/* $Id$ */ /** @file newgrf_engine.cpp NewGRF handling of engines. */ #include "stdafx.h" #include "openttd.h" #include "variables.h" #include "debug.h" #include "engine_func.h" #include "engine_base.h" #include "train.h" #include "player_func.h" #include "player_base.h" #include "station_base.h" #include "airport.h" #include "newgrf.h" #include "newgrf_callbacks.h" #include "newgrf_engine.h" #include "newgrf_station.h" #include "newgrf_spritegroup.h" #include "newgrf_cargo.h" #include "cargotype.h" #include "date_func.h" #include "vehicle_func.h" #include "core/random_func.hpp" #include "direction_func.h" #include "rail_map.h" #include "rail.h" #include "settings_type.h" #include <map> int _traininfo_vehicle_pitch = 0; int _traininfo_vehicle_width = 29; struct WagonOverride { EngineID *train_id; uint trains; CargoID cargo; const SpriteGroup *group; }; void SetWagonOverrideSprites(EngineID engine, CargoID cargo, const SpriteGroup *group, EngineID *train_id, uint trains) { Engine *e = GetEngine(engine); WagonOverride *wo; assert(cargo < NUM_CARGO + 2); // Include CT_DEFAULT and CT_PURCHASE pseudo cargos. e->overrides_count++; e->overrides = ReallocT(e->overrides, e->overrides_count); wo = &e->overrides[e->overrides_count - 1]; wo->group = group; wo->cargo = cargo; wo->trains = trains; wo->train_id = MallocT<EngineID>(trains); memcpy(wo->train_id, train_id, trains * sizeof *train_id); } const SpriteGroup *GetWagonOverrideSpriteSet(EngineID engine, CargoID cargo, EngineID overriding_engine) { const Engine *e = GetEngine(engine); /* XXX: This could turn out to be a timesink on profiles. We could * always just dedicate 65535 bytes for an [engine][train] trampoline * for O(1). Or O(logMlogN) and searching binary tree or smt. like * that. --pasky */ for (uint i = 0; i < e->overrides_count; i++) { const WagonOverride *wo = &e->overrides[i]; if (wo->cargo != cargo && wo->cargo != CT_DEFAULT) continue; for (uint j = 0; j < wo->trains; j++) { if (wo->train_id[j] == overriding_engine) return wo->group; } } return NULL; } /** * Unload all wagon override sprite groups. */ void UnloadWagonOverrides(Engine *e) { for (uint i = 0; i < e->overrides_count; i++) { WagonOverride *wo = &e->overrides[i]; free(wo->train_id); } free(e->overrides); e->overrides_count = 0; e->overrides = NULL; } void SetCustomEngineSprites(EngineID engine, byte cargo, const SpriteGroup *group) { Engine *e = GetEngine(engine); assert(cargo < lengthof(e->group)); if (e->group[cargo] != NULL) { grfmsg(6, "SetCustomEngineSprites: engine %d cargo %d already has group -- replacing", engine, cargo); } e->group[cargo] = group; } /** * Tie a GRFFile entry to an engine, to allow us to retrieve GRF parameters * etc during a game. * @param engine Engine ID to tie the GRFFile to. * @param file Pointer of GRFFile to tie. */ void SetEngineGRF(EngineID engine, const GRFFile *file) { Engine *e = GetEngine(engine); e->grffile = file; } /** * Retrieve the GRFFile tied to an engine * @param engine Engine ID to retrieve. * @return Pointer to GRFFile. */ const GRFFile *GetEngineGRF(EngineID engine) { return GetEngine(engine)->grffile; } /** * Retrieve the GRF ID of the GRFFile tied to an engine * @param engine Engine ID to retrieve. * @return 32 bit GRFID value. */ uint32 GetEngineGRFID(EngineID engine) { return GetEngineGRF(engine)->grfid; } static int MapOldSubType(const Vehicle *v) { if (v->type != VEH_TRAIN) return v->subtype; if (IsTrainEngine(v)) return 0; if (IsFreeWagon(v)) return 4; return 2; } /* TTDP style aircraft movement states for GRF Action 2 Var 0xE2 */ enum { AMS_TTDP_HANGAR, AMS_TTDP_TO_HANGAR, AMS_TTDP_TO_PAD1, AMS_TTDP_TO_PAD2, AMS_TTDP_TO_PAD3, AMS_TTDP_TO_ENTRY_2_AND_3, AMS_TTDP_TO_ENTRY_2_AND_3_AND_H, AMS_TTDP_TO_JUNCTION, AMS_TTDP_LEAVE_RUNWAY, AMS_TTDP_TO_INWAY, AMS_TTDP_TO_RUNWAY, AMS_TTDP_TO_OUTWAY, AMS_TTDP_WAITING, AMS_TTDP_TAKEOFF, AMS_TTDP_TO_TAKEOFF, AMS_TTDP_CLIMBING, AMS_TTDP_FLIGHT_APPROACH, AMS_TTDP_UNUSED_0x11, AMS_TTDP_FLIGHT_TO_TOWER, AMS_TTDP_UNUSED_0x13, AMS_TTDP_FLIGHT_FINAL, AMS_TTDP_FLIGHT_DESCENT, AMS_TTDP_BRAKING, AMS_TTDP_HELI_TAKEOFF_AIRPORT, AMS_TTDP_HELI_TO_TAKEOFF_AIRPORT, AMS_TTDP_HELI_LAND_AIRPORT, AMS_TTDP_HELI_TAKEOFF_HELIPORT, AMS_TTDP_HELI_TO_TAKEOFF_HELIPORT, AMS_TTDP_HELI_LAND_HELIPORT, }; /** * Map