_LENGTH;
tiles += F.m_tiles_skipped + 1;
/* add hilly terrain penalty */
segment_cost += Yapf().SlopeCost(tile, F.m_new_tile, trackdir);
/* add min/max speed penalties */
int min_speed = 0;
int max_veh_speed = v->GetDisplayMaxSpeed();
int max_speed = F.GetSpeedLimit(&min_speed);
if (max_speed < max_veh_speed) segment_cost += 1 * (max_veh_speed - max_speed);
if (min_speed > max_veh_speed) segment_cost += 10 * (min_speed - max_veh_speed);
/* move to the next tile */
tile = F.m_new_tile;
trackdir = new_td;
if (tiles > MAX_MAP_SIZE) break;
}
/* save end of segment back to the node */
n.m_segment_last_tile = tile;
n.m_segment_last_td = trackdir;
/* save also tile cost */
int parent_cost = (n.m_parent != NULL) ? n.m_parent->m_cost : 0;
n.m_cost = parent_cost + segment_cost;
return true;
}
};
template
class CYapfDestinationAnyDepotRoadT
{
public:
typedef typename Types::Tpf Tpf; ///< the pathfinder class (derived from THIS class)
typedef typename Types::TrackFollower TrackFollower;
typedef typename Types::NodeList::Titem Node; ///< this will be our node type
typedef typename Node::Key Key; ///< key to hash tables
/** to access inherited path finder */
Tpf& Yapf()
{
return *static_cast(this);
}
/** Called by YAPF to detect if node ends in the desired destination */
inline bool PfDetectDestination(Node &n)
{
return IsRoadDepotTile(n.m_segment_last_tile);
}
inline bool PfDetectDestinationTile(TileIndex tile, Trackdir trackdir)
{
return IsRoadDepotTile(tile);
}
/**
* Called by YAPF to calculate cost estimate. Calculates distance to the destination
* adds it to the actual cost from origin and stores the sum to the Node::m_estimate
*/
inline bool PfCalcEstimate(Node &n)
{
n.m_estimate = n.m_cost;
return true;
}
};
template
class CYapfDestinationTileRoadT
{
public:
typedef typename Types::Tpf Tpf; ///< the pathfinder class (derived from THIS class)
typedef typename Types::TrackFollower TrackFollower;
typedef typename Types::NodeList::Titem Node; ///< this will be our node type
typedef typename Node::Key Key; ///< key to hash tables
protected:
TileIndex m_destTile;
TrackdirBits m_destTrackdirs;
StationID m_dest_station;
bool m_bus;
bool m_non_artic;
public:
void SetDestination(const RoadVehicle *v)
{
if (v->current_order.IsType(OT_GOTO_STATION)) {
m_dest_station = v->current_order.GetDestination();
m_bus = v->IsBus();
m_destTile = CalcClosestStationTile(m_dest_station, v->tile, m_bus ? STATION_BUS : STATION_TRUCK);
m_non_artic = !v->HasArticulatedPart();
m_destTrackdirs = INVALID_TRACKDIR_BIT;
} else {
m_dest_station = INVALID_STATION;
m_destTile = v->dest_tile;
m_destTrackdirs = TrackStatusToTrackdirBits(GetTileTrackStatus(v->dest_tile, TRANSPORT_ROAD, v->compatible_roadtypes));
}
}
protected:
/** to access inherited path finder */
Tpf& Yapf()
{
return *static_cast(this);
}
public:
/** Called by YAPF to detect if node ends in the desired destination */
inline bool PfDetectDestination(Node &n)
{
return PfDetectDestinationTile(n.m_segment_last_tile, n.m_segment_last_td);
}
inline bool PfDetectDestinationTile(TileIndex tile, Trackdir trackdir)
{
if (m_dest_station != INVALID_STATION) {
return IsTileType(tile, MP_STATION) &&
GetStationIndex(tile) == m_dest_station &&
(m_bus ? IsBusStop(tile) : IsTruckStop(tile)) &&
(m_non_artic || IsDriveThroughStopTile(tile));
}
return tile == m_destTile && HasTrackdir(m_destTrackdirs, trackdir);
}
/**
* Called by YAPF to calculate cost estimate. Calculates distance to the destination
* adds it to the actual cost from origin and stores the sum to the Node::m_estimate
*/
inline bool PfCalcEstimate(Node &n)
{
static const int dg_dir_to_x_offs[] = {-1, 0, 1, 0};
static const int dg_dir_to_y_offs[] = {0, 1, 0, -1};
if (PfDetectDestination(n)) {
n.m_estimate = n.m_cost;
return true;
}
TileIndex tile = n.m_segment_last_tile;
DiagDirection exitdir = TrackdirToExitdir(n.m_segment_last_td);
int x1 = 2 * TileX(tile) + dg_dir_to_x_offs[(int)exitdir];
int y1 = 2 * TileY(tile) + dg_dir_to_y_offs[(int)exitdir];
int x2 = 2 * TileX(m_destTile);
int y2 = 2 * TileY(m_destTile);
int dx = abs(x1 - x2);
int dy = abs(y1 - y2);
int dmin = min(dx, dy);
int dxy = abs(dx - dy);
int d = dmin * YAPF_TILE_CORNER_LENGTH + (dxy - 1) * (YAPF_TILE_LENGTH / 2);
n.m_estimate = n.m_cost + d;
assert(n.m_estimate >= n.m_parent->m_estimate);
