/* $Id$ */ /* * This file is part of OpenTTD. * OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2. * OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>. */ /** @file queue.cpp Implementation of the #BinaryHeap/#Hash. */ #include "../../stdafx.h" #include "../../core/alloc_func.hpp" #include "queue.h" /* * Binary Heap * For information, see: http://www.policyalmanac.org/games/binaryHeaps.htm */ const int BinaryHeap::BINARY_HEAP_BLOCKSIZE_BITS = 10; ///< The number of elements that will be malloc'd at a time. const int BinaryHeap::BINARY_HEAP_BLOCKSIZE = 1 << BinaryHeap::BINARY_HEAP_BLOCKSIZE_BITS; const int BinaryHeap::BINARY_HEAP_BLOCKSIZE_MASK = BinaryHeap::BINARY_HEAP_BLOCKSIZE - 1; /** * Clears the queue, by removing all values from it. Its state is * effectively reset. If free_items is true, each of the items cleared * in this way are free()'d. */ void BinaryHeap::Clear(bool free_values) { /* Free all items if needed and free all but the first blocks of memory */ uint i; uint j; for (i = 0; i < this->blocks; i++) { if (this->elements[i] == NULL) { /* No more allocated blocks */ break; } /* For every allocated block */ if (free_values) { for (j = 0; j < (1 << BINARY_HEAP_BLOCKSIZE_BITS); j++) { /* For every element in the block */ if ((this->size >> BINARY_HEAP_BLOCKSIZE_BITS) == i && (this->size & BINARY_HEAP_BLOCKSIZE_MASK) == j) { break; // We're past the last element } free(this->elements[i][j].item); } } if (i != 0) { /* Leave the first block of memory alone */ free(this->elements[i]); this->elements[i] = NULL; } } this->size = 0; this->blocks = 1; } /** * Frees the queue, by reclaiming all memory allocated by it. After * this it is no longer usable. If free_items is true, any remaining * items are free()'d too. */ void BinaryHeap::Free(bool free_values) { uint i; this->Clear(free_values); for (i = 0; i < this->blocks; i++) { if (this->elements[i] == NULL) break; free(this->elements[i]); } free(this->elements); } /** * Pushes an element into the queue, at the appropriate place for the queue. * Requires the queue pointer to be of an appropriate type, of course. */ bool BinaryHeap::Push(void *item, int priority) { if (this->size == this->max_size) return false; assert(this->size < this->max_size); if (this->elements[this->size >> BINARY_HEAP_BLOCKSIZE_BITS] == NULL) { /* The currently allocated blocks are full, allocate a new one */ assert((this->size & BINARY_HEAP_BLOCKSIZE_MASK) == 0); this->elements[this->size >> BINARY_HEAP_BLOCKSIZE_BITS] = MallocT<BinaryHeapNode>(BINARY_HEAP_BLOCKSIZE); this->blocks++; } /* Add the item at the end of the array */ this->GetElement(this->size + 1).priority = priority; this->GetElement(this->size + 1).item = item; this->size++; /* Now we are going to check where it belongs. As long as the parent is * bigger, we switch with the parent */ { BinaryHeapNode temp; int i; int j; i = this->size; while (i > 1) { /* Get the parent of this object (divide by 2) */ j = i / 2; /* Is the parent bigger than the current, switch them */ if (this->GetElement(i).priority <= this->GetElement(j).priority) { temp = this->GetElement(j); this->GetElement(j) = this->GetElement(i); this->GetElement(i) = temp; i = j; } else { /* It is not, we're done! */ break; } } } return true; } /** * Deletes the item from the queue. priority should be specified if * known, which speeds up the deleting for some queue's. Should be -1 * if not known. */ bool BinaryHeap::Delete(void *item, int priority) { uint i = 0; /* First, we try to find the item.. */ do { if (this->GetElement(i + 1).item == item) break; i++; } while (i < this->size); /* We did not find the item, so we return false */ if (i == this->size) return false; /* Now we put the last item over the current item while decreasing the size of the elements */ this->size--; this->GetElement(i + 1) = this->GetElement(this->size + 1); /* Now the only thing we have to do, is resort it.. * On place i there is the item to be sorted.. let's start there */ { uint j; BinaryHeapNode temp; /* Because of the fact that Binary Heap uses array from 1 to