OTTD aircraft movement states to TTDPatch style movement states * (VarAction 2 Variable 0xE2) */ static byte MapAircraftMovementState(const Vehicle *v) { const Station *st = GetStation(v->u.air.targetairport); if (st->airport_tile == 0) return AMS_TTDP_FLIGHT_TO_TOWER; const AirportFTAClass *afc = st->Airport(); uint16 amdflag = afc->MovingData(v->u.air.pos)->flag; switch (v->u.air.state) { case HANGAR: /* The international airport is a special case as helicopters can land in * front of the hanger. Helicopters also change their air.state to * AMED_HELI_LOWER some time before actually descending. */ /* This condition only occurs for helicopters, during descent, * to a landing by the hanger of an international airport. */ if (amdflag & AMED_HELI_LOWER) return AMS_TTDP_HELI_LAND_AIRPORT; /* This condition only occurs for helicopters, before starting descent, * to a landing by the hanger of an international airport. */ if (amdflag & AMED_SLOWTURN) return AMS_TTDP_FLIGHT_TO_TOWER; /* The final two conditions apply to helicopters or aircraft. * Has reached hanger? */ if (amdflag & AMED_EXACTPOS) return AMS_TTDP_HANGAR; /* Still moving towards hanger. */ return AMS_TTDP_TO_HANGAR; case TERM1: if (amdflag & AMED_EXACTPOS) return AMS_TTDP_TO_PAD1; return AMS_TTDP_TO_JUNCTION; case TERM2: if (amdflag & AMED_EXACTPOS) return AMS_TTDP_TO_PAD2; return AMS_TTDP_TO_ENTRY_2_AND_3_AND_H; case TERM3: case TERM4: case TERM5: case TERM6: case TERM7: case TERM8: /* TTDPatch only has 3 terminals, so treat these states the same */ if (amdflag & AMED_EXACTPOS) return AMS_TTDP_TO_PAD3; return AMS_TTDP_TO_ENTRY_2_AND_3_AND_H; case HELIPAD1: case HELIPAD2: case HELIPAD3: case HELIPAD4: // Will only occur for helicopters. if (amdflag & AMED_HELI_LOWER) return AMS_TTDP_HELI_LAND_AIRPORT; // Descending. if (amdflag & AMED_SLOWTURN) return AMS_TTDP_FLIGHT_TO_TOWER; // Still hasn't started descent. return AMS_TTDP_TO_JUNCTION; // On the ground. case TAKEOFF: // Moving to takeoff position. return AMS_TTDP_TO_OUTWAY; case STARTTAKEOFF: // Accelerating down runway. return AMS_TTDP_TAKEOFF; case ENDTAKEOFF: // Ascent return AMS_TTDP_CLIMBING; case HELITAKEOFF: // Helicopter is moving to take off position. if (afc->delta_z == 0) { return amdflag & AMED_HELI_RAISE ? AMS_TTDP_HELI_TAKEOFF_AIRPORT : AMS_TTDP_TO_JUNCTION; } else { return AMS_TTDP_HELI_TAKEOFF_HELIPORT; } case FLYING: return amdflag & AMED_HOLD ? AMS_TTDP_FLIGHT_APPROACH : AMS_TTDP_FLIGHT_TO_TOWER; case LANDING: // Descent return AMS_TTDP_FLIGHT_DESCENT; case ENDLANDING: // On the runway braking if (amdflag & AMED_BRAKE) return AMS_TTDP_BRAKING; /* Landed - moving off runway */ return AMS_TTDP_TO_INWAY; case HELILANDING: case HELIENDLANDING: // Helicoptor is decending. if (amdflag & AMED_HELI_LOWER) { return afc->delta_z == 0 ? AMS_TTDP_HELI_LAND_AIRPORT : AMS_TTDP_HELI_LAND_HELIPORT; } else { return AMS_TTDP_FLIGHT_TO_TOWER; } default: return AMS_TTDP_HANGAR; } } /* TTDP style aircraft movement action for GRF Action 2 Var 0xE6 */ enum { AMA_TTDP_IN_HANGAR, AMA_TTDP_ON_PAD1, AMA_TTDP_ON_PAD2, AMA_TTDP_ON_PAD3, AMA_TTDP_HANGAR_TO_PAD1, AMA_TTDP_HANGAR_TO_PAD2, AMA_TTDP_HANGAR_TO_PAD3, AMA_TTDP_LANDING_TO_PAD1, AMA_TTDP_LANDING_TO_PAD2, AMA_TTDP_LANDING_TO_PAD3, AMA_TTDP_PAD1_TO_HANGAR, AMA_TTDP_PAD2_TO_HANGAR, AMA_TTDP_PAD3_TO_HANGAR, AMA_TTDP_PAD1_TO_TAKEOFF, AMA_TTDP_PAD2_TO_TAKEOFF, AMA_TTDP_PAD3_TO_TAKEOFF, AMA_TTDP_HANGAR_TO_TAKOFF, AMA_TTDP_LANDING_TO_HANGAR, AMA_TTDP_IN_FLIGHT, }; /** * Map OTTD aircraft movement states to TTDPatch style movement actions * (VarAction 2 Variable 0xE6) * This is not fully supported yet but it's enough for Planeset. */ static byte MapAircraftMovementAction(const Vehicle *v) { switch (v->u.air.state) { case HANGAR: return (v->cur_speed > 0) ? AMA_TTDP_LANDING_TO_HANGAR : AMA_TTDP_IN_HANGAR; case TERM1: case HELIPAD1: return (v->current_order.IsType(OT_LOADING)) ? AMA_TTDP_ON_PAD1 : AMA_TTDP_LANDING_TO_PAD1; case TERM2: case HELIPAD2: return (v->current_order.IsType(OT_LOADING)) ? AMA_TTDP_ON_PAD2 : AMA_TTDP_LANDING_TO_PAD2; case TERM3: case TERM4: case TERM5: case TERM6: case TERM7: case