/* $Id$ */
/*
* This file is part of OpenTTD.
* OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
* OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see .
*/
/** @file newgrf_engine.cpp NewGRF handling of engines. */
#include "stdafx.h"
#include "debug.h"
#include "train.h"
#include "roadveh.h"
#include "company_func.h"
#include "newgrf_cargo.h"
#include "newgrf_spritegroup.h"
#include "date_func.h"
#include "vehicle_func.h"
#include "core/random_func.hpp"
#include "aircraft.h"
#include "station_base.h"
#include "company_base.h"
#include "newgrf_railtype.h"
struct WagonOverride {
EngineID *train_id;
uint trains;
CargoID cargo;
const SpriteGroup *group;
};
void SetWagonOverrideSprites(EngineID engine, CargoID cargo, const SpriteGroup *group, EngineID *train_id, uint trains)
{
Engine *e = Engine::Get(engine);
WagonOverride *wo;
assert(cargo < NUM_CARGO + 2); // Include CT_DEFAULT and CT_PURCHASE pseudo cargoes.
e->overrides_count++;
e->overrides = ReallocT(e->overrides, e->overrides_count);
wo = &e->overrides[e->overrides_count - 1];
wo->group = group;
wo->cargo = cargo;
wo->trains = trains;
wo->train_id = MallocT(trains);
memcpy(wo->train_id, train_id, trains * sizeof *train_id);
}
const SpriteGroup *GetWagonOverrideSpriteSet(EngineID engine, CargoID cargo, EngineID overriding_engine)
{
const Engine *e = Engine::Get(engine);
/* XXX: This could turn out to be a timesink on profiles. We could
* always just dedicate 65535 bytes for an [engine][train] trampoline
* for O(1). Or O(logMlogN) and searching binary tree or smt. like
* that. --pasky */
for (uint i = 0; i < e->overrides_count; i++) {
const WagonOverride *wo = &e->overrides[i];
if (wo->cargo != cargo && wo->cargo != CT_DEFAULT) continue;
for (uint j = 0; j < wo->trains; j++) {
if (wo->train_id[j] == overriding_engine) return wo->group;
}
}
return NULL;
}
/**
* Unload all wagon override sprite groups.
*/
void UnloadWagonOverrides(Engine *e)
{
for (uint i = 0; i < e->overrides_count; i++) {
WagonOverride *wo = &e->overrides[i];
free(wo->train_id);
}
free(e->overrides);
e->overrides_count = 0;
e->overrides = NULL;
}
void SetCustomEngineSprites(EngineID engine, byte cargo, const SpriteGroup *group)
{
Engine *e = Engine::Get(engine);
assert(cargo < lengthof(e->grf_prop.spritegroup));
if (e->grf_prop.spritegroup[cargo] != NULL) {
grfmsg(6, "SetCustomEngineSprites: engine %d cargo %d already has group -- replacing", engine, cargo);
}
e->grf_prop.spritegroup[cargo] = group;
}
/**
* Tie a GRFFile entry to an engine, to allow us to retrieve GRF parameters
* etc during a game.
* @param engine Engine ID to tie the GRFFile to.
* @param file Pointer of GRFFile to tie.
*/
void SetEngineGRF(EngineID engine, const GRFFile *file)
{
Engine *e = Engine::Get(engine);
e->grf_prop.grffile = file;
}
static int MapOldSubType(const Vehicle *v)
{
switch (v->type) {
case VEH_TRAIN:
if (Train::From(v)->IsEngine()) return 0;
if (Train::From(v)->IsFreeWagon()) return 4;
return 2;
case VEH_ROAD:
case VEH_SHIP: return 0;
case VEH_AIRCRAFT:
case VEH_DISASTER: return v->subtype;
case VEH_EFFECT: return v->subtype << 1;
default: NOT_REACHED();
}
}
/* TTDP style aircraft movement states for GRF Action 2 Var 0xE2 */
enum TTDPAircraftMovementStates {
AMS_TTDP_HANGAR,
AMS_TTDP_TO_HANGAR,
AMS_TTDP_TO_PAD1,
AMS_TTDP_TO_PAD2,
AMS_TTDP_TO_PAD3,
AMS_TTDP_TO_ENTRY_2_AND_3,
