/* $Id$ */ /* * This file is part of OpenTTD. * OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2. * OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>. */ /** @file npf.cpp Implementation of the NPF pathfinder. */ #include "stdafx.h" #include "npf.h" #include "debug.h" #include "landscape.h" #include "depot_base.h" #include "network/network.h" #include "tunnelbridge_map.h" #include "functions.h" #include "tunnelbridge.h" #include "pbs.h" #include "pathfind.h" #include "train.h" static AyStar _npf_aystar; /* The cost of each trackdir. A diagonal piece is the full NPF_TILE_LENGTH, * the shorter piece is sqrt(2)/2*NPF_TILE_LENGTH =~ 0.7071 */ #define NPF_STRAIGHT_LENGTH (uint)(NPF_TILE_LENGTH * STRAIGHT_TRACK_LENGTH) static const uint _trackdir_length[TRACKDIR_END] = { NPF_TILE_LENGTH, NPF_TILE_LENGTH, NPF_STRAIGHT_LENGTH, NPF_STRAIGHT_LENGTH, NPF_STRAIGHT_LENGTH, NPF_STRAIGHT_LENGTH, 0, 0, NPF_TILE_LENGTH, NPF_TILE_LENGTH, NPF_STRAIGHT_LENGTH, NPF_STRAIGHT_LENGTH, NPF_STRAIGHT_LENGTH, NPF_STRAIGHT_LENGTH }; /** * Calculates the minimum distance traveled to get from t0 to t1 when only * using tracks (ie, only making 45 degree turns). Returns the distance in the * NPF scale, ie the number of full tiles multiplied by NPF_TILE_LENGTH to * prevent rounding. */ static uint NPFDistanceTrack(TileIndex t0, TileIndex t1) { const uint dx = Delta(TileX(t0), TileX(t1)); const uint dy = Delta(TileY(t0), TileY(t1)); const uint straightTracks = 2 * min(dx, dy); // The number of straight (not full length) tracks /* OPTIMISATION: * Original: diagTracks = max(dx, dy) - min(dx,dy); * Proof: * (dx+dy) - straightTracks == (min + max) - straightTracks = min + max - 2 * min = max - min */ const uint diagTracks = dx + dy - straightTracks; // The number of diagonal (full tile length) tracks. /* Don't factor out NPF_TILE_LENGTH below, this will round values and lose * precision */ return diagTracks * NPF_TILE_LENGTH + straightTracks * NPF_TILE_LENGTH * STRAIGHT_TRACK_LENGTH; } #if 0 static uint NTPHash(uint key1, uint key2) { /* This function uses the old hash, which is fixed on 10 bits (1024 buckets) */ return PATHFIND_HASH_TILE(key1); } #endif /** * Calculates a hash value for use in the NPF. * @param key1 The TileIndex of the tile to hash * @param key2 The Trackdir of the track on the tile. * * @todo Think of a better hash. */ static uint NPFHash(uint key1, uint key2) { /* TODO: think of a better hash? */ uint part1 = TileX(key1) & NPF_HASH_HALFMASK; uint part2 = TileY(key1) & NPF_HASH_HALFMASK; assert(IsValidTrackdir((Trackdir)key2)); assert(IsValidTile(key1)); return ((part1 << NPF_HASH_HALFBITS | part2) + (NPF_HASH_SIZE * key2 / TRACKDIR_END)) % NPF_HASH_SIZE; } static int32 NPFCalcZero(AyStar *as, AyStarNode *current, OpenListNode *parent) { return 0; } /* Calcs the heuristic to the target station or tile. For train stations, it * takes into account the direction of approach. */ static int32 NPFCalcStationOrTileHeuristic(AyStar *as, AyStarNode *current, OpenListNode *parent) { NPFFindStationOrTileData *fstd = (NPFFindStationOrTileData*)as->user_target; NPFFoundTargetData *ftd = (NPFFoundTargetData*)as->user_path; TileIndex from = current->tile; TileIndex to = fstd->dest_coords; uint dist; /* for train-stations, we are going to aim for the closest station tile */ if (as->user_data[NPF_TYPE] == TRANSPORT_RAIL && fstd->station_index != INVALID_STATION) to = CalcClosestStationTile(fstd->station_index, from); if (as->user_data[NPF_TYPE] == TRANSPORT_ROAD) { /* Since roads only have diagonal pieces, we use manhattan distance here */ dist = DistanceManhattan(from, to) * NPF_TILE_LENGTH; } else { /* Ships and trains can also go diagonal, so the minimum distance is shorter */ dist = NPFDistanceTrack(from, to); } DEBUG(npf, 4, "Calculating H for: (%d, %d). Result: %d", TileX(current->tile), TileY(current->tile), dist); if (dist < ftd->best_bird_dist) { ftd->best_bird_dist = dist; ftd->best_trackdir = (Trackdir)current->user_data[NPF_TRACKDIR_CHOICE]; } return dist; } /* Fills AyStarNode.user_data[NPF_TRACKDIRCHOICE] with the chosen direction to * get here, either getting it from the current choice or from the parent's * choice */ static void NPFFillTrackdirChoice(AyStarNode *current, OpenListNode *parent) { if (parent->path.parent == NULL) { Trackdir trackdir = current->direction; /* This is a first order decision, so we'd better save the * direction we chose */ current->user_data[NPF_TRACKDIR_CHOICE] = trackdir; DEBUG(npf, 6, "Saving trackdir: 0x%X", trackdir); } else { /* We've already made the decision, so just save our parent's decision */ current->user_data[NPF_TRACKDIR_CHOICE] = parent->path.node.user_data[NPF_TRACKDIR_CHOICE]; } } /* Will return the cost of the tunnel. If it is an entry, it will return the * cost of that tile. If the tile is an exit, it will return the tunnel length * including the exit tile. Requires that this is a Tunnel tile */ static uint NPFTunnelCost(AyStarNode *current) { DiagDirection exitdir = TrackdirToExitdir(current->direction); TileIndex