TERM8: case HELIPAD3: case HELIPAD4: return (v->current_order.IsType(OT_LOADING)) ? AMA_TTDP_ON_PAD3 : AMA_TTDP_LANDING_TO_PAD3; case TAKEOFF: // Moving to takeoff position case STARTTAKEOFF: // Accelerating down runway case ENDTAKEOFF: // Ascent case HELITAKEOFF: /* @todo Need to find which terminal (or hanger) we've come from. How? */ return AMA_TTDP_PAD1_TO_TAKEOFF; case FLYING: return AMA_TTDP_IN_FLIGHT; case LANDING: // Descent case ENDLANDING: // On the runway braking case HELILANDING: case HELIENDLANDING: /* @todo Need to check terminal we're landing to. Is it known yet? */ return (v->current_order.IsType(OT_GOTO_DEPOT)) ? AMA_TTDP_LANDING_TO_HANGAR : AMA_TTDP_LANDING_TO_PAD1; default: return AMA_TTDP_IN_HANGAR; } } /* TTDP airport types. Used to map our types to TTDPatch's */ enum { ATP_TTDP_SMALL, ATP_TTDP_LARGE, ATP_TTDP_HELIPORT, ATP_TTDP_OILRIG, }; /* Vehicle Resolver Functions */ static inline const Vehicle *GRV(const ResolverObject *object) { switch (object->scope) { default: NOT_REACHED(); case VSG_SCOPE_SELF: return object->u.vehicle.self; case VSG_SCOPE_PARENT: return object->u.vehicle.parent; case VSG_SCOPE_RELATIVE: { const Vehicle *v = NULL; switch (GB(object->count, 6, 2)) { default: NOT_REACHED(); case 0x00: // count back (away from the engine), starting at this vehicle case 0x01: // count forward (toward the engine), starting at this vehicle v = object->u.vehicle.self; break; case 0x02: // count back, starting at the engine v = object->u.vehicle.parent; break; case 0x03: { // count back, starting at the first vehicle in this chain of vehicles with the same ID, as for vehicle variable 41 const Vehicle *self = object->u.vehicle.self; for (const Vehicle *u = self->First(); u != self; u = u->Next()) { if (u->engine_type != self->engine_type) { v = NULL; } else { if (v == NULL) v = u; } } if (v == NULL) v = self; } break; } uint32 count = GB(object->count, 0, 4); if (count == 0) count = GetRegister(0x100); while (v != NULL && count-- != 0) v = (GB(object->count, 6, 2) == 0x01) ? v->Previous() : v->Next(); return v; } } } static uint32 VehicleGetRandomBits(const ResolverObject *object) { return GRV(object) == NULL ? 0 : GRV(object)->random_bits; } static uint32 VehicleGetTriggers(const ResolverObject *object) { return GRV(object) == NULL ? 0 : GRV(object)->waiting_triggers; } static void VehicleSetTriggers(const ResolverObject *object, int triggers) { /* Evil cast to get around const-ness. This used to be achieved by an * innocent looking function pointer cast... Currently I cannot see a * way of avoiding this without removing consts deep within gui code. */ Vehicle *v = (Vehicle*)GRV(object); /* This function must only be called when processing triggers -- any * other time is an error. */ assert(object->trigger != 0); if (v != NULL) v->waiting_triggers = triggers; } static uint32 GetGRFParameter(EngineID engine_type, byte parameter) { const GRFFile *file = GetEngineGRF(engine_type); if (file == NULL) return 0; if (parameter >= file->param_end) return 0; return file->param[parameter]; } static uint8 LiveryHelper(EngineID engine, const Vehicle *v) { const Livery *l; if (v == NULL) { if (!IsValidPlayerID(_current_player)) return 0; l = GetEngineLivery(engine, _current_player, INVALID_ENGINE, NULL); } else if (v->type == VEH_TRAIN) { l = GetEngineLivery((v->u.rail.first_engine != INVALID_ENGINE && (IsArticulatedPart(v) || UsesWagonOverride(v))) ? v->u.rail.first_engine : v->engine_type, v->owner, v->u.rail.first_engine, v); } else { l = GetEngineLivery(v->engine_type, v->owner, INVALID_ENGINE, v); } return l->colour1 + l->colour2 * 16; } static uint32 VehicleGetVariable(const ResolverObject *object, byte variable, byte parameter, bool *available) { const Vehicle *v = GRV(object); if (v == NULL) { /* Vehicle does not exist, so we're in a purchase list */ switch (variable) { case 0x43: return _current_player | (LiveryHelper(object->u.vehicle.self_type, NULL) << 24); // Owner information case 0x46: return 0; // Motion counter case 0x48: return GetEngine(object->u.vehicle.self_type)->flags; // Vehicle Type Info case 0x49: return _cur_year; // 'Long' format build year case 0xC4: return