n, we need to * increase i by 1 */ i++; for (;;) { j = i; /* Check if we have 2 childs */ if (2 * j + 1 <= this->size) { /* Is this child smaller than the parent? */ if (this->GetElement(j).priority >= this->GetElement(2 * j).priority) i = 2 * j; /* Yes, we _need_ to use i here, not j, because we want to have the smallest child * This way we get that straight away! */ if (this->GetElement(i).priority >= this->GetElement(2 * j + 1).priority) i = 2 * j + 1; /* Do we have one child? */ } else if (2 * j <= this->size) { if (this->GetElement(j).priority >= this->GetElement(2 * j).priority) i = 2 * j; } /* One of our childs is smaller than we are, switch */ if (i != j) { temp = this->GetElement(j); this->GetElement(j) = this->GetElement(i); this->GetElement(i) = temp; } else { /* None of our childs is smaller, so we stay here.. stop :) */ break; } } } return true; } /** * Pops the first element from the queue. What exactly is the first element, * is defined by the exact type of queue. */ void *BinaryHeap::Pop() { void *result; if (this->size == 0) return NULL; /* The best item is always on top, so give that as result */ result = this->GetElement(1).item; /* And now we should get rid of this item... */ this->Delete(this->GetElement(1).item, this->GetElement(1).priority); return result; } /** * Initializes a binary heap and allocates internal memory for maximum of * max_size elements */ void BinaryHeap::Init(uint max_size) { this->max_size = max_size; this->size = 0; /* We malloc memory in block of BINARY_HEAP_BLOCKSIZE * It autosizes when it runs out of memory */ this->elements = CallocT<BinaryHeapNode*>((max_size - 1) / BINARY_HEAP_BLOCKSIZE + 1); this->elements[0] = MallocT<BinaryHeapNode>(BINARY_HEAP_BLOCKSIZE); this->blocks = 1; } /* Because we don't want anyone else to bother with our defines */ #undef BIN_HEAP_ARR /* * Hash */ /** * Builds a new hash in an existing struct. Make sure that hash() always * returns a hash less than num_buckets! Call delete_hash after use */ void Hash::Init(Hash_HashProc *hash, uint num_buckets) { /* Allocate space for the Hash, the buckets and the bucket flags */ uint i; /* Ensure the size won't overflow. */ CheckAllocationConstraints(sizeof(*this->buckets) + sizeof(*this->buckets_in_use), num_buckets); this->hash = hash; this->size = 0; this->num_buckets = num_buckets; this->buckets = (HashNode*)MallocT<byte>(num_buckets * (sizeof(*this->buckets) + sizeof(*this->buckets_in_use))); this->buckets_in_use = (bool*)(this->buckets + num_buckets); for (i = 0; i < num_buckets; i++) this->buckets_in_use[i] = false; } /** * Deletes the hash and cleans up. Only cleans up memory allocated by new_Hash * & friends. If free is true, it will call free() on all the values that * are left in the hash. */ void Hash::Delete(bool free_values) { uint i; /* Iterate all buckets */ for (i = 0; i < this->num_buckets; i++) { if (this->buckets_in_use[i]) { HashNode *node; /* Free the first value */ if (free_values) free(this->buckets[i].value); node = this->buckets[i].next; while (node != NULL) { HashNode *prev = node; node = node->next; /* Free the value */ if (free_values) free(prev->value); /* Free the node */ free(prev); } } } free(this->buckets); /* No need to free buckets_in_use, it is always allocated in one * malloc with buckets */ } #ifdef HASH_STATS void Hash::PrintStatistics() const { uint used_buckets = 0; uint max_collision = 0; uint max_usage = 0; uint usage[200]; uint i; for (i = 0; i < lengthof(usage); i++) usage[i] = 0; for (i = 0; i < this->num_buckets; i++) { uint collision = 0; if (this->buckets_in_use[i]) { const HashNode *node; used_buckets++; for (node = &this->buckets[i]; node != NULL; node = node->next) collision++; if (collision > max_collision) max_collision = collision; } if (collision >= lengthof(usage)) collision = lengthof(usage) - 1; usage[collision]++; if (collision > 0 && usage[collision] >= max_usage) { max_usage = usage[collision]; } } printf( "---\n" "Hash size: %d\n" "Nodes used: %d\n" "Non empty buckets: %d\n" "Max collision: %d\n", this->num_buckets, this->size, used_buckets, max_collision ); printf("{ "); for (i = 0; i <= max_collision; i++) { if (usage[i] > 0) { printf("%d:%d ", i, usage[i]); #if 0 if (i > 0) { uint j; for (j = 0; j < usage[i] * 160 / 800; j++) putchar('#'); } printf("\n"); #endif } } printf ("}\n"); } #endif /** * Cleans the hash, but keeps the memory allocated */ void Hash::Clear(bool free_values) { uint i; #ifdef HASH_STATS if (this->size > 2000) this->PrintStatistics(); #endif /* Iterate all buckets */ for (i = 0; i < this->num_buckets; i++) { if (this->buckets_in_use[i]) { HashNode *node; this->buckets_in_use[i] = false; /* Free the first value */ if (free_values) free(this->buckets[i].value); node = this->buckets[i].next; while (node != NULL) { HashNode *prev = node; node = node->next; if (free_values) free(prev->value); free(prev); } } } this->size = 0; } /** * Finds the node that that saves this key pair. If it is not * found, returns NULL. If it is found, *prev is set to the * node before the one found, or if the node found was the first in the bucket * to NULL. If it is not found, *prev is set to the last HashNode in the * bucket, or NULL if it is empty. prev can also be NULL, in which case it is * not used for output. */ HashNode *Hash::FindNode(uint key1, uint key2, HashNode** prev_out) const { uint hash = this->hash(key1, key2); HashNode *result = NULL; /* Check if the bucket is empty */ if (!this->buckets_in_use[hash]) { if (prev_out != NULL) *prev_out = NULL; result = NULL; /* Check the first node specially */ } else if (this->buckets[hash].key1 == key1 && this->buckets[hash].key2 == key2) { /* Save the value */ result = this->buckets + hash; if (prev_out != NULL) *prev_out = NULL; /* Check all other nodes */ } else { HashNode *prev = this->buckets + hash; HashNode *node; for (node = prev->next; node != NULL; node = node->next) { if (node->key1 == key1 && node->key2 == key2) { /* Found it */ result = node; break; } prev = node; } if (prev_out != NULL) *prev_out = prev; } return result; } /** * Deletes the value with the specified key pair from the hash and returns * that value. Returns NULL when the value was not present. The value returned * is _not_ free()'d! */ void *Hash::DeleteValue(uint key1, uint key2) { void *result; HashNode *prev; // Used as output var for below function call HashNode *node = this->FindNode(key1, key2, &prev); if (node == NULL) { /* not found */ result = NULL; } else if (prev == NULL) { /* It is in the first node, we can't free that one, so we free * the next one instead (if there is any)*/ /* Save the value */ result = node->value; if (node->next != NULL) { HashNode *next = node->next; /* Copy the second to the first */ *node = *next; /* Free the second */ free(next); } else { /* This was the last in this bucket * Mark it as empty */ uint hash = this->hash(key1, key2); this->buckets_in_use[hash] = false; } } else { /* It is in another node * Save the value */ result = node->value; /* Link previous and next nodes */ prev->next = node->next; /* Free the node */ free(node); } if (result != NULL) this->size--; return result; } /** * Sets the value associated with the given key pair to the given value. * Returns the old value if the value was replaced, NULL when it was not yet present. */ void *Hash::Set(uint key1, uint key2, void *value) { HashNode *prev; HashNode *node = this->FindNode(key1, key2, &prev); if (node != NULL) { /* Found it */ void *result = node->value; node->value = value; return result; } /* It is not yet present, let's add it */ if (prev == NULL) { /* The bucket is still empty */ uint hash = this->hash(key1, key2); this->buckets_in_use[hash] = true; node = this->buckets + hash; } else { /* Add it after prev */ node = MallocT<HashNode>(1); prev->next = node; } node->next = NULL; node->key1 = key1; node->key2 = key2; node->value = value; this->size++; return NULL; } /** * Gets the value associated with the given key pair, or NULL when it is not * present. */ void *Hash::Get(uint key1, uint key2) const { HashNode *node = this->FindNode(key1, key2, NULL); return (node != NULL) ? node->value : NULL; }