tile = current->tile; if (GetTunnelBridgeDirection(tile) == ReverseDiagDir(exitdir)) { /* We just popped out if this tunnel, since were * facing the tunnel exit */ return NPF_TILE_LENGTH * (GetTunnelBridgeLength(current->tile, GetOtherTunnelEnd(current->tile)) + 1); /* @todo: Penalty for tunnels? */ } else { /* We are entering the tunnel, the enter tile is just a * straight track */ return NPF_TILE_LENGTH; } } static inline uint NPFBridgeCost(AyStarNode *current) { return NPF_TILE_LENGTH * GetTunnelBridgeLength(current->tile, GetOtherBridgeEnd(current->tile)); } static uint NPFSlopeCost(AyStarNode *current) { TileIndex next = current->tile + TileOffsByDiagDir(TrackdirToExitdir(current->direction)); /* Get center of tiles */ int x1 = TileX(current->tile) * TILE_SIZE + TILE_SIZE / 2; int y1 = TileY(current->tile) * TILE_SIZE + TILE_SIZE / 2; int x2 = TileX(next) * TILE_SIZE + TILE_SIZE / 2; int y2 = TileY(next) * TILE_SIZE + TILE_SIZE / 2; int dx4 = (x2 - x1) / 4; int dy4 = (y2 - y1) / 4; /* Get the height on both sides of the tile edge. * Avoid testing the height on the tile-center. This will fail for halftile-foundations. */ int z1 = GetSlopeZ(x1 + dx4, y1 + dy4); int z2 = GetSlopeZ(x2 - dx4, y2 - dy4); if (z2 - z1 > 1) { /* Slope up */ return _settings_game.pf.npf.npf_rail_slope_penalty; } return 0; /* Should we give a bonus for slope down? Probably not, we * could just substract that bonus from the penalty, because * there is only one level of steepness... */ } static uint NPFReservedTrackCost(AyStarNode *current) { TileIndex tile = current->tile; TrackBits track = TrackToTrackBits(TrackdirToTrack(current->direction)); TrackBits res = GetReservedTrackbits(tile); if (NPFGetFlag(current, NPF_FLAG_3RD_SIGNAL) || ((res & track) == TRACK_BIT_NONE && !TracksOverlap(res | track))) return 0; if (IsTileType(tile, MP_TUNNELBRIDGE)) { DiagDirection exitdir = TrackdirToExitdir(current->direction); if (GetTunnelBridgeDirection(tile) == ReverseDiagDir(exitdir)) { return _settings_game.pf.npf.npf_rail_pbs_cross_penalty * (GetTunnelBridgeLength(tile, GetOtherTunnelBridgeEnd(tile)) + 1); } } return _settings_game.pf.npf.npf_rail_pbs_cross_penalty; } /** * Mark tiles by mowing the grass when npf debug level >= 1. * Will not work for multiplayer games, since it can (will) cause desyncs. */ static void NPFMarkTile(TileIndex tile) { #ifndef NO_DEBUG_MESSAGES if (_debug_npf_level < 1 || _networking) return; switch (GetTileType(tile)) { case MP_RAILWAY: /* DEBUG: mark visited tiles by mowing the grass under them ;-) */ if (!IsRailDepot(tile)) { SetRailGroundType(tile, RAIL_GROUND_BARREN); MarkTileDirtyByTile(tile); } break; case MP_ROAD: if (!IsRoadDepot(tile)) { SetRoadside(tile, ROADSIDE_BARREN); MarkTileDirtyByTile(tile); } break; default: break; } #endif } static int32 NPFWaterPathCost(AyStar *as, AyStarNode *current, OpenListNode *parent) { /* TileIndex tile = current->tile; */ int32 cost = 0; Trackdir trackdir = current->direction; cost = _trackdir_length[trackdir]; // Should be different for diagonal tracks if (IsBuoyTile(current->tile) && IsDiagonalTrackdir(trackdir)) cost += _settings_game.pf.npf.npf_buoy_penalty; // A small penalty for going over buoys if (current->direction != NextTrackdir((Trackdir)parent->path.node.direction)) cost += _settings_game.pf.npf.npf_water_curve_penalty; /* @todo More penalties? */ return cost; } /* Determine the cost of this node, for road tracks */ static int32 NPFRoadPathCost(AyStar *as, AyStarNode *current, OpenListNode *parent) { TileIndex tile = current->tile; int32 cost = 0; /* Determine base length */ switch (GetTileType(tile)) { case MP_TUNNELBRIDGE: cost = IsTunnel(tile) ? NPFTunnelCost(current) : NPFBridgeCost(current); break; case MP_ROAD: cost = NPF_TILE_LENGTH; /* Increase the cost for level crossings */ if (IsLevelCrossing(tile)) cost += _settings_game.pf.npf.npf_crossing_penalty; break; case MP_STATION: cost = NPF_TILE_LENGTH; /* Increase the cost for drive-through road stops */ if (IsDriveThroughStopTile(tile)) cost += _settings_game.pf.npf.npf_road_drive_through_penalty; break; default: break; } /* Determine extra costs */ /* Check for slope */ cost += NPFSlopeCost(current); /* Check for turns. Road vehicles only really drive diagonal, turns are * represented by non-diagonal tracks */ if (!IsDiagonalTrackdir(current->direction)) cost += _settings_game.pf.npf.npf_road_curve_penalty; NPFMarkTile(tile); DEBUG(npf, 4, "Calculating G for: (%d, %d). Result: %d", TileX(current->tile), TileY(current->tile), cost); return cost; } /* Determine the cost of this node, for railway tracks */ static int32 NPFRailPathCost(AyStar *as, AyStarNode *current, OpenListNode *parent) { TileIndex tile = current->tile; Trackdir trackdir = current->direction; int32 cost = 0; /* HACK: We create a OpenListNode manually, so we can call EndNodeCheck */ OpenListNode new_node; /* Determine base length */ switch (GetTileType(tile)) { case MP_TUNNELBRIDGE: cost = IsTunnel(tile) ? NPFTunnelCost(current) : NPFBridgeCost(current); break; case