AMS_TTDP_TO_ENTRY_2_AND_3_AND_H,
AMS_TTDP_TO_JUNCTION,
AMS_TTDP_LEAVE_RUNWAY,
AMS_TTDP_TO_INWAY,
AMS_TTDP_TO_RUNWAY,
AMS_TTDP_TO_OUTWAY,
AMS_TTDP_WAITING,
AMS_TTDP_TAKEOFF,
AMS_TTDP_TO_TAKEOFF,
AMS_TTDP_CLIMBING,
AMS_TTDP_FLIGHT_APPROACH,
AMS_TTDP_UNUSED_0x11,
AMS_TTDP_FLIGHT_TO_TOWER,
AMS_TTDP_UNUSED_0x13,
AMS_TTDP_FLIGHT_FINAL,
AMS_TTDP_FLIGHT_DESCENT,
AMS_TTDP_BRAKING,
AMS_TTDP_HELI_TAKEOFF_AIRPORT,
AMS_TTDP_HELI_TO_TAKEOFF_AIRPORT,
AMS_TTDP_HELI_LAND_AIRPORT,
AMS_TTDP_HELI_TAKEOFF_HELIPORT,
AMS_TTDP_HELI_TO_TAKEOFF_HELIPORT,
AMS_TTDP_HELI_LAND_HELIPORT,
};
/**
* Map OTTD aircraft movement states to TTDPatch style movement states
* (VarAction 2 Variable 0xE2)
*/
static byte MapAircraftMovementState(const Aircraft *v)
{
const Station *st = GetTargetAirportIfValid(v);
if (st == NULL) return AMS_TTDP_FLIGHT_TO_TOWER;
const AirportFTAClass *afc = st->airport.GetFTA();
uint16 amdflag = afc->MovingData(v->pos)->flag;
switch (v->state) {
case HANGAR:
/* The international airport is a special case as helicopters can land in
* front of the hanger. Helicopters also change their air.state to
* AMED_HELI_LOWER some time before actually descending. */
/* This condition only occurs for helicopters, during descent,
* to a landing by the hanger of an international airport. */
if (amdflag & AMED_HELI_LOWER) return AMS_TTDP_HELI_LAND_AIRPORT;
/* This condition only occurs for helicopters, before starting descent,
* to a landing by the hanger of an international airport. */
if (amdflag & AMED_SLOWTURN) return AMS_TTDP_FLIGHT_TO_TOWER;
/* The final two conditions apply to helicopters or aircraft.
* Has reached hanger? */
if (amdflag & AMED_EXACTPOS) return AMS_TTDP_HANGAR;
/* Still moving towards hanger. */
return AMS_TTDP_TO_HANGAR;
case TERM1:
if (amdflag & AMED_EXACTPOS) return AMS_TTDP_TO_PAD1;
return AMS_TTDP_TO_JUNCTION;
case TERM2:
if (amdflag & AMED_EXACTPOS) return AMS_TTDP_TO_PAD2;
return AMS_TTDP_TO_ENTRY_2_AND_3_AND_H;
case TERM3:
case TERM4:
case TERM5:
case TERM6:
case TERM7:
case TERM8:
/* TTDPatch only has 3 terminals, so treat these states the same */
if (amdflag & AMED_EXACTPOS) return AMS_TTDP_TO_PAD3;
return AMS_TTDP_TO_ENTRY_2_AND_3_AND_H;
case HELIPAD1:
case HELIPAD2:
case HELIPAD3:
/* Will only occur for helicopters.*/
if (amdflag & AMED_HELI_LOWER) return AMS_TTDP_HELI_LAND_AIRPORT; // Descending.
if (amdflag & AMED_SLOWTURN) return AMS_TTDP_FLIGHT_TO_TOWER; // Still hasn't started descent.
return AMS_TTDP_TO_JUNCTION; // On the ground.
case TAKEOFF: // Moving to takeoff position.
return AMS_TTDP_TO_OUTWAY;
case STARTTAKEOFF: // Accelerating down runway.
return AMS_TTDP_TAKEOFF;
case ENDTAKEOFF: // Ascent
return AMS_TTDP_CLIMBING;
case HELITAKEOFF: // Helicopter is moving to take off position.
if (afc->delta_z == 0) {
return amdflag & AMED_HELI_RAISE ?
AMS_TTDP_HELI_TAKEOFF_AIRPORT : AMS_TTDP_TO_JUNCTION;
} else {
return AMS_TTDP_HELI_TAKEOFF_HELIPORT;
}
case FLYING:
return amdflag & AMED_HOLD ? AMS_TTDP_FLIGHT_APPROACH : AMS_TTDP_FLIGHT_TO_TOWER;
case LANDING: // Descent
return AMS_TTDP_FLIGHT_DESCENT;
case ENDLANDING: // On the runway braking
if (amdflag & AMED_BRAKE) return AMS_TTDP_BRAKING;
/* Landed - moving off runway */
return AMS_TTDP_TO_INWAY;
case HELILANDING:
case HELIENDLANDING: // Helicoptor is decending.
if (amdflag & AMED_HELI_LOWER) {
return afc->delta_z == 0 ?