return true;
}
};
template
class CYapfFollowRoadT
{
public:
typedef typename Types::Tpf Tpf; ///< the pathfinder class (derived from THIS class)
typedef typename Types::TrackFollower TrackFollower;
typedef typename Types::NodeList::Titem Node; ///< this will be our node type
typedef typename Node::Key Key; ///< key to hash tables
protected:
/** to access inherited path finder */
inline Tpf& Yapf()
{
return *static_cast(this);
}
public:
/**
* Called by YAPF to move from the given node to the next tile. For each
* reachable trackdir on the new tile creates new node, initializes it
* and adds it to the open list by calling Yapf().AddNewNode(n)
*/
inline void PfFollowNode(Node &old_node)
{
TrackFollower F(Yapf().GetVehicle());
if (F.Follow(old_node.m_segment_last_tile, old_node.m_segment_last_td)) {
Yapf().AddMultipleNodes(&old_node, F);
}
}
/** return debug report character to identify the transportation type */
inline char TransportTypeChar() const
{
return 'r';
}
static Trackdir stChooseRoadTrack(const RoadVehicle *v, TileIndex tile, DiagDirection enterdir, bool &path_found)
{
Tpf pf;
return pf.ChooseRoadTrack(v, tile, enterdir, path_found);
}
inline Trackdir ChooseRoadTrack(const RoadVehicle *v, TileIndex tile, DiagDirection enterdir, bool &path_found)
{
/* Handle special case - when next tile is destination tile.
* However, when going to a station the (initial) destination
* tile might not be a station, but a junction, in which case
* this method forces the vehicle to jump in circles. */
if (tile == v->dest_tile && !v->current_order.IsType(OT_GOTO_STATION)) {
/* choose diagonal trackdir reachable from enterdir */
return DiagDirToDiagTrackdir(enterdir);
}
/* our source tile will be the next vehicle tile (should be the given one) */
TileIndex src_tile = tile;
/* get available trackdirs on the start tile */
TrackdirBits src_trackdirs = TrackStatusToTrackdirBits(GetTileTrackStatus(tile, TRANSPORT_ROAD, v->compatible_roadtypes));
/* select reachable trackdirs only */
src_trackdirs &= DiagdirReachesTrackdirs(enterdir);
/* set origin and destination nodes */
Yapf().SetOrigin(src_tile, src_trackdirs);
Yapf().SetDestination(v);
/* find the best path */
path_found = Yapf().FindPath(v);
/* if path not found - return INVALID_TRACKDIR */
Trackdir next_trackdir = INVALID_TRACKDIR;
Node *pNode = Yapf().GetBestNode();
if (pNode != NULL) {
/* path was found or at least suggested
* walk through the path back to its origin */
while (pNode->m_parent != NULL) {
pNode = pNode->m_parent;
}
/* return trackdir from the best origin node (one of start nodes) */
Node &best_next_node = *pNode;
assert(best_next_node.GetTile() == tile);
next_trackdir = best_next_node.GetTrackdir();
}
return next_trackdir;
}
static uint stDistanceToTile(const RoadVehicle *v, TileIndex tile)
{
Tpf pf;
return pf.DistanceToTile(v, tile);
}
inline uint DistanceToTile(const RoadVehicle *v, TileIndex dst_tile)
{
/* handle special case - when current tile is the destination tile */
if (dst_tile == v->tile) {
/* distance is zero in this case */
return 0;
}
if (!SetOriginFromVehiclePos(v)) return UINT_MAX;
/* get available trackdirs on the destination tile */
Yapf().SetDestination(v);
/* if path not found - return distance = UINT_MAX */
uint dist = UINT_MAX;
/* find the best path */
if (!Yapf().FindPath(v)) return dist;
Node *pNode = Yapf().GetBestNode();
if (pNode != NULL) {
/* path was found
* get the path cost estimate */
dist = pNode->GetCostEstimate();
}
return dist;
}
/** Return true if the valid origin (tile/trackdir) was set from the current vehicle position. */
inline bool SetOriginFromVehiclePos(const RoadVehicle *v)
{
/* set origin (tile, trackdir) */
TileIndex src_tile = v->tile;
Trackdir src_td = v->GetVehicleTrackdir();
if (!HasTrackdir(TrackStatusToTrackdirBits(GetTileTrackStatus(src_tile, TRANSPORT_ROAD, v->compatible_roadtypes)), src_td)) {
/* sometimes the roadveh is not on the road (it resides on non-existing track)
* how should we handle that situation? */
return false;
}
Yapf().SetOrigin(src_tile, TrackdirToTrackdirBits(src_td));
return true;
}
static FindDepotData stFindNearestDepot(const RoadVehicle *v, TileIndex tile, Trackdir td, int max_distance)
{
Tpf pf;
return pf.FindNearestDepot(v, tile, td, max_distance);
}
/**
* Find the best depot for a road vehicle.