MP_RAILWAY: cost = _trackdir_length[trackdir]; // Should be different for diagonal tracks break; case MP_ROAD: // Railway crossing cost = NPF_TILE_LENGTH; break; case MP_STATION: /* We give a station tile a penalty. Logically we would only want to give * station tiles that are not our destination this penalty. This would * discourage trains to drive through busy stations. But, we can just * give any station tile a penalty, because every possible route will get * this penalty exactly once, on its end tile (if it's a station) and it * will therefore not make a difference. */ cost = NPF_TILE_LENGTH + _settings_game.pf.npf.npf_rail_station_penalty; break; default: break; } /* Determine extra costs */ /* Check for signals */ if (IsTileType(tile, MP_RAILWAY)) { if (HasSignalOnTrackdir(tile, trackdir)) { /* Ordinary track with signals */ if (GetSignalStateByTrackdir(tile, trackdir) == SIGNAL_STATE_RED) { /* Signal facing us is red */ if (!NPFGetFlag(current, NPF_FLAG_SEEN_SIGNAL)) { /* Penalize the first signal we * encounter, if it is red */ /* Is this a presignal exit or combo? */ SignalType sigtype = GetSignalType(tile, TrackdirToTrack(trackdir)); if (!IsPbsSignal(sigtype)) { if (sigtype == SIGTYPE_EXIT || sigtype == SIGTYPE_COMBO) { /* Penalise exit and combo signals differently (heavier) */ cost += _settings_game.pf.npf.npf_rail_firstred_exit_penalty; } else { cost += _settings_game.pf.npf.npf_rail_firstred_penalty; } } } /* Record the state of this signal */ NPFSetFlag(current, NPF_FLAG_LAST_SIGNAL_RED, true); } else { /* Record the state of this signal */ NPFSetFlag(current, NPF_FLAG_LAST_SIGNAL_RED, false); } if (NPFGetFlag(current, NPF_FLAG_SEEN_SIGNAL)) { if (NPFGetFlag(current, NPF_FLAG_2ND_SIGNAL)) { NPFSetFlag(current, NPF_FLAG_3RD_SIGNAL, true); } else { NPFSetFlag(current, NPF_FLAG_2ND_SIGNAL, true); } } else { NPFSetFlag(current, NPF_FLAG_SEEN_SIGNAL, true); } } if (HasPbsSignalOnTrackdir(tile, ReverseTrackdir(trackdir)) && !NPFGetFlag(current, NPF_FLAG_3RD_SIGNAL)) { cost += _settings_game.pf.npf.npf_rail_pbs_signal_back_penalty; } } /* Penalise the tile if it is a target tile and the last signal was * red */ /* HACK: We create a new_node here so we can call EndNodeCheck. Ugly as hell * of course... */ new_node.path.node = *current; if (as->EndNodeCheck(as, &new_node) == AYSTAR_FOUND_END_NODE && NPFGetFlag(current, NPF_FLAG_LAST_SIGNAL_RED)) cost += _settings_game.pf.npf.npf_rail_lastred_penalty; /* Check for slope */ cost += NPFSlopeCost(current); /* Check for turns */ if (current->direction != NextTrackdir((Trackdir)parent->path.node.direction)) cost += _settings_game.pf.npf.npf_rail_curve_penalty; /* TODO, with realistic acceleration, also the amount of straight track between * curves should be taken into account, as this affects the speed limit. */ /* Check for reverse in depot */ if (IsRailDepotTile(tile) && as->EndNodeCheck(as, &new_node) != AYSTAR_FOUND_END_NODE) { /* Penalise any depot tile that is not the last tile in the path. This * _should_ penalise every occurence of reversing in a depot (and only * that) */ cost += _settings_game.pf.npf.npf_rail_depot_reverse_penalty; } /* Check for occupied track */ cost += NPFReservedTrackCost(current); NPFMarkTile(tile); DEBUG(npf, 4, "Calculating G for: (%d, %d). Result: %d", TileX(current->tile), TileY(current->tile), cost); return cost; } /* Will find any depot */ static int32 NPFFindDepot(AyStar *as, OpenListNode *current) { /* It's not worth caching the result with NPF_FLAG_IS_TARGET here as below, * since checking the cache not that much faster than the actual check */ return IsDepotTypeTile(current->path.node.tile, (TransportType)as->user_data[NPF_TYPE]) ? AYSTAR_FOUND_END_NODE : AYSTAR_DONE; } /** Find any safe and free tile. */ static int32 NPFFindSafeTile(AyStar *as, OpenListNode *current) { const Train *v = Train::From(((NPFFindStationOrTileData *)as->user_target)->v); return IsSafeWaitingPosition(v, current->path.node.tile, current->path.node.direction, true, _settings_game.pf.forbid_90_deg) && IsWaitingPositionFree(v, current->path.node.tile, current->path.node.direction, _settings_game.pf.forbid_90_deg) ? AYSTAR_FOUND_END_NODE : AYSTAR_DONE; } /* Will find a station identified using the NPFFindStationOrTileData */ static int32 NPFFindStationOrTile(AyStar *as, OpenListNode *current) { NPFFindStationOrTileData *fstd = (NPFFindStationOrTileData*)as->user_target; AyStarNode *node = ¤t->path.node; TileIndex tile = node->tile; /* If GetNeighbours said we could get here, we assume the station type * is correct */ if ( (fstd->station_index == INVALID_STATION && tile == fstd->dest_coords) || // We've found the tile, or (IsTileType(tile, MP_STATION) && GetStationIndex(tile) == fstd->station_index) // the station ) { return AYSTAR_FOUND_END_NODE; } else { return AYSTAR_DONE; } } /** * Find the node containing the first signal on the path. * * If the first signal is on the very first two tiles of the path, * the second signal is returnd. If no suitable signal is present, the * last node of the path is returned. */ static const PathNode *FindSafePosition(PathNode *path, const Train *v) { /* If there is no signal, reserve the whole path. */ PathNode *sig = path; for (; path->parent != NULL; path = path->parent) { if (IsSafeWaitingPosition(v, path->node.tile, path->node.direction, true, _settings_game.pf.forbid_90_deg)) { sig = path; } } return sig; } /** * Lift the reservation of the tiles from @p start till @p end, excluding @p end itself. */ static void ClearPathReservation(const PathNode *start, const PathNode *end) { bool first_run = true; for (; start != end; start = start->parent) { if (IsRailStationTile(start->node.tile) && first_run) { SetRailStationPlatformReservation(start->node.tile, TrackdirToExitdir(start->node.direction), false); } else { UnreserveRailTrack(start->node.tile, TrackdirToTrack(start->node.direction)); } first_run = false; } } /** * To be called when @p current contains the (shortest route to) the target node. * Will fill the contents of the NPFFoundTargetData using * AyStarNode[NPF_TRACKDIR_CHOICE]. If requested, path reservation * is done here. */ static void NPFSaveTargetData(AyStar *as, OpenListNode *current) { NPFFoundTargetData *ftd = (NPFFoundTargetData*)as->user_path; ftd->best_trackdir = (Trackdir)current->path.node.user_data[NPF_TRACKDIR_CHOICE]; ftd->best_path_dist = current->g; ftd->best_bird_dist = 0; ftd->node = current->path.node; ftd->res_okay = false; if (as->user_target != NULL && ((NPFFindStationOrTileData*)as->user_target)->reserve_path && as->user_data[NPF_TYPE] == TRANSPORT_RAIL) { /* Path reservation is requested. */ const Train *v = Train::From(((NPFFindStationOrTileData *)as->user_target)->v); const PathNode *target = FindSafePosition(¤t->path, v); ftd->node = target->node; /* If the target is a station skip to platform end. */ if (IsRailStationTile(target->node.tile)) { DiagDirection dir = TrackdirToExitdir(target->node.direction); uint len = Station::GetByTile(target->node.tile)->GetPlatformLength(target->node.tile, dir); TileIndex end_tile = TILE_ADD(target->node.tile, (len - 1) * TileOffsByDiagDir(dir)); /* Update only end tile, trackdir of a station stays the same. */ ftd->node.tile = end_tile; if (!IsWaitingPositionFree(v, end_tile, target->node.direction, _settings_game.pf.forbid_90_deg)) return; SetRailStationPlatformReservation(target->node.tile, dir, true); SetRailStationReservation(target->node.tile, false); } else { if (!IsWaitingPositionFree(v, target->node.tile, target->node.direction, _settings_game.pf.forbid_90_deg)) return; } for (const PathNode *cur = target; cur->parent != NULL; cur = cur->parent) { if (!TryReserveRailTrack(cur->node.tile, TrackdirToTrack(cur->node.direction))) { /* Reservation failed, undo. */ ClearPathReservation(target, cur); return; } } ftd->res_okay = true; } } /** * Finds out if a given company's vehicles are allowed to enter a given tile. * @param owner The owner of the vehicle. * @param tile The tile that is about to be entered. * @param enterdir The direction in which the vehicle wants to enter the tile. * @return true if the vehicle can enter the tile. * @todo This function should be used in other places than just NPF, * maybe moved to another file too. */ static bool CanEnterTileOwnerCheck(Owner owner, TileIndex tile, DiagDirection enterdir) { if (IsTileType(tile, MP_RAILWAY) || // Rail tile (also rail depot) HasStationTileRail(tile) || // Rail station tile/waypoint IsRoadDepotTile(tile) || // Road depot tile IsStandardRoadStopTile(tile)) { // Road station tile (but not drive-through stops) return IsTileOwner(tile, owner); // You need to own these tiles entirely to use them } switch (GetTileType(tile)) { case MP_ROAD: /* rail-road crossing : are we looking at the railway part? */ if (IsLevelCrossing(tile) && DiagDirToAxis(enterdir) != GetCrossingRoadAxis(tile)) { return IsTileOwner(tile, owner); // Railway needs owner check, while the street is public } break; case MP_TUNNELBRIDGE: if (GetTunnelBridgeTransportType(tile) == TRANSPORT_RAIL) { return IsTileOwner(tile, owner); } break; default: break; } return true; // no need to check } /** * Returns the direction the exit of the depot on the given tile is facing. */ static DiagDirection GetDepotDirection(TileIndex tile, TransportType type) { assert(IsDepotTypeTile(tile, type)); switch (type) { case TRANSPORT_RAIL: return GetRailDepotDirection(tile); case TRANSPORT_ROAD: return GetRoadDepotDirection(tile); case TRANSPORT_WATER: return GetShipDepotDirection(tile); default: return INVALID_DIAGDIR; // Not reached } } /** Tests if a tile is a road tile with a single tramtrack (tram can reverse) */ static DiagDirection GetSingleTramBit(TileIndex tile) { if (IsNormalRoadTile(tile)) { RoadBits rb = GetRoadBits(tile, ROADTYPE_TRAM); switch (rb) { case ROAD_NW: return DIAGDIR_NW; case ROAD_SW: return DIAGDIR_SW; case ROAD_SE: return DIAGDIR_SE; case ROAD_NE: return DIAGDIR_NE; default: break; } } return INVALID_DIAGDIR; } /** * Tests if a tile can be entered or left only from one