AMS_TTDP_HELI_LAND_AIRPORT : AMS_TTDP_HELI_LAND_HELIPORT;
} else {
return AMS_TTDP_FLIGHT_TO_TOWER;
}
default:
return AMS_TTDP_HANGAR;
}
}
/* TTDP style aircraft movement action for GRF Action 2 Var 0xE6 */
enum TTDPAircraftMovementActions {
AMA_TTDP_IN_HANGAR,
AMA_TTDP_ON_PAD1,
AMA_TTDP_ON_PAD2,
AMA_TTDP_ON_PAD3,
AMA_TTDP_HANGAR_TO_PAD1,
AMA_TTDP_HANGAR_TO_PAD2,
AMA_TTDP_HANGAR_TO_PAD3,
AMA_TTDP_LANDING_TO_PAD1,
AMA_TTDP_LANDING_TO_PAD2,
AMA_TTDP_LANDING_TO_PAD3,
AMA_TTDP_PAD1_TO_HANGAR,
AMA_TTDP_PAD2_TO_HANGAR,
AMA_TTDP_PAD3_TO_HANGAR,
AMA_TTDP_PAD1_TO_TAKEOFF,
AMA_TTDP_PAD2_TO_TAKEOFF,
AMA_TTDP_PAD3_TO_TAKEOFF,
AMA_TTDP_HANGAR_TO_TAKOFF,
AMA_TTDP_LANDING_TO_HANGAR,
AMA_TTDP_IN_FLIGHT,
};
/**
* Map OTTD aircraft movement states to TTDPatch style movement actions
* (VarAction 2 Variable 0xE6)
* This is not fully supported yet but it's enough for Planeset.
*/
static byte MapAircraftMovementAction(const Aircraft *v)
{
switch (v->state) {
case HANGAR:
return (v->cur_speed > 0) ? AMA_TTDP_LANDING_TO_HANGAR : AMA_TTDP_IN_HANGAR;
case TERM1:
case HELIPAD1:
return (v->current_order.IsType(OT_LOADING)) ? AMA_TTDP_ON_PAD1 : AMA_TTDP_LANDING_TO_PAD1;
case TERM2:
case HELIPAD2:
return (v->current_order.IsType(OT_LOADING)) ? AMA_TTDP_ON_PAD2 : AMA_TTDP_LANDING_TO_PAD2;
case TERM3:
case TERM4:
case TERM5:
case TERM6:
case TERM7:
case TERM8:
case HELIPAD3:
return (v->current_order.IsType(OT_LOADING)) ? AMA_TTDP_ON_PAD3 : AMA_TTDP_LANDING_TO_PAD3;
case TAKEOFF: // Moving to takeoff position
case STARTTAKEOFF: // Accelerating down runway
case ENDTAKEOFF: // Ascent
case HELITAKEOFF:
/* @todo Need to find which terminal (or hanger) we've come from. How? */
return AMA_TTDP_PAD1_TO_TAKEOFF;
case FLYING:
return AMA_TTDP_IN_FLIGHT;
case LANDING: // Descent
case ENDLANDING: // On the runway braking
case HELILANDING:
case HELIENDLANDING:
/* @todo Need to check terminal we're landing to. Is it known yet? */
return (v->current_order.IsType(OT_GOTO_DEPOT)) ?
AMA_TTDP_LANDING_TO_HANGAR : AMA_TTDP_LANDING_TO_PAD1;
default:
return AMA_TTDP_IN_HANGAR;
}
}
/* Vehicle Resolver Functions */
static inline const Vehicle *GRV(const ResolverObject *object)
{
switch (object->scope) {
default: NOT_REACHED();
case VSG_SCOPE_SELF: return object->u.vehicle.self;
case VSG_SCOPE_PARENT: return object->u.vehicle.parent;
case VSG_SCOPE_RELATIVE: {
if (object->u.vehicle.self == NULL) return NULL;
const Vehicle *v = NULL;
switch (GB(object->count, 6, 2)) {
default: NOT_REACHED();
case 0x00: // count back (away from the engine), starting at this vehicle
case 0x01: // count forward (toward the engine), starting at this vehicle
v = object->u.vehicle.self;
break;
case 0x02: // count back, starting at the engine
v = object->u.vehicle.parent;
break;
case 0x03: { // count back, starting at the first vehicle in this chain of vehicles with the same ID, as for vehicle variable 41
const Vehicle *self = object->u.vehicle.self;
for (const Vehicle *u = self->First(); u != self; u = u->Next()) {
if (u->engine_type != self->engine_type) {
v = NULL;
} else {
if (v == NULL) v = u;
}
}
if (v == NULL) v = self;
break;
}
}
uint32 count = GB(object->count, 0, 4);
if (count == 0) count = GetRegister(0x100);
while (v != NULL && count-- != 0) v = (GB(object->count, 6, 2) == 0x01) ? v->Previous() : v->Next();
return v;
}
}
}
static uint32 VehicleGetRandomBits(const ResolverObject *object)
{
return GRV(object) == NULL ? 0 : GRV(object)->random_bits;
}
static uint32 VehicleGetTriggers(const ResolverObject *object)
{
return GRV(object) == NULL ? 0 : GRV(object)->waiting_triggers;
}
static void VehicleSetTriggers(const ResolverObject *object, int triggers)
{
/* Evil cast to get around const-ness. This used to be achieved by an
* innocent looking function pointer cast... Currently I cannot see a
* way of avoiding this without removing consts deep within gui code.
*/
Vehicle *v = const_cast(GRV(object));
/* This function must only be called when processing triggers -- any
* other time is an error. */
assert(object->trigger != 0);
if (v != NULL) v->waiting_triggers = triggers;
}
/**
* Determines the livery of an engine.