Clamp(_cur_year, ORIGINAL_BASE_YEAR, ORIGINAL_MAX_YEAR) - ORIGINAL_BASE_YEAR; // Build year case 0xDA: return INVALID_VEHICLE; // Next vehicle case 0x7F: return GetGRFParameter(object->u.vehicle.self_type, parameter); // Read GRF parameter } *available = false; return UINT_MAX; } /* Calculated vehicle parameters */ switch (variable) { case 0x40: // Get length of consist case 0x41: // Get length of same consecutive wagons { const Vehicle* u; byte chain_before = 0; byte chain_after = 0; for (u = v->First(); u != v; u = u->Next()) { chain_before++; if (variable == 0x41 && u->engine_type != v->engine_type) chain_before = 0; } while (u->Next() != NULL && (variable == 0x40 || u->Next()->engine_type == v->engine_type)) { chain_after++; u = u->Next(); } return chain_before | chain_after << 8 | (chain_before + chain_after + (variable == 0x41)) << 16; } case 0x42: { // Consist cargo information const Vehicle *u; byte cargo_classes = 0; uint8 common_cargo_best = 0; uint8 common_cargos[NUM_CARGO]; uint8 common_subtype_best = 0; uint8 common_subtypes[256]; byte user_def_data = 0; CargoID common_cargo_type = CT_PASSENGERS; uint8 common_subtype = 0; /* Reset our arrays */ memset(common_cargos, 0, sizeof(common_cargos)); memset(common_subtypes, 0, sizeof(common_subtypes)); for (u = v; u != NULL; u = u->Next()) { if (v->type == VEH_TRAIN) user_def_data |= u->u.rail.user_def_data; /* Skip empty engines */ if (u->cargo_cap == 0) continue; cargo_classes |= GetCargo(u->cargo_type)->classes; common_cargos[u->cargo_type]++; common_subtypes[u->cargo_subtype]++; } /* Pick the most common cargo type */ for (CargoID cargo = 0; cargo < NUM_CARGO; cargo++) { if (common_cargos[cargo] > common_cargo_best) { common_cargo_best = common_cargos[cargo]; common_cargo_type = GetCargo(cargo)->bitnum; } } for (uint i = 0; i < lengthof(common_subtypes); i++) { if (common_subtypes[i] > common_subtype_best) { common_subtype_best = common_subtypes[i]; common_subtype = i; } } return cargo_classes | (common_cargo_type << 8) | (common_subtype << 16) | (user_def_data << 24); } case 0x43: // Player information return v->owner | (GetPlayer(v->owner)->is_ai ? 0x10000 : 0) | (LiveryHelper(v->engine_type, v) << 24); case 0x44: // Aircraft information if (v->type != VEH_AIRCRAFT) return UINT_MAX; { const Vehicle *w = v->Next(); uint16 altitude = v->z_pos - w->z_pos; // Aircraft height - shadow height byte airporttype; switch (GetStation(v->u.air.targetairport)->airport_type) { /* Note, Helidepot and Helistation are treated as small airports * as they are at ground level. */ case AT_HELIDEPOT: case AT_HELISTATION: case AT_COMMUTER: case AT_SMALL: airporttype = ATP_TTDP_SMALL; break; case AT_METROPOLITAN: case AT_INTERNATIONAL: case AT_INTERCON: case AT_LARGE: airporttype = ATP_TTDP_LARGE; break; case AT_HELIPORT: airporttype = ATP_TTDP_HELIPORT; break; case AT_OILRIG: airporttype = ATP_TTDP_OILRIG; break; default: airporttype = ATP_TTDP_LARGE; break; } return (altitude << 8) | airporttype; } case 0x45: { // Curvature info /* Format: xxxTxBxF * F - previous wagon to current wagon, 0 if vehicle is first * B - current wagon to next wagon, 0 if wagon is last * T - previous wagon to next wagon, 0 in an S-bend */ if (v->type != VEH_TRAIN) return 0; const Vehicle *u_p = v->Previous(); const Vehicle *u_n = v->Next(); DirDiff f = (u_p == NULL) ? DIRDIFF_SAME : DirDifference(u_p->direction, v->direction); DirDiff b = (u_n == NULL) ? DIRDIFF_SAME : DirDifference(v->direction, u_n->direction); DirDiff t = ChangeDirDiff(f, b); return ((t > DIRDIFF_REVERSE ? t | 8 : t) << 16) | ((b > DIRDIFF_REVERSE ? b | 8 : b) << 8) | ( f > DIRDIFF_REVERSE ? f | 8 : f); } case 0x46: // Motion counter return v->motion_counter; case 0x47: { // Vehicle cargo info /* Format: ccccwwtt * tt - the cargo type transported by the vehicle, * translated if a translation table has been installed. * ww - cargo unit weight in 1/16 tons, same as cargo prop. 0F. * cccc - the cargo class value of the cargo transported by the vehicle. */ const CargoSpec *cs = GetCargo(v->cargo_type); return (cs->classes << 16) | (cs->weight << 8) | GetEngineGRF(v->engine_type)->cargo_map[v->cargo_type]; } case 0x48: return GetEngine(v->engine_type)->flags; // Vehicle