/* $Id$ */ /* * This file is part of OpenTTD. * OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2. * OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see . */ /** @file aystar.cpp Implementation of A*. * * This file has the core function for %AyStar. * %AyStar is a fast path finding routine and is used for things like AI path finding and Train path finding. * For more information about %AyStar (A* Algorithm), you can look at * http://en.wikipedia.org/wiki/A-star_search_algorithm. */ /* * Friendly reminder: * Call (AyStar).free() when you are done with Aystar. It reserves a lot of memory * And when not free'd, it can cause system-crashes. * Also remember that when you stop an algorithm before it is finished, your * should call clear() yourself! */ #include "../../stdafx.h" #include "../../core/alloc_func.hpp" #include "aystar.h" #include "../../safeguards.h" /** * This looks in the hash whether a node exists in the closed list. * @param node Node to search. * @return The #PathNode if it is available, else \c NULL */ PathNode *AyStar::ClosedListIsInList(const AyStarNode *node) { return (PathNode*)this->closedlist_hash.Get(node->tile, node->direction); } /** * This adds a node to the closed list. * It makes a copy of the data. * @param node Node to add to the closed list. */ void AyStar::ClosedListAdd(const PathNode *node) { /* Add a node to the ClosedList */ PathNode *new_node = MallocT(1); *new_node = *node; this->closedlist_hash.Set(node->node.tile, node->node.direction, new_node); } /** * Check whether a node is in the open list. * @param node Node to search. * @return If the node is available, it is returned, else \c NULL is returned. */ OpenListNode *AyStar::OpenListIsInList(const AyStarNode *node) { return (OpenListNode*)this->openlist_hash.Get(node->tile, node->direction); } /** * Gets the best node from the open list. * It deletes the returned node from the open list. * @returns the best node available, or \c NULL of none is found. */ OpenListNode *AyStar::OpenListPop() { /* Return the item the Queue returns.. the best next OpenList item. */ OpenListNode *res = (OpenListNode*)this->openlist_queue.Pop(); if (res != NULL) { this->openlist_hash.DeleteValue(res->path.node.tile, res->path.node.direction); } return res; } /** * Adds a node to the open list. * It makes a copy of node, and puts the pointer of parent in the struct. */ void AyStar::OpenListAdd(PathNode *parent, const AyStarNode *node, int f, int g) { /* Add a new Node to the OpenList */ OpenListNode *new_node = MallocT(1); new_node->g = g; new_node->path.parent = parent; new_node->path.node = *node; this->openlist_hash.Set(node->tile, node->direction, new_node); /* Add it to the queue */ this->openlist_queue.Push(new_node, f); } /** * Checks one tile and calculate its f-value */ void AyStar::CheckTile(AyStarNode *current, OpenListNode *parent) { int new_f, new_g, new_h; PathNode *closedlist_parent; OpenListNode *check; /* Check the new node against the ClosedList */ if (this->ClosedListIsInList(current) != NULL) return; /* Calculate the G-value for this node */ new_g = this->CalculateG(this, current, parent); /* If the value was INVALID_NODE, we don't do anything with this node */ if (new_g == AYSTAR_INVALID_NODE) return; /* There should not be given any other error-code.. */ assert(new_g >= 0); /* Add the parent g-value to the new g-value */ new_g += parent->g; if (this->max_path_cost != 0 && (uint)new_g > this->max_path_cost) return; /* Calculate the h-value */ new_h = this->CalculateH(this, current, parent); /* There should not be given any error-code.. */ assert(new_h >= 0); /* The f-value if g + h */ new_f = new_g + new_h; /* Get the pointer to the parent in the ClosedList (the current one is to a copy of the one in the OpenList) */ closedlist_parent = this->ClosedListIsInList(&parent->path.node); /* Check if this item is already in the OpenList */ check = this->OpenListIsInList(current); if (check != NULL) { uint i; /* Yes, check if this g value is lower.. */ if (new_g > check->g) return; this->openlist_queue.Delete(check, 0); /* It is lower, so change it to this item */ check->g = new_g; check->path.parent = closedlist_parent; /* Copy user data, will probably have changed */ for (i = 0; i < lengthof(current->user_data); i++) { check->path.node.user_data[i] = current->user_data[i]; } /* Re-add it in the openlist_queue. */ this->openlist_queue.Push(check, new_f); } else { /* A new node, add him to the OpenList */ this->OpenListAdd(closedlist_parent, current, new_f, new_g); } } /** * This function is the core of %AyStar. It handles one item and checks * his neighbour items. If they are valid, they are added to be checked too. * @return Possible values: * - #AYSTAR_EMPTY_OPENLIST : indicates all items are tested, and no path has been found. * - #AYSTAR_LIMIT_REACHED : Indicates that the max_nodes limit has been reached. * - #AYSTAR_FOUND_END_NODE : indicates we found the end. Path_found now is true, and in path is the path found. * - #AYSTAR_STILL_BUSY : indicates we have done this tile, did not found the path yet, and have items left to try. */ int AyStar::Loop() { int i; /* Get the best node from OpenList */ OpenListNode *current = this->OpenListPop(); /* If empty, drop an error */ if (current == NULL) return AYSTAR_EMPTY_OPENLIST; /* Check for end node and if found, return that code */ if (this->EndNodeCheck(this, current) == AYSTAR_FOUND_END_NODE) { if (this->FoundEndNode != NULL) { this->FoundEndNode(this, current); } free(current); return AYSTAR_FOUND_END_NODE; } /* Add the node to the ClosedList */ this->ClosedListAdd(¤t->path); /* Load the neighbours */ this->GetNeighbours(this, current); /* Go through all neighbours */ for (i = 0; i < this->num_neighbours; i++) { /* Check and add them to the OpenList if needed */ this->CheckTile(&this->neighbours[i], current); } /* Free the node */ free(current); if (this->max_search_nodes != 0 && this->closedlist_hash.GetSize() >= this->max_search_nodes) { /* We've expanded enough nodes */ return AYSTAR_LIMIT_REACHED; } else { /* Return that we are still busy */ return AYSTAR_STILL_BUSY; } } /** * This function frees the memory it allocated */ void AyStar::Free() { this->openlist_queue.Free(false); /* 2nd argument above is false, below is true, to free the values only * once */ this->openlist_hash.Delete(true); this->closedlist_hash.Delete(true); #ifdef AYSTAR_DEBUG printf("[AyStar] Memory free'd\n"); #endif } /** * This function make the memory go back to zero. * This function should be called when you are using the same instance again. */ void AyStar::Clear() { /* Clean the Queue, but not the elements within. That will be done by * the hash. */ this->openlist_queue.Clear(false); /* Clean the hashes */ this->openlist_hash.Clear(true); this->closedlist_hash.Clear(true); #ifdef AYSTAR_DEBUG printf("[AyStar] Cleared AyStar\n"); #endif } /** * This is the function you call to run AyStar. * @return Possible values: * - #AYSTAR_FOUND_END_NODE : indicates we found an end node. * - #AYSTAR_NO_PATH : indicates that there was no path found. * - #AYSTAR_STILL_BUSY : indicates we have done some checked, that we did not found the path yet, and that we still have items left to try. * @note When the algorithm is done (when the return value is not #AYSTAR_STILL_BUSY) #Clear() is called automatically. * When you stop the algorithm halfway, you should call #Clear() yourself! */ int AyStar::Main() { int r, i = 0; /* Loop through the OpenList * Quit if result is no AYSTAR_STILL_BUSY or is more than loops_per_tick */ while ((r = this->Loop()) == AYSTAR_STILL_BUSY && (this->loops_per_tick == 0 || ++i < this->loops_per_tick)) { } #ifdef AYSTAR_DEBUG switch (r) { case AYSTAR_FOUND_END_NODE: printf("[AyStar] Found path!\n"); break; case AYSTAR_EMPTY_OPENLIST: printf("[AyStar] OpenList run dry, no path found\n"); break; case AYSTAR_LIMIT_REACHED: printf("[AyStar] Exceeded search_nodes, no path found\n"); break; default: break; } #endif if (r != AYSTAR_STILL_BUSY) { /* We're done, clean up */ this->Clear(); } switch (r) { case AYSTAR_FOUND_END_NODE: return AYSTAR_FOUND_END_NODE; case AYSTAR_EMPTY_OPENLIST: case AYSTAR_LIMIT_REACHED: return AYSTAR_NO_PATH; default: return AYSTAR_STILL_BUSY; } } /** * Adds a node from where to start an algorithm. Multiple nodes can be added * if wanted. You should make sure that #Clear() is called before adding nodes * if the #AyStar has been used before (though the normal main loop calls * #Clear() automatically when the algorithm finishes. * @param start_node Node to start with. * @param g the cost for starting with this node. */ void AyStar::AddStartNode(AyStarNode *start_node, uint g) { #ifdef AYSTAR_DEBUG printf("[AyStar] Starting A* Algorithm from node (%d, %d, %d)\n", TileX(start_node->tile), TileY(start_node->tile), start_node->direction); #endif this->OpenListAdd(NULL, start_node, 0, g); } /** * Initialize an #AyStar. You should fill all appropriate fields before * calling #Init (see the declaration of #AyStar for which fields are internal). */ void AyStar::Init(Hash_HashProc hash, uint num_buckets) { /* Allocated the Hash for the OpenList and ClosedList */ this->openlist_hash.Init(hash, num_buckets); this->closedlist_hash.Init(hash, num_buckets); /* Set up our sorting queue * BinaryHeap allocates a block of 1024 nodes * When that one gets full it reserves another one, till this number * That is why it can stay this high */ this->openlist_queue.Init(102400); }