side. * * Depots, non-drive-through roadstops, and tiles with single trambits are tested. * * @param tile The tile of interest. * @param type The transporttype of the vehicle. * @param subtype For TRANSPORT_ROAD the compatible RoadTypes of the vehicle. * @return The single entry/exit-direction of the tile, or INVALID_DIAGDIR if there are more or less directions */ static DiagDirection GetTileSingleEntry(TileIndex tile, TransportType type, uint subtype) { if (type != TRANSPORT_WATER && IsDepotTypeTile(tile, type)) return GetDepotDirection(tile, type); if (type == TRANSPORT_ROAD) { if (IsStandardRoadStopTile(tile)) return GetRoadStopDir(tile); if (HasBit(subtype, ROADTYPE_TRAM)) return GetSingleTramBit(tile); } return INVALID_DIAGDIR; } /** * Tests if a vehicle must reverse on a tile. * * @param tile The tile of interest. * @param dir The direction in which the vehicle drives on a tile. * @param type The transporttype of the vehicle. * @param subtype For TRANSPORT_ROAD the compatible RoadTypes of the vehicle. * @return true iff the vehicle must reverse on the tile. */ static inline bool ForceReverse(TileIndex tile, DiagDirection dir, TransportType type, uint subtype) { DiagDirection single_entry = GetTileSingleEntry(tile, type, subtype); return single_entry != INVALID_DIAGDIR && single_entry != dir; } /** * Tests if a vehicle can enter a tile. * * @param tile The tile of interest. * @param dir The direction in which the vehicle drives onto a tile. * @param type The transporttype of the vehicle. * @param subtype For TRANSPORT_ROAD the compatible RoadTypes of the vehicle. * @param railtypes For TRANSPORT_RAIL the compatible RailTypes of the vehicle. * @param owner The owner of the vehicle. * @return true iff the vehicle can enter the tile. */ static bool CanEnterTile(TileIndex tile, DiagDirection dir, TransportType type, uint subtype, RailTypes railtypes, Owner owner) { /* Check tunnel entries and bridge ramps */ if (IsTileType(tile, MP_TUNNELBRIDGE) && GetTunnelBridgeDirection(tile) != dir) return false; /* Test ownership */ if (!CanEnterTileOwnerCheck(owner, tile, dir)) return false; /* check correct rail type (mono, maglev, etc) */ if (type == TRANSPORT_RAIL) { RailType rail_type = GetTileRailType(tile); if (!HasBit(railtypes, rail_type)) return false; } /* Depots, standard roadstops and single tram bits can only be entered from one direction */ DiagDirection single_entry = GetTileSingleEntry(tile, type, subtype); if (single_entry != INVALID_DIAGDIR && single_entry != ReverseDiagDir(dir)) return false; return true; } /** * Returns the driveable Trackdirs on a tile. * * One-way-roads are taken into account. Signals are not tested. * * @param dst_tile The tile of interest. * @param src_trackdir The direction the vehicle is currently moving. * @param type The transporttype of the vehicle. * @param subtype For TRANSPORT_ROAD the compatible RoadTypes of the vehicle. * @return The Trackdirs the vehicle can continue moving on. */ static TrackdirBits GetDriveableTrackdirBits(TileIndex dst_tile, Trackdir src_trackdir, TransportType type, uint subtype) { TrackdirBits trackdirbits = TrackStatusToTrackdirBits(GetTileTrackStatus(dst_tile, type, subtype)); if (trackdirbits == 0 && type == TRANSPORT_ROAD && HasBit(subtype, ROADTYPE_TRAM)) { /* GetTileTrackStatus() returns 0 for single tram bits. * As we cannot change it there (easily) without breaking something, change it here */ switch (GetSingleTramBit(dst_tile)) { case DIAGDIR_NE: case DIAGDIR_SW: trackdirbits = TRACKDIR_BIT_X_NE | TRACKDIR_BIT_X_SW; break; case DIAGDIR_NW: case DIAGDIR_SE: trackdirbits = TRACKDIR_BIT_Y_NW | TRACKDIR_BIT_Y_SE; break; default: break; } } DEBUG(npf, 4, "Next node: (%d, %d) [%d], possible trackdirs: 0x%X", TileX(dst_tile), TileY(dst_tile), dst_tile, trackdirbits); /* Select only trackdirs we can reach from our current trackdir */ trackdirbits &= TrackdirReachesTrackdirs(src_trackdir); /* Filter out trackdirs that would make 90 deg turns for trains */ if (_settings_game.pf.forbid_90_deg && (type == TRANSPORT_RAIL || type == TRANSPORT_WATER)) trackdirbits &= ~TrackdirCrossesTrackdirs(src_trackdir); DEBUG(npf, 6, "After filtering: (%d, %d), possible trackdirs: 0x%X", TileX(dst_tile), TileY(dst_tile), trackdirbits); return trackdirbits; } /* Will just follow the results of GetTileTrackStatus concerning where we can * go and where not. Uses AyStar.user_data[NPF_TYPE] as the transport type and * an argument to GetTileTrackStatus. Will skip tunnels, meaning that the * entry and exit are neighbours. Will fill * AyStarNode.user_data[NPF_TRACKDIR_CHOICE] with an appropriate value, and * copy AyStarNode.user_data[NPF_NODE_FLAGS] from the parent */ static void NPFFollowTrack(AyStar *aystar, OpenListNode *current) { /* We leave src_tile on track src_trackdir in direction src_exitdir */ Trackdir src_trackdir = current->path.node.direction; TileIndex src_tile = current->path.node.tile; DiagDirection src_exitdir = TrackdirToExitdir(src_trackdir); /* Is src_tile valid, and can be used? * When choosing