*
* This always uses dual company colours independent of GUI settings. So it is desync-safe.
*
* @param engine Engine type
* @param v Vehicle, NULL in purchase list.
* @return Livery to use
*/
static const Livery *LiveryHelper(EngineID engine, const Vehicle *v)
{
const Livery *l;
if (v == NULL) {
if (!Company::IsValidID(_current_company)) return NULL;
l = GetEngineLivery(engine, _current_company, INVALID_ENGINE, NULL, LIT_ALL);
} else if (v->IsGroundVehicle()) {
l = GetEngineLivery(v->engine_type, v->owner, v->GetGroundVehicleCache()->first_engine, v, LIT_ALL);
} else {
l = GetEngineLivery(v->engine_type, v->owner, INVALID_ENGINE, v, LIT_ALL);
}
return l;
}
/**
* Helper to get the position of a vehicle within a chain of vehicles.
* @param v the vehicle to get the position of.
* @param consecutive whether to look at the whole chain or the vehicles
* with the same 'engine type'.
* @return the position in the chain from front and tail and chain length.
*/
static uint32 PositionHelper(const Vehicle *v, bool consecutive)
{
const Vehicle *u;
byte chain_before = 0;
byte chain_after = 0;
for (u = v->First(); u != v; u = u->Next()) {
chain_before++;
if (consecutive && u->engine_type != v->engine_type) chain_before = 0;
}
while (u->Next() != NULL && (!consecutive || u->Next()->engine_type == v->engine_type)) {
chain_after++;
u = u->Next();
}
return chain_before | chain_after << 8 | (chain_before + chain_after + consecutive) << 16;
}
static uint32 VehicleGetVariable(Vehicle *v, const ResolverObject *object, byte variable, uint32 parameter, bool *available)
{
/* Calculated vehicle parameters */
switch (variable) {
case 0x25: // Get engine GRF ID
return v->GetGRFID();
case 0x40: // Get length of consist
if (!HasBit(v->grf_cache.cache_valid, NCVV_POSITION_CONSIST_LENGTH)) {
v->grf_cache.position_consist_length = PositionHelper(v, false);
SetBit(v->grf_cache.cache_valid, NCVV_POSITION_CONSIST_LENGTH);
}
return v->grf_cache.position_consist_length;
case 0x41: // Get length of same consecutive wagons
if (!HasBit(v->grf_cache.cache_valid, NCVV_POSITION_SAME_ID_LENGTH)) {
v->grf_cache.position_same_id_length = PositionHelper(v, true);
SetBit(v->grf_cache.cache_valid, NCVV_POSITION_SAME_ID_LENGTH);
}
return v->grf_cache.position_same_id_length;
case 0x42: { // Consist cargo information
if (!HasBit(v->grf_cache.cache_valid, NCVV_CONSIST_CARGO_INFORMATION)) {
const Vehicle *u;
byte cargo_classes = 0;
uint8 common_cargoes[NUM_CARGO];
uint8 common_subtypes[256];
byte user_def_data = 0;
CargoID common_cargo_type = CT_INVALID;
uint8 common_subtype = 0xFF; // Return 0xFF if nothing is carried
/* Reset our arrays */
memset(common_cargoes, 0, sizeof(common_cargoes));
memset(common_subtypes, 0, sizeof(common_subtypes));
for (u = v; u != NULL; u = u->Next()) {
if (v->type == VEH_TRAIN) user_def_data |= Train::From(u)->tcache.user_def_data;
/* Skip empty engines */
if (!u->GetEngine()->CanCarryCargo()) continue;
cargo_classes |= CargoSpec::Get(u->cargo_type)->classes;
common_cargoes[u->cargo_type]++;
}
/* Pick the most common cargo type */
uint common_cargo_best_amount = 0;
for (CargoID cargo = 0; cargo < NUM_CARGO; cargo++) {
if (common_cargoes[cargo] > common_cargo_best_amount) {
common_cargo_best_amount = common_cargoes[cargo];
common_cargo_type = cargo;
}
}
/* Count subcargo types of common_cargo_type */
for (u = v; u != NULL; u = u->Next()) {
/* Skip empty engines and engines not carrying common_cargo_type */
if (u->cargo_type != common_cargo_type || !u->GetEngine()->CanCarryCargo()) continue;
common_subtypes[u->cargo_subtype]++;
}
/* Pick the most common subcargo type*/
uint common_subtype_best_amount = 0;
for (uint i = 0; i < lengthof(common_subtypes); i++) {
if (common_subtypes[i] > common_subtype_best_amount) {
common_subtype_best_amount = common_subtypes[i];
common_subtype = i;
}
}
/* Note: We have to store the untranslated cargotype in the cache as the cache can be read by different NewGRFs,
* which will need different translations */
v->grf_cache.consist_cargo_information = cargo_classes | (common_cargo_type << 8) | (common_subtype << 16) | (user_def_data << 24);
SetBit(v->grf_cache.cache_valid, NCVV_CONSIST_CARGO_INFORMATION);
}
/* The cargo translation is specific to the accessing GRF, and thus cannot be cached. */
CargoID common_cargo_type = (v->grf_cache.consist_cargo_information >> 8) & 0xFF;
/* Unlike everywhere else the cargo translation table is only used since grf version 8, not 7.