Type Info case 0x49: return v->build_year; /* Variables which use the parameter */ case 0x60: // Count consist's engine ID occurance //EngineID engine = GetNewEngineID(GetEngineGRF(v->engine_type), v->type, parameter); if (v->type != VEH_TRAIN) return GetEngine(v->engine_type)->internal_id == parameter; { uint count = 0; for (; v != NULL; v = v->Next()) { if (GetEngine(v->engine_type)->internal_id == parameter) count++; } return count; } case 0x7F: return GetGRFParameter(v->engine_type, parameter); // Read GRF parameter case 0xFE: case 0xFF: { uint16 modflags = 0; if (v->type == VEH_TRAIN) { const Vehicle *u = IsTrainWagon(v) && HasBit(v->vehicle_flags, VRF_POWEREDWAGON) ? v->First() : v; RailType railtype = GetRailType(v->tile); bool powered = IsTrainEngine(v) || (IsTrainWagon(v) && HasBit(v->vehicle_flags, VRF_POWEREDWAGON)); bool has_power = powered && HasPowerOnRail(u->u.rail.railtype, railtype); bool is_electric = powered && u->u.rail.railtype == RAILTYPE_ELECTRIC; if (has_power) SetBit(modflags, 5); if (is_electric && !has_power) SetBit(modflags, 6); if (HasBit(v->u.rail.flags, VRF_TOGGLE_REVERSE)) SetBit(modflags, 8); } if (HasBit(v->vehicle_flags, VF_BUILT_AS_PROTOTYPE)) SetBit(modflags, 10); return variable == 0xFE ? modflags : GB(modflags, 8, 8); } } /* General vehicle properties */ switch (variable - 0x80) { case 0x00: return v->type; case 0x01: return MapOldSubType(v); case 0x04: return v->index; case 0x05: return GB(v->index, 8, 8); case 0x0A: return v->current_order.Pack(); case 0x0B: return GB(v->current_order.Pack(), 8, 8); case 0x0C: return v->num_orders; case 0x0D: return v->cur_order_index; case 0x10: return v->load_unload_time_rem; case 0x11: return GB(v->load_unload_time_rem, 8, 8); case 0x12: return max(v->date_of_last_service - DAYS_TILL_ORIGINAL_BASE_YEAR, 0); case 0x13: return GB(max(v->date_of_last_service - DAYS_TILL_ORIGINAL_BASE_YEAR, 0), 8, 8); case 0x14: return v->service_interval; case 0x15: return GB(v->service_interval, 8, 8); case 0x16: return v->last_station_visited; case 0x17: return v->tick_counter; case 0x18: return v->max_speed; case 0x19: return GB(v->max_speed, 8, 8); case 0x1A: return v->x_pos; case 0x1B: return GB(v->x_pos, 8, 8); case 0x1C: return v->y_pos; case 0x1D: return GB(v->y_pos, 8, 8); case 0x1E: return v->z_pos; case 0x1F: return object->info_view ? DIR_W : v->direction; case 0x28: return v->cur_image; case 0x29: return GB(v->cur_image, 8, 8); case 0x32: return v->vehstatus; case 0x33: return 0; // non-existent high byte of vehstatus case 0x34: return v->cur_speed; case 0x35: return GB(v->cur_speed, 8, 8); case 0x36: return v->subspeed; case 0x37: return v->acceleration; case 0x39: return v->cargo_type; case 0x3A: return v->cargo_cap; case 0x3B: return GB(v->cargo_cap, 8, 8); case 0x3C: return v->cargo.Count(); case 0x3D: return GB(v->cargo.Count(), 8, 8); case 0x3E: return v->cargo.Source(); case 0x3F: return v->cargo.DaysInTransit(); case 0x40: return v->age; case 0x41: return GB(v->age, 8, 8); case 0x42: return v->max_age; case 0x43: return GB(v->max_age, 8, 8); case 0x44: return Clamp(v->build_year, ORIGINAL_BASE_YEAR, ORIGINAL_MAX_YEAR) - ORIGINAL_BASE_YEAR; case 0x45: return v->unitnumber; case 0x46: return GetEngine(v->engine_type)->internal_id; case 0x47: return GB(GetEngine(v->engine_type)->internal_id, 8, 8); case 0x48: if (v->type != VEH_TRAIN || v->spritenum != 0xFD) return v->spritenum; return HasBit(v->u.rail.flags, VRF_REVERSE_DIRECTION) ? 0xFE : 0xFD; case 0x49: return v->day_counter; case 0x4A: return v->breakdowns_since_last_service; case 0x4B: return v->breakdown_ctr; case 0x4C: return v->breakdown_delay; case 0x4D: return v->breakdown_chance; case 0x4E: return v->reliability; case 0x4F: return GB(v->reliability, 8, 8); case 0x50: return v->reliability_spd_dec; case 0x51: return GB(v->reliability_spd_dec, 8, 8); case 0x52: return ClampToI32(v->GetDisplayProfitThisYear()); case 0x53: return GB(ClampToI32(v->GetDisplayProfitThisYear()), 8, 24); case 0x54: return GB(ClampToI32(v->GetDisplayProfitThisYear()), 16, 16); case 0x55: return GB(ClampToI32(v->GetDisplayProfitThisYear()), 24, 8); case 0x56: return ClampToI32(v->GetDisplayProfitLastYear()); case 