track on a junction src_tile is the tile neighboured to the junction wrt. exitdir. * But we must not check the validity of this move, as src_tile is totally unrelated to the move, if a roadvehicle reversed on a junction. */ bool ignore_src_tile = (current->path.parent == NULL && NPFGetFlag(¤t->path.node, NPF_FLAG_IGNORE_START_TILE)); /* Information about the vehicle: TransportType (road/rail/water) and SubType (compatible rail/road types) */ TransportType type = (TransportType)aystar->user_data[NPF_TYPE]; uint subtype = aystar->user_data[NPF_SUB_TYPE]; /* Initialize to 0, so we can jump out (return) somewhere an have no neighbours */ aystar->num_neighbours = 0; DEBUG(npf, 4, "Expanding: (%d, %d, %d) [%d]", TileX(src_tile), TileY(src_tile), src_trackdir, src_tile); /* We want to determine the tile we arrive, and which choices we have there */ TileIndex dst_tile; TrackdirBits trackdirbits; /* Find dest tile */ if (ignore_src_tile) { /* Do not perform any checks that involve src_tile */ dst_tile = src_tile + TileOffsByDiagDir(src_exitdir); trackdirbits = GetDriveableTrackdirBits(dst_tile, src_trackdir, type, subtype); } else if (IsTileType(src_tile, MP_TUNNELBRIDGE) && GetTunnelBridgeDirection(src_tile) == src_exitdir) { /* We drive through the wormhole and arrive on the other side */ dst_tile = GetOtherTunnelBridgeEnd(src_tile); trackdirbits = TrackdirToTrackdirBits(src_trackdir); } else if (ForceReverse(src_tile, src_exitdir, type, subtype)) { /* We can only reverse on this tile */ dst_tile = src_tile; src_trackdir = ReverseTrackdir(src_trackdir); trackdirbits = TrackdirToTrackdirBits(src_trackdir); } else { /* We leave src_tile in src_exitdir and reach dst_tile */ dst_tile = AddTileIndexDiffCWrap(src_tile, TileIndexDiffCByDiagDir(src_exitdir)); if (dst_tile != INVALID_TILE && !CanEnterTile(dst_tile, src_exitdir, type, subtype, (RailTypes)aystar->user_data[NPF_RAILTYPES], (Owner)aystar->user_data[NPF_OWNER])) dst_tile = INVALID_TILE; if (dst_tile == INVALID_TILE) { /* We cannot enter the next tile. Road vehicles can reverse, others reach dead end */ if (type != TRANSPORT_ROAD || HasBit(subtype, ROADTYPE_TRAM)) return; dst_tile = src_tile; src_trackdir = ReverseTrackdir(src_trackdir); } trackdirbits = GetDriveableTrackdirBits(dst_tile, src_trackdir, type, subtype); if (trackdirbits == 0) { /* We cannot enter the next tile. Road vehicles can reverse, others reach dead end */ if (type != TRANSPORT_ROAD || HasBit(subtype, ROADTYPE_TRAM)) return; dst_tile = src_tile; src_trackdir = ReverseTrackdir(src_trackdir); trackdirbits = GetDriveableTrackdirBits(dst_tile, src_trackdir, type, subtype); } } if (NPFGetFlag(¤t->path.node, NPF_FLAG_IGNORE_RESERVED)) { /* Mask out any reserved tracks. */ TrackBits reserved = GetReservedTrackbits(dst_tile); trackdirbits &= ~TrackBitsToTrackdirBits(reserved); uint bits = TrackdirBitsToTrackBits(trackdirbits); int i; FOR_EACH_SET_BIT(i, bits) { if (TracksOverlap(reserved | TrackToTrackBits((Track)i))) trackdirbits &= ~TrackToTrackdirBits((Track)i); } } /* Enumerate possible track */ uint i = 0; while (trackdirbits != 0) { Trackdir dst_trackdir = RemoveFirstTrackdir(&trackdirbits); DEBUG(npf, 5, "Expanded into trackdir: %d, remaining trackdirs: 0x%X", dst_trackdir, trackdirbits); /* Tile with signals? */ if (IsTileType(dst_tile, MP_RAILWAY) && GetRailTileType(dst_tile) == RAIL_TILE_SIGNALS) { if (HasSignalOnTrackdir(dst_tile, ReverseTrackdir(dst_trackdir)) && !HasSignalOnTrackdir(dst_tile, dst_trackdir) && IsOnewaySignal(dst_tile, TrackdirToTrack(dst_trackdir))) /* If there's a one-way signal not pointing towards us, stop going in this direction. */ break; } { /* We've found ourselves a neighbour :-) */ AyStarNode *neighbour = &aystar->neighbours[i]; neighbour->tile = dst_tile; neighbour->direction = dst_trackdir; /* Save user data */ neighbour->user_data[NPF_NODE_FLAGS] = current->path.node.user_data[NPF_NODE_FLAGS]; NPFFillTrackdirChoice(neighbour, current); } i++; } aystar->num_neighbours = i; } /* * Plan a route to the specified target (which is checked by target_proc), * from start1 and if not NULL, from start2 as well. The type of transport we * are checking is in type. reverse_penalty is applied to all routes that * originate from the second start node. * When we are looking for one specific target (optionally multiple tiles), we * should use a good heuristic to perform aystar search. When we search for * multiple targets that are spread around, we should perform a breadth first * search by specifiying CalcZero as our heuristic. */ static NPFFoundTargetData NPFRouteInternal(AyStarNode *start1, bool ignore_start_tile1, AyStarNode *start2, bool ignore_start_tile2, NPFFindStationOrTileData *target, AyStar_EndNodeCheck target_proc, AyStar_CalculateH heuristic_proc, TransportType type, uint sub_type, Owner owner, RailTypes railtypes, uint reverse_penalty) { int r; NPFFoundTargetData result; /* Initialize procs */ _npf_aystar.CalculateH = heuristic_proc; _npf_aystar.EndNodeCheck = target_proc; _npf_aystar.FoundEndNode = NPFSaveTargetData; _npf_aystar.GetNeighbours = NPFFollowTrack; switch (type) { default: NOT_REACHED(); case TRANSPORT_RAIL: _npf_aystar.CalculateG = NPFRailPathCost; break; case TRANSPORT_ROAD: _npf_aystar.CalculateG = NPFRoadPathCost; break; case TRANSPORT_WATER: _npf_aystar.CalculateG = NPFWaterPathCost; break; } /* Initialize Start Node(s) */ start1->user_data[NPF_TRACKDIR_CHOICE] = INVALID_TRACKDIR; start1->user_data[NPF_NODE_FLAGS] = 0; NPFSetFlag(start1, NPF_FLAG_IGNORE_START_TILE, ignore_start_tile1); _npf_aystar.addstart(&_npf_aystar, start1, 0); if (start2) { start2->user_data[NPF_TRACKDIR_CHOICE] = INVALID_TRACKDIR; start2->user_data[NPF_NODE_FLAGS] = 0; NPFSetFlag(start2, NPF_FLAG_IGNORE_START_TILE, ignore_start_tile2); NPFSetFlag(start2, NPF_FLAG_REVERSE, true); _npf_aystar.addstart(&_npf_aystar, start2, reverse_penalty); } /* Initialize result */ result.best_bird_dist = UINT_MAX; result.best_path_dist = UINT_MAX; result.best_trackdir = INVALID_TRACKDIR; result.node.tile = INVALID_TILE; result.res_okay = false; _npf_aystar.user_path = &result; /* Initialize target */ _npf_aystar.user_target = target; /* Initialize user_data */ _npf_aystar.user_data[NPF_TYPE] = type; _npf_aystar.user_data[NPF_SUB_TYPE] = sub_type; _npf_aystar.user_data[NPF_OWNER] = owner; _npf_aystar.user_data[NPF_RAILTYPES] = railtypes; /* GO! */ r = AyStarMain_Main(&_npf_aystar); assert(r != AYSTAR_STILL_BUSY); if (result.best_bird_dist != 0) { if (target != NULL) { DEBUG(npf, 1, "Could not find route to tile 0x%X from 0x%X.", target->dest_coords, start1->tile); } else { /* Assumption: target == NULL, so we are looking for a depot */ DEBUG(npf, 1, "Could not find route to a depot from tile 0x%X.", start1->tile); } } return result; } NPFFoundTargetData NPFRouteToStationOrTileTwoWay(TileIndex tile1, Trackdir trackdir1, bool ignore_start_tile1, TileIndex tile2, Trackdir trackdir2, bool ignore_start_tile2, NPFFindStationOrTileData *target, TransportType type, uint sub_type, Owner owner, RailTypes railtypes) { AyStarNode start1; AyStarNode start2; start1.tile = tile1; start2.tile = tile2; /* We set this in case the target is also the start tile, we will just * return a not found then */ start1.user_data[NPF_TRACKDIR_CHOICE] = INVALID_TRACKDIR; start1.direction = trackdir1; start2.direction = trackdir2; start2.user_data[NPF_TRACKDIR_CHOICE] = INVALID_TRACKDIR; return NPFRouteInternal(&start1, ignore_start_tile1, (IsValidTile(tile2) ? &start2 : NULL), ignore_start_tile2, target, NPFFindStationOrTile, NPFCalcStationOrTileHeuristic, type, sub_type, owner, railtypes, 0); } NPFFoundTargetData NPFRouteToStationOrTile(TileIndex tile, Trackdir trackdir, bool ignore_start_tile, NPFFindStationOrTileData *target, TransportType type, uint sub_type, Owner owner, RailTypes railtypes) { return NPFRouteToStationOrTileTwoWay(tile, trackdir, ignore_start_tile, INVALID_TILE, INVALID_TRACKDIR, false, target, type, sub_type, owner, railtypes); } NPFFoundTargetData NPFRouteToDepotBreadthFirstTwoWay(TileIndex tile1, Trackdir trackdir1, bool ignore_start_tile1, TileIndex tile2, Trackdir trackdir2, bool ignore_start_tile2, TransportType type, uint sub_type, Owner owner, RailTypes railtypes, uint reverse_penalty) { AyStarNode start1; AyStarNode start2; start1.tile = tile1; start2.tile = tile2; /* We set this in case the target is also the start tile, we will just * return a not found then */ start1.user_data[NPF_TRACKDIR_CHOICE] = INVALID_TRACKDIR; start1.direction = trackdir1; start2.direction = trackdir2; start2.user_data[NPF_TRACKDIR_CHOICE] = INVALID_TRACKDIR; /* perform a breadth first search. Target is NULL, * since we are just looking for any depot...*/ return NPFRouteInternal(&start1, ignore_start_tile1, (IsValidTile(tile2) ? &start2 : NULL), ignore_start_tile2, NULL, NPFFindDepot, NPFCalcZero, type, sub_type, owner, railtypes, reverse_penalty); } NPFFoundTargetData NPFRouteToDepotBreadthFirst(TileIndex tile, Trackdir trackdir, bool ignore_start_tile, TransportType type, uint sub_type, Owner owner, RailTypes railtypes) { return NPFRouteToDepotBreadthFirstTwoWay(tile, trackdir, ignore_start_tile, INVALID_TILE, INVALID_TRACKDIR, false, type, sub_type, owner, railtypes, 0); } NPFFoundTargetData NPFRouteToDepotTrialError(TileIndex tile, Trackdir trackdir, bool ignore_start_tile, TransportType type, uint sub_type, Owner owner, RailTypes railtypes) { /* Okay, what we're gonna do. First, we look at all depots, calculate * the manhatten distance to get to each depot. We then sort them by * distance. We start by trying to plan a route to the closest, then * the next closest, etc. We stop when the best route we have found so * far, is shorter than the manhattan distance. This will obviously * always find the closest depot. It will probably be most efficient * for ships, since the heuristic will not be to far off then. I hope. */ Queue depots; int r; NPFFoundTargetData best_result = {UINT_MAX, UINT_MAX, INVALID_TRACKDIR, {INVALID_TILE, INVALID_TRACKDIR, {0, 0}}, false}; NPFFoundTargetData result; NPFFindStationOrTileData target; AyStarNode start; Depot *current; Depot *depot; init_InsSort(&depots); /* Okay, let's find all depots that we can use first */ FOR_ALL_DEPOTS(depot) { /* Check if this is really a valid depot, it is of the needed type and * owner */ if (IsDepotTypeTile(depot->xy, type) && IsTileOwner(depot->xy, owner)) /* If so, let's add it to the queue, sorted by distance */ depots.push(&depots, depot, DistanceManhattan(tile, depot->xy)); } /* Now, let's initialise the aystar */ /* Initialize procs */ _npf_aystar.CalculateH = NPFCalcStationOrTileHeuristic; _npf_aystar.EndNodeCheck = NPFFindStationOrTile; _npf_aystar.FoundEndNode = NPFSaveTargetData; _npf_aystar.GetNeighbours = NPFFollowTrack; switch (type) { default: NOT_REACHED(); case TRANSPORT_RAIL: _npf_aystar.CalculateG = NPFRailPathCost; break; case TRANSPORT_ROAD: _npf_aystar.CalculateG = NPFRoadPathCost; break; case TRANSPORT_WATER: _npf_aystar.CalculateG = NPFWaterPathCost; break; } /* Initialize target */ target.station_index = INVALID_STATION; // We will initialize dest_coords inside the loop below _npf_aystar.user_target = ⌖ /* Initialize user_data */ _npf_aystar.user_data[NPF_TYPE] = type; _npf_aystar.user_data[NPF_SUB_TYPE] = sub_type; _npf_aystar.user_data[NPF_OWNER] = owner; /* Initialize Start Node */ start.tile = tile; start.direction = trackdir; // We will initialize user_data inside the loop below /* Initialize Result */ _npf_aystar.user_path = &result; best_result.best_path_dist = UINT_MAX; best_result.best_bird_dist = UINT_MAX; /* Just iterate the depots in order of increasing distance */ while ((current = (Depot*)depots.pop(&depots))) { /* Check to see if we already have a path shorter than this * depot's manhattan distance. HACK: We call DistanceManhattan * again, we should probably modify the queue to give us that * value... */ if ( DistanceManhattan(tile, current->xy * NPF_TILE_LENGTH) > best_result.best_path_dist) break; /* Initialize Start Node * We set this in case the target is also the start tile, we will just * return a not found then */ start.user_data[NPF_TRACKDIR_CHOICE] = INVALID_TRACKDIR; start.user_data[NPF_NODE_FLAGS] = 0; NPFSetFlag(&start, NPF_FLAG_IGNORE_START_TILE, ignore_start_tile); _npf_aystar.addstart(&_npf_aystar, &start, 0); /* Initialize result */ result.best_bird_dist = UINT_MAX; result.best_path_dist = UINT_MAX; result.best_trackdir = INVALID_TRACKDIR; /* Initialize target */ target.dest_coords = current->xy; /* GO! */ r = AyStarMain_Main(&_npf_aystar); assert(r != AYSTAR_STILL_BUSY); /* This depot is closer */ if (result.best_path_dist < best_result.best_path_dist) best_result = result; } if (result.best_bird_dist != 0) { DEBUG(npf, 1, "Could not find route to any depot from tile 0x%X.", tile); } return best_result; } NPFFoundTargetData NPFRouteToSafeTile(const Train *v, TileIndex tile, Trackdir trackdir, bool override_railtype) { assert(v->type == VEH_TRAIN); NPFFindStationOrTileData fstd; fstd.v = v; fstd.reserve_path = true; AyStarNode start1; start1.tile = tile; /* We set this in case the target is also the start tile, we will just * return a not found then */ start1.user_data[NPF_TRACKDIR_CHOICE] = INVALID_TRACKDIR; start1.direction = trackdir; NPFSetFlag(&start1, NPF_FLAG_IGNORE_RESERVED, true); RailTypes railtypes = v->compatible_railtypes; if (override_railtype) railtypes |= GetRailTypeInfo(v->railtype)->compatible_railtypes; /* perform a breadth first search. Target is NULL, * since we are just looking for any safe tile...*/ return NPFRouteInternal(&start1, true, NULL, false, &fstd, NPFFindSafeTile, NPFCalcZero, TRANSPORT_RAIL, 0, v->owner, railtypes, 0); } void InitializeNPF() { static bool first_init = true; if (first_init) { first_init = false; init_AyStar(&_npf_aystar, NPFHash, NPF_HASH_SIZE); } else { AyStarMain_Clear(&_npf_aystar); } _npf_aystar.loops_per_tick = 0; _npf_aystar.max_path_cost = 0; //_npf_aystar.max_search_nodes = 0; /* We will limit the number of nodes for now, until we have a better * solution to really fix performance */ _npf_aystar.max_search_nodes = _settings_game.pf.npf.npf_max_search_nodes; } void NPFFillWithOrderData(NPFFindStationOrTileData *fstd, Vehicle *v, bool reserve_path) { /* Ships don't really reach their stations, but the tile in front. So don't * save the station id for ships. For roadvehs we don't store it either, * because multistop depends on vehicles actually reaching the exact * dest_tile, not just any stop of that station. * So only for train orders to stations we fill fstd->station_index, for all * others only dest_coords */ if (v->type == VEH_TRAIN && (v->current_order.IsType(OT_GOTO_STATION) || v->current_order.IsType(OT_GOTO_WAYPOINT))) { fstd->station_index = v->current_order.GetDestination(); /* Let's take the closest tile of the station as our target for trains */ fstd->dest_coords = CalcClosestStationTile(fstd->station_index, v->tile); } else { fstd->dest_coords = v->dest_tile; fstd->station_index = INVALID_STATION; } fstd->reserve_path = reserve_path; fstd->v = v; }