* Note: The grffile == NULL case only happens if this function is called for default vehicles.
* And this is only done by CheckCaches(). */
const GRFFile *grffile = object->grffile;
uint8 common_bitnum = (common_cargo_type == CT_INVALID) ? 0xFF :
(grffile == NULL || grffile->grf_version < 8) ? CargoSpec::Get(common_cargo_type)->bitnum : grffile->cargo_map[common_cargo_type];
return (v->grf_cache.consist_cargo_information & 0xFFFF00FF) | common_bitnum << 8;
}
case 0x43: // Company information
if (!HasBit(v->grf_cache.cache_valid, NCVV_COMPANY_INFORMATION)) {
v->grf_cache.company_information = GetCompanyInfo(v->owner, LiveryHelper(v->engine_type, v));
SetBit(v->grf_cache.cache_valid, NCVV_COMPANY_INFORMATION);
}
return v->grf_cache.company_information;
case 0x44: // Aircraft information
if (v->type != VEH_AIRCRAFT || !Aircraft::From(v)->IsNormalAircraft()) return UINT_MAX;
{
const Vehicle *w = v->Next();
uint16 altitude = v->z_pos - w->z_pos; // Aircraft height - shadow height
byte airporttype = ATP_TTDP_LARGE;
const Station *st = GetTargetAirportIfValid(Aircraft::From(v));
if (st != NULL && st->airport.tile != INVALID_TILE) {
airporttype = st->airport.GetSpec()->ttd_airport_type;
}
return (Clamp(altitude, 0, 0xFF) << 8) | airporttype;
}
case 0x45: { // Curvature info
/* Format: xxxTxBxF
* F - previous wagon to current wagon, 0 if vehicle is first
* B - current wagon to next wagon, 0 if wagon is last
* T - previous wagon to next wagon, 0 in an S-bend
*/
if (!v->IsGroundVehicle()) return 0;
const Vehicle *u_p = v->Previous();
const Vehicle *u_n = v->Next();
DirDiff f = (u_p == NULL) ? DIRDIFF_SAME : DirDifference(u_p->direction, v->direction);
DirDiff b = (u_n == NULL) ? DIRDIFF_SAME : DirDifference(v->direction, u_n->direction);
DirDiff t = ChangeDirDiff(f, b);
return ((t > DIRDIFF_REVERSE ? t | 8 : t) << 16) |
((b > DIRDIFF_REVERSE ? b | 8 : b) << 8) |
( f > DIRDIFF_REVERSE ? f | 8 : f);
}
case 0x46: // Motion counter
return v->motion_counter;
case 0x47: { // Vehicle cargo info
/* Format: ccccwwtt
* tt - the cargo type transported by the vehicle,
* translated if a translation table has been installed.
* ww - cargo unit weight in 1/16 tons, same as cargo prop. 0F.
* cccc - the cargo class value of the cargo transported by the vehicle.
*/
const CargoSpec *cs = CargoSpec::Get(v->cargo_type);
return (cs->classes << 16) | (cs->weight << 8) | v->GetGRF()->cargo_map[v->cargo_type];
}
case 0x48: return v->GetEngine()->flags; // Vehicle Type Info
case 0x49: return v->build_year;
case 0x4A: {
if (v->type != VEH_TRAIN) return 0;
RailType rt = GetTileRailType(v->tile);
return (HasPowerOnRail(Train::From(v)->railtype, rt) ? 0x100 : 0) | GetReverseRailTypeTranslation(rt, object->grffile);
}
case 0x4B: // Long date of last service
return v->date_of_last_service;
case 0x4C: // Current maximum speed in NewGRF units
if (!v->IsPrimaryVehicle()) return 0;
return v->GetCurrentMaxSpeed();
/* Variables which use the parameter */
case 0x60: // Count consist's engine ID occurance
if (v->type != VEH_TRAIN) return v->GetEngine()->grf_prop.local_id == parameter ? 1 : 0;
{
uint count = 0;
for (; v != NULL; v = v->Next()) {
if (v->GetEngine()->grf_prop.local_id == parameter) count++;
}
return count;
}
case 0x61: // Get variable of n-th vehicle in chain [signed number relative to vehicle]
if (!v->IsGroundVehicle() || parameter == 0x61) return 0;
/* Only allow callbacks that don't change properties to avoid circular dependencies. */
if (object->callback == CBID_NO_CALLBACK || object->callback == CBID_TRAIN_ALLOW_WAGON_ATTACH || object->callback == CBID_VEHICLE_START_STOP_CHECK || object->callback == CBID_VEHICLE_32DAY_CALLBACK) {
Vehicle *u = v->Move((int32)GetRegister(0x10F));
if (u == NULL) return 0;
return VehicleGetVariable(u, object, parameter, GetRegister(0x10E), available);
}
return 0;
case 0x62: { // Curvature/position difference for n-th vehicle in chain [signed number relative to vehicle]
/* Format: zzyyxxFD
* zz - Signed difference of z position between the selected and this vehicle.