0x57: return GB(ClampToI32(v->GetDisplayProfitLastYear()), 8, 24); case 0x58: return GB(ClampToI32(v->GetDisplayProfitLastYear()), 16, 16); case 0x59: return GB(ClampToI32(v->GetDisplayProfitLastYear()), 24, 8); case 0x5A: return v->Next() == NULL ? INVALID_VEHICLE : v->Next()->index; case 0x5C: return ClampToI32(v->value); case 0x5D: return GB(ClampToI32(v->value), 8, 24); case 0x5E: return GB(ClampToI32(v->value), 16, 16); case 0x5F: return GB(ClampToI32(v->value), 24, 8); case 0x72: return v->cargo_subtype; case 0x7A: return v->random_bits; case 0x7B: return v->waiting_triggers; } /* Vehicle specific properties */ switch (v->type) { case VEH_TRAIN: switch (variable - 0x80) { case 0x62: return v->u.rail.track; case 0x66: return v->u.rail.railtype; case 0x73: return v->u.rail.cached_veh_length; case 0x74: return v->u.rail.cached_power; case 0x75: return GB(v->u.rail.cached_power, 8, 24); case 0x76: return GB(v->u.rail.cached_power, 16, 16); case 0x77: return GB(v->u.rail.cached_power, 24, 8); case 0x7C: return v->First()->index; case 0x7D: return GB(v->First()->index, 8, 8); case 0x7F: return 0; // Used for vehicle reversing hack in TTDP } break; case VEH_ROAD: switch (variable - 0x80) { case 0x62: return v->u.road.state; case 0x64: return v->u.road.blocked_ctr; case 0x65: return GB(v->u.road.blocked_ctr, 8, 8); case 0x66: return v->u.road.overtaking; case 0x67: return v->u.road.overtaking_ctr; case 0x68: return v->u.road.crashed_ctr; case 0x69: return GB(v->u.road.crashed_ctr, 8, 8); } break; case VEH_AIRCRAFT: switch (variable - 0x80) { case 0x62: return MapAircraftMovementState(v); // Current movement state case 0x63: return v->u.air.targetairport; // Airport to which the action refers case 0x66: return MapAircraftMovementAction(v); // Current movement action } break; default: break; } DEBUG(grf, 1, "Unhandled vehicle property 0x%X, type 0x%X", variable, v->type); *available = false; return UINT_MAX; } static const SpriteGroup *VehicleResolveReal(const ResolverObject *object, const SpriteGroup *group) { const Vehicle *v = object->u.vehicle.self; uint totalsets; uint set; if (v == NULL) { if (group->g.real.num_loading > 0) return group->g.real.loading[0]; if (group->g.real.num_loaded > 0) return group->g.real.loaded[0]; return NULL; } bool in_motion = !v->First()->current_order.IsType(OT_LOADING); totalsets = in_motion ? group->g.real.num_loaded : group->g.real.num_loading; if (v->cargo.Count() >= v->cargo_cap || totalsets == 1) { set = totalsets - 1; } else if (v->cargo.Empty() || totalsets == 2) { set = 0; } else { set = v->cargo.Count() * (totalsets - 2) / max((uint16)1, v->cargo_cap) + 1; } return in_motion ? group->g.real.loaded[set] : group->g.real.loading[set]; } static inline void NewVehicleResolver(ResolverObject *res, EngineID engine_type, const Vehicle *v) { res->GetRandomBits = &VehicleGetRandomBits; res->GetTriggers = &VehicleGetTriggers; res->SetTriggers = &VehicleSetTriggers; res->GetVariable = &VehicleGetVariable; res->ResolveReal = &VehicleResolveReal; res->u.vehicle.self = v; res->u.vehicle.parent = (v != NULL) ? v->First() : v; res->u.vehicle.self_type = engine_type; res->info_view = false; res->callback = CBID_NO_CALLBACK; res->callback_param1 = 0; res->callback_param2 = 0; res->last_value = 0; res->trigger = 0; res->reseed = 0; res->count = 0; } /** Retrieve the SpriteGroup for the specified vehicle. * If the vehicle is not specified, the purchase list group for the engine is * chosen. For trains, an additional engine override lookup is performed. * @param engine Engine type of the vehicle. * @param v The vehicle itself. * @param use_cache Use cached override * @returns The selected SpriteGroup for the vehicle. */ static const SpriteGroup *GetVehicleSpriteGroup(EngineID engine, const Vehicle *v, bool use_cache = true) { const SpriteGroup *group; CargoID cargo; if (v == NULL) { cargo = CT_PURCHASE; } else { cargo = v->cargo_type; if (v->type == VEH_TRAIN) { /* We always use cached value, except for callbacks because the override spriteset * to use may be different than the one cached. It happens for callback 0x15 (refit engine), * as v->cargo_type is temporary changed to the new type */ group = use_cache ? v->u.rail.cached_override : GetWagonOverrideSpriteSet(v->engine_type, v->cargo_type, v->u.rail.first_engine); if (group != NULL) return group; } } const Engine *e = GetEngine(engine); group = e->group[cargo]; if (group != NULL) return group; /* Fall back to the default set if the selected cargo type is not defined */ return e->group[CT_DEFAULT]; } SpriteID GetCustomEngineSprite(EngineID engine, const Vehicle *v, Direction direction) { const SpriteGroup *group; ResolverObject object; NewVehicleResolver(&object, engine, v); group = Resolve(GetVehicleSpriteGroup(engine, v), &object); if (group == NULL || group->type != SGT_RESULT || group->g.result.num_sprites == 0) return 0; return group->g.result.sprite + (direction % group->g.result.num_sprites); } SpriteID GetRotorOverrideSprite(EngineID engine, const Vehicle *v, bool info_view) { const Engine *e = GetEngine(engine); /* Only valid for helicopters */ assert(e->type == VEH_AIRCRAFT); assert(!(e->u.air.subtype & AIR_CTOL)); ResolverObject object; NewVehicleResolver(&object, engine, v); object.info_view = info_view; const SpriteGroup *group = GetWagonOverrideSpriteSet(engine, CT_DEFAULT, engine); group = Resolve(group, &object); if (group == NULL || group->type != SGT_RESULT || group->g.result.num_sprites == 0) return 0; if (v == NULL) return group->g.result.sprite; return group->g.result.sprite + (info_view ? 0 : (v->Next()->Next()->u.air.state % group->g.result.num_sprites)); } /** * Check if a wagon is currently using a wagon override * @param v The wagon to check * @return true if it is using an override, false otherwise */ bool UsesWagonOverride(const Vehicle* v) { assert(v->type == VEH_TRAIN); return v->u.rail.cached_override != NULL; } /** * Evaluate a newgrf callback for vehicles * @param callback The callback to evalute * @param param1 First parameter of the callback * @param param2 Second parameter of the callback * @param engine Engine type of the vehicle to evaluate the callback for * @param v The vehicle to evaluate the callback for, or NULL if it doesnt exist yet * @return The value the callback returned, or CALLBACK_FAILED if it failed */ uint16 GetVehicleCallback(CallbackID callback, uint32 param1, uint32 param2, EngineID engine, const Vehicle *v) { const SpriteGroup *group; ResolverObject object; NewVehicleResolver(&object, engine, v); object.callback = callback; object.callback_param1 = param1; object.callback_param2 = param2; group = Resolve(GetVehicleSpriteGroup(engine, v, false), &object); if (group == NULL || group->type != SGT_CALLBACK) return CALLBACK_FAILED; return group->g.callback.result; } /** * Evaluate a newgrf callback for vehicles with a different vehicle for parent scope. * @param callback The callback to evalute * @param param1 First parameter of the callback * @param param2 Second parameter of the callback * @param engine Engine type of the vehicle to evaluate the callback for * @param v The vehicle to evaluate the callback for, or NULL if it doesnt exist yet * @param parent The vehicle to use for parent scope * @return The value the callback returned, or CALLBACK_FAILED if it failed */ uint16 GetVehicleCallbackParent(CallbackID callback, uint32 param1, uint32 param2, EngineID engine, const Vehicle *v, const Vehicle *parent) { const SpriteGroup *group; ResolverObject object; NewVehicleResolver(&object, engine, v); object.callback = callback; object.callback_param1 = param1; object.callback_param2 = param2; object.u.vehicle.parent = parent; group = Resolve(GetVehicleSpriteGroup(engine, v, false), &object); if (group == NULL || group->type != SGT_CALLBACK) return CALLBACK_FAILED; return group->g.callback.result; } /* Callback 36 handlers */ uint GetVehicleProperty(const Vehicle *v, uint8 property, uint orig_value) { uint16 callback = GetVehicleCallback(CBID_VEHICLE_MODIFY_PROPERTY, property, 0, v->engine_type, v); if (callback != CALLBACK_FAILED) return callback; return orig_value; } uint GetEngineProperty(EngineID engine, uint8 property, uint orig_value) { uint16 callback = GetVehicleCallback(CBID_VEHICLE_MODIFY_PROPERTY, property, 0, engine, NULL); if (callback != CALLBACK_FAILED) return callback; return orig_value; } static