* @param v Vehicle
* @param tile Tile of the vehicle.
* @param td Trackdir of the vehicle.
* @param max_distance max length (penalty) for paths.
* @todo max_distance not used by YAPF for road vehicles.
* It can be removed or copy the SetMaxCost() strategy
* applied in YAPF for rail. The best depot can be at
* a distance greater than max_distance.
*/
inline FindDepotData FindNearestDepot(const RoadVehicle *v, TileIndex tile, Trackdir td, int max_distance)
{
/* Set origin. */
Yapf().SetOrigin(tile, TrackdirToTrackdirBits(td));
/* Find the best path and return if no depot is found. */
if (!Yapf().FindPath(v)) return FindDepotData();
/* Return the cost of the best path and its depot. */
Node *n = Yapf().GetBestNode();
return FindDepotData(n->m_segment_last_tile, n->m_cost);
}
};
template class Tdestination>
struct CYapfRoad_TypesT
{
typedef CYapfRoad_TypesT Types;
typedef Tpf_ Tpf;
typedef CFollowTrackRoad TrackFollower;
typedef Tnode_list NodeList;
typedef RoadVehicle VehicleType;
typedef CYapfBaseT PfBase;
typedef CYapfFollowRoadT PfFollow;
typedef CYapfOriginTileT PfOrigin;
typedef Tdestination PfDestination;
typedef CYapfSegmentCostCacheNoneT PfCache;
typedef CYapfCostRoadT PfCost;
};
struct CYapfRoad1 : CYapfT > {};
struct CYapfRoad2 : CYapfT > {};
struct CYapfRoadAnyDepot1 : CYapfT > {};
struct CYapfRoadAnyDepot2 : CYapfT > {};
Trackdir YapfRoadVehicleChooseTrack(const RoadVehicle *v, TileIndex tile, DiagDirection enterdir, TrackdirBits trackdirs, bool &path_found)
{
/* default is YAPF type 2 */
typedef Trackdir (*PfnChooseRoadTrack)(const RoadVehicle*, TileIndex, DiagDirection, bool &path_found);
PfnChooseRoadTrack pfnChooseRoadTrack = &CYapfRoad2::stChooseRoadTrack; // default: ExitDir, allow 90-deg
/* check if non-default YAPF type should be used */
if (_settings_game.pf.yapf.disable_node_optimization) {
pfnChooseRoadTrack = &CYapfRoad1::stChooseRoadTrack; // Trackdir, allow 90-deg
}
Trackdir td_ret = pfnChooseRoadTrack(v, tile, enterdir, path_found);
return (td_ret != INVALID_TRACKDIR) ? td_ret : (Trackdir)FindFirstBit2x64(trackdirs);
}
FindDepotData YapfRoadVehicleFindNearestDepot(const RoadVehicle *v, int max_distance)
{
TileIndex tile = v->tile;
Trackdir trackdir = v->GetVehicleTrackdir();
if (!HasTrackdir(TrackStatusToTrackdirBits(GetTileTrackStatus(tile, TRANSPORT_ROAD, v->compatible_roadtypes)), trackdir)) {
return FindDepotData();
}
/* default is YAPF type 2 */
typedef FindDepotData (*PfnFindNearestDepot)(const RoadVehicle*, TileIndex, Trackdir, int);
PfnFindNearestDepot pfnFindNearestDepot = &CYapfRoadAnyDepot2::stFindNearestDepot;
/* check if non-default YAPF type should be used */
if (_settings_game.pf.yapf.disable_node_optimization) {
pfnFindNearestDepot = &CYapfRoadAnyDepot1::stFindNearestDepot; // Trackdir, allow 90-deg
}
return pfnFindNearestDepot(v, tile, trackdir, max_distance);
}