* yy - Signed difference of y position between the selected and this vehicle.
* xx - Signed difference of x position between the selected and this vehicle.
* F - Flags, bit 7 corresponds to VS_HIDDEN.
* D - Dir difference, like in 0x45.
*/
if (!v->IsGroundVehicle()) return 0;
const Vehicle *u = v->Move((int8)parameter);
if (u == NULL) return 0;
/* Get direction difference. */
bool prev = (int8)parameter < 0;
uint32 ret = prev ? DirDifference(u->direction, v->direction) : DirDifference(v->direction, u->direction);
if (ret > DIRDIFF_REVERSE) ret |= 0x08;
if (u->vehstatus & VS_HIDDEN) ret |= 0x80;
/* Get position difference. */
ret |= ((prev ? u->x_pos - v->x_pos : v->x_pos - u->x_pos) & 0xFF) << 8;
ret |= ((prev ? u->y_pos - v->y_pos : v->y_pos - u->y_pos) & 0xFF) << 16;
ret |= ((prev ? u->z_pos - v->z_pos : v->z_pos - u->z_pos) & 0xFF) << 24;
return ret;
}
case 0xFE:
case 0xFF: {
uint16 modflags = 0;
if (v->type == VEH_TRAIN) {
const Train *t = Train::From(v);
bool is_powered_wagon = HasBit(t->flags, VRF_POWEREDWAGON);
const Train *u = is_powered_wagon ? t->First() : t; // for powered wagons the engine defines the type of engine (i.e. railtype)
RailType railtype = GetRailType(v->tile);
bool powered = t->IsEngine() || is_powered_wagon;
bool has_power = HasPowerOnRail(u->railtype, railtype);
if (powered && has_power) SetBit(modflags, 5);
if (powered && !has_power) SetBit(modflags, 6);
if (HasBit(t->flags, VRF_TOGGLE_REVERSE)) SetBit(modflags, 8);
}
if (HasBit(v->vehicle_flags, VF_BUILT_AS_PROTOTYPE)) SetBit(modflags, 10);
return variable == 0xFE ? modflags : GB(modflags, 8, 8);
}
}
/* General vehicle properties */
switch (variable - 0x80) {
case 0x00: return v->type + 0x10;
case 0x01: return MapOldSubType(v);
case 0x04: return v->index;
case 0x05: return GB(v->index, 8, 8);
case 0x0A: return v->current_order.MapOldOrder();
case 0x0B: return v->current_order.GetDestination();
case 0x0C: return v->GetNumOrders();
case 0x0D: return v->cur_real_order_index;
case 0x10:
case 0x11: {
uint ticks;
if (v->current_order.IsType(OT_LOADING)) {
ticks = v->load_unload_ticks;
} else {
switch (v->type) {
case VEH_TRAIN: ticks = Train::From(v)->wait_counter; break;
case VEH_AIRCRAFT: ticks = Aircraft::From(v)->turn_counter; break;
default: ticks = 0; break;
}
}
return (variable - 0x80) == 0x10 ? ticks : GB(ticks, 8, 8);
}
case 0x12: return Clamp(v->date_of_last_service - DAYS_TILL_ORIGINAL_BASE_YEAR, 0, 0xFFFF);
case 0x13: return GB(Clamp(v->date_of_last_service - DAYS_TILL_ORIGINAL_BASE_YEAR, 0, 0xFFFF), 8, 8);
case 0x14: return v->service_interval;
case 0x15: return GB(v->service_interval, 8, 8);
case 0x16: return v->last_station_visited;
case 0x17: return v->tick_counter;
case 0x18:
case 0x19: {
uint max_speed;
switch (v->type) {
case VEH_AIRCRAFT:
max_speed = Aircraft::From(v)->GetSpeedOldUnits(); // Convert to old units.
break;
default:
max_speed = v->vcache.cached_max_speed;
break;
}
return (variable - 0x80) == 0x18 ? max_speed : GB(max_speed, 8, 8);
}
case 0x1A: return v->x_pos;
case 0x1B: return GB(v->x_pos, 8, 8);
case 0x1C: return v->y_pos;
case 0x1D: return GB(v->y_pos, 8, 8);
case 0x1E: return v->z_pos;
case 0x1F: return object->u.vehicle.info_view ? DIR_W : v->direction;
case 0x28: return 0; // cur_image is a potential desyncer due to Action1 in static NewGRFs.
case 0x29: return 0; // cur_image is a potential desyncer due to Action1 in static NewGRFs.