void DoTriggerVehicle(Vehicle *v, VehicleTrigger trigger, byte base_random_bits, bool first) { const SpriteGroup *group; ResolverObject object; byte new_random_bits; /* We can't trigger a non-existent vehicle... */ assert(v != NULL); NewVehicleResolver(&object, v->engine_type, v); object.callback = CBID_RANDOM_TRIGGER; object.trigger = trigger; group = Resolve(GetVehicleSpriteGroup(v->engine_type, v), &object); if (group == NULL) return; new_random_bits = Random(); v->random_bits &= ~object.reseed; v->random_bits |= (first ? new_random_bits : base_random_bits) & object.reseed; switch (trigger) { case VEHICLE_TRIGGER_NEW_CARGO: /* All vehicles in chain get ANY_NEW_CARGO trigger now. * So we call it for the first one and they will recurse. */ /* Indexing part of vehicle random bits needs to be * same for all triggered vehicles in the chain (to get * all the random-cargo wagons carry the same cargo, * i.e.), so we give them all the NEW_CARGO triggered * vehicle's portion of random bits. */ assert(first); DoTriggerVehicle(v->First(), VEHICLE_TRIGGER_ANY_NEW_CARGO, new_random_bits, false); break; case VEHICLE_TRIGGER_DEPOT: /* We now trigger the next vehicle in chain recursively. * The random bits portions may be different for each * vehicle in chain. */ if (v->Next() != NULL) DoTriggerVehicle(v->Next(), trigger, 0, true); break; case VEHICLE_TRIGGER_EMPTY: /* We now trigger the next vehicle in chain * recursively. The random bits portions must be same * for each vehicle in chain, so we give them all * first chained vehicle's portion of random bits. */ if (v->Next() != NULL) DoTriggerVehicle(v->Next(), trigger, first ? new_random_bits : base_random_bits, false); break; case VEHICLE_TRIGGER_ANY_NEW_CARGO: /* Now pass the trigger recursively to the next vehicle * in chain. */ assert(!first); if (v->Next() != NULL) DoTriggerVehicle(v->Next(), VEHICLE_TRIGGER_ANY_NEW_CARGO, base_random_bits, false); break; case VEHICLE_TRIGGER_CALLBACK_32: /* Do not do any recursion */ break; } } void TriggerVehicle(Vehicle *v, VehicleTrigger trigger) { if (trigger == VEHICLE_TRIGGER_DEPOT) { /* store that the vehicle entered a depot this tick */ VehicleEnteredDepotThisTick(v); } DoTriggerVehicle(v, trigger, 0, true); } /* Functions for changing the order of vehicle purchase lists * This is currently only implemented for rail vehicles. */ /** * Get the list position of an engine. * Used when sorting a list of engines. * @param engine ID of the engine. * @return The list position of the engine. */ uint ListPositionOfEngine(EngineID engine) { const Engine *e = GetEngine(engine); if (e->grffile == NULL) return e->list_position; /* Crude sorting to group by GRF ID */ return (e->grffile->grfid * 256) + e->list_position; } struct ListOrderChange { EngineID engine; EngineID target; }; static std::list<ListOrderChange> _list_order_changes; void AlterVehicleListOrder(EngineID engine, EngineID target) { /* Add the list order change to a queue */ ListOrderChange loc; loc.engine = engine; loc.target = target; _list_order_changes.push_back(loc); } void CommitVehicleListOrderChanges() { /* List position to Engine map */ typedef std::map<uint16, Engine*> ListPositionMap; ListPositionMap lptr_map; std::list<ListOrderChange>::iterator it; for (it = _list_order_changes.begin(); it != _list_order_changes.end(); ++it) { EngineID engine = it->engine; EngineID target = it->target; if (engine == target) continue; Engine *source_e = GetEngine(engine); Engine *target_e = NULL; /* Populate map with current list positions */ Engine *e; FOR_ALL_ENGINES_OF_TYPE(e, source_e->type) { if (!_settings_game.vehicle.dynamic_engines || e->grffile == source_e->grffile) { if (e->internal_id == target) target_e = e; lptr_map[e->list_position] = e; } } /* Get the target position, if it exists */ if (target_e != NULL) { uint16 target_position = target_e->list_position; bool moving = false; for (ListPositionMap::iterator it = lptr_map.begin(); it != lptr_map.end(); ++it) { if (it->first == target_position) moving = true; if (moving) it->second->list_position++; } source_e->list_position = target_position; } lptr_map.clear(); } /* Clear out the queue */ _list_order_changes.clear(); }