case 0x32: return v->vehstatus;
case 0x33: return 0; // non-existent high byte of vehstatus
case 0x34: return v->type == VEH_AIRCRAFT ? (v->cur_speed * 10) / 128 : v->cur_speed;
case 0x35: return GB(v->type == VEH_AIRCRAFT ? (v->cur_speed * 10) / 128 : v->cur_speed, 8, 8);
case 0x36: return v->subspeed;
case 0x37: return v->acceleration;
case 0x39: return v->cargo_type;
case 0x3A: return v->cargo_cap;
case 0x3B: return GB(v->cargo_cap, 8, 8);
case 0x3C: return ClampToU16(v->cargo.Count());
case 0x3D: return GB(ClampToU16(v->cargo.Count()), 8, 8);
case 0x3E: return v->cargo.Source();
case 0x3F: return ClampU(v->cargo.DaysInTransit(), 0, 0xFF);
case 0x40: return ClampToU16(v->age);
case 0x41: return GB(ClampToU16(v->age), 8, 8);
case 0x42: return ClampToU16(v->max_age);
case 0x43: return GB(ClampToU16(v->max_age), 8, 8);
case 0x44: return Clamp(v->build_year, ORIGINAL_BASE_YEAR, ORIGINAL_MAX_YEAR) - ORIGINAL_BASE_YEAR;
case 0x45: return v->unitnumber;
case 0x46: return v->GetEngine()->grf_prop.local_id;
case 0x47: return GB(v->GetEngine()->grf_prop.local_id, 8, 8);
case 0x48:
if (v->type != VEH_TRAIN || v->spritenum != 0xFD) return v->spritenum;
return HasBit(Train::From(v)->flags, VRF_REVERSE_DIRECTION) ? 0xFE : 0xFD;
case 0x49: return v->day_counter;
case 0x4A: return v->breakdowns_since_last_service;
case 0x4B: return v->breakdown_ctr;
case 0x4C: return v->breakdown_delay;
case 0x4D: return v->breakdown_chance;
case 0x4E: return v->reliability;
case 0x4F: return GB(v->reliability, 8, 8);
case 0x50: return v->reliability_spd_dec;
case 0x51: return GB(v->reliability_spd_dec, 8, 8);
case 0x52: return ClampToI32(v->GetDisplayProfitThisYear());
case 0x53: return GB(ClampToI32(v->GetDisplayProfitThisYear()), 8, 24);
case 0x54: return GB(ClampToI32(v->GetDisplayProfitThisYear()), 16, 16);
case 0x55: return GB(ClampToI32(v->GetDisplayProfitThisYear()), 24, 8);
case 0x56: return ClampToI32(v->GetDisplayProfitLastYear());
case 0x57: return GB(ClampToI32(v->GetDisplayProfitLastYear()), 8, 24);
case 0x58: return GB(ClampToI32(v->GetDisplayProfitLastYear()), 16, 16);
case 0x59: return GB(ClampToI32(v->GetDisplayProfitLastYear()), 24, 8);
case 0x5A: return v->Next() == NULL ? INVALID_VEHICLE : v->Next()->index;
case 0x5C: return ClampToI32(v->value);
case 0x5D: return GB(ClampToI32(v->value), 8, 24);
case 0x5E: return GB(ClampToI32(v->value), 16, 16);
case 0x5F: return GB(ClampToI32(v->value), 24, 8);
case 0x72: return v->cargo_subtype;
case 0x7A: return v->random_bits;
case 0x7B: return v->waiting_triggers;
}
/* Vehicle specific properties */
switch (v->type) {
case VEH_TRAIN: {
Train *t = Train::From(v);
switch (variable - 0x80) {
case 0x62: return t->track;
case 0x66: return t->railtype;
case 0x73: return 0x80 + VEHICLE_LENGTH - t->gcache.cached_veh_length;
case 0x74: return t->gcache.cached_power;
case 0x75: return GB(t->gcache.cached_power, 8, 24);
case 0x76: return GB(t->gcache.cached_power, 16, 16);
case 0x77: return GB(t->gcache.cached_power, 24, 8);
case 0x7C: return t->First()->index;
case 0x7D: return GB(t->First()->index, 8, 8);
case 0x7F: return 0; // Used for vehicle reversing hack in TTDP
}
break;
}
case VEH_ROAD: {
RoadVehicle *rv = RoadVehicle::From(v);
switch (variable - 0x80) {
case 0x62: return rv->state;
case 0x64: return rv->blocked_ctr;
case 0x65: return GB(rv->blocked_ctr, 8, 8);
case 0x66: return rv->overtaking;
case 0x67: return rv->overtaking_ctr;
case 0x68: return rv->crashed_ctr;
case 0x69: return GB(rv->crashed_ctr, 8, 8);
}
break;
}
case VEH_AIRCRAFT: {
Aircraft *a = Aircraft::From(v);
switch (variable - 0x80) {
case 0x62: return MapAircraftMovementState(a); // Current movement state
case 0x63: return a->targetairport; // Airport to which the action refers
case 0x66: return MapAircraftMovementAction(a); // Current movement action
}
break;
}
default: break;
}
DEBUG(grf, 1, "Unhandled vehicle variable 0x%X, type 0x%X", variable, (uint)v->type);
*available = false;
return UINT_MAX;
}
static uint32 VehicleGetVariable(const ResolverObject *object, byte variable, uint32 parameter, bool *available)
{
Vehicle *v = const_cast(GRV(object));
if (v == NULL) {
/* Vehicle does not exist, so we're in a purchase list */
switch (variable) {
case 0x43: return GetCompanyInfo(_current_company, LiveryHelper(object->u.vehicle.self_type, NULL)); // Owner information
case 0x46: return 0; // Motion counter
case 0x47: { // Vehicle cargo info
const Engine *e = Engine::Get(object->u.vehicle.self_type);
CargoID cargo_type = e->GetDefaultCargoType();
if (cargo_type != CT_INVALID) {
const CargoSpec *cs = CargoSpec::Get(cargo_type);
return (cs->classes << 16) | (cs->weight << 8) | e->GetGRF()->cargo_map[cargo_type];
} else {
return 0x000000FF;
}
}
case 0x48: return Engine::Get(object->u.vehicle.self_type)->flags; // Vehicle Type Info
case 0x49: return _cur_year; // 'Long' format build year
case 0x4B: return _date; // Long date of last service
case 0x92: return Clamp(_date - DAYS_TILL_ORIGINAL_BASE_YEAR, 0, 0xFFFF); // Date of last service
case 0x93: return GB(Clamp(_date - DAYS_TILL_ORIGINAL_BASE_YEAR, 0, 0xFFFF), 8, 8);
case 0xC4: return Clamp(_cur_year, ORIGINAL_BASE_YEAR, ORIGINAL_MAX_YEAR) - ORIGINAL_BASE_YEAR; // Build year
case 0xDA: return INVALID_VEHICLE; // Next vehicle
case 0xF2: return 0; // Cargo subtype
}
*available = false;
return UINT_MAX;
}
return VehicleGetVariable(v, object, variable, parameter, available);
}
static const SpriteGroup *VehicleResolveReal(const ResolverObject *object, const RealSpriteGroup *group)
{
const Vehicle *v = object->u.vehicle.self;
if (v == NULL) {
if (group->num_loading > 0) return group->loading[0];
if (group->num_loaded > 0) return group->loaded[0];
return NULL;
}
bool in_motion = !v->First()->current_order.IsType(OT_LOADING);
uint totalsets = in_motion ? group->num_loaded : group->num_loading;
if (totalsets == 0) return NULL;
uint set = (v->cargo.Count() * totalsets) / max((uint16)1, v->cargo_cap);
set = min(set, totalsets - 1);
return in_motion ? group->loaded[set] : group->loading[set];
}
static inline void NewVehicleResolver(ResolverObject *res, EngineID engine_type, const Vehicle *v)
{
res->GetRandomBits = &VehicleGetRandomBits;
res->GetTriggers = &VehicleGetTriggers;
res->SetTriggers = &VehicleSetTriggers;
res->GetVariable = &VehicleGetVariable;
res->ResolveReal = &VehicleResolveReal;
res->u.vehicle.self = v;
res->u.vehicle.parent = (v != NULL) ? v->First() : v;
res->u.vehicle.self_type = engine_type;
res->u.vehicle.info_view = false;
res->callback = CBID_NO_CALLBACK;
res->callback_param1 = 0;
res->callback_param2 = 0;
res->ResetState();
const Engine *e = Engine::Get(engine_type);
res->grffile = (e != NULL ? e->GetGRF() : NULL);
}
/**
* Retrieve the SpriteGroup for the specified vehicle.
* If the vehicle is not specified, the purchase list group for the engine is
* chosen. For trains, an additional engine override lookup is performed.
* @param engine Engine type of the vehicle.
* @param v The vehicle itself.
* @param use_cache Use cached override
* @returns The selected SpriteGroup for the vehicle.
*/
static const SpriteGroup *GetVehicleSpriteGroup(EngineID engine, const Vehicle *v, bool use_cache = true)
{
const SpriteGroup *group;
CargoID cargo;
if (v == NULL) {
cargo = CT_PURCHASE;
} else {
cargo = v->cargo_type;
if (v->IsGroundVehicle()) {
/* For trains we always use cached value, except for callbacks because the override spriteset
* to use may be different than the one cached. It happens for callback 0x15 (refit engine),
* as v->cargo_type is temporary changed to the new type */
if (use_cache && v->type == VEH_TRAIN) {
group = Train::From(v)->tcache.cached_override;
} else {
group = GetWagonOverrideSpriteSet(v->engine_type, v->cargo_type, v->GetGroundVehicleCache()->first_engine);
}
if (group != NULL) return group;
}
}
const Engine *e = Engine::Get(engine);
assert(cargo < lengthof(e->grf_prop.spritegroup));
group = e->grf_prop.spritegroup[cargo];
if (group != NULL) return group;
/* Fall back to the default set if the selected cargo type is not defined */
return e->grf_prop.spritegroup[CT_DEFAULT];
}
SpriteID GetCustomEngineSprite(EngineID engine, const Vehicle *v, Direction direction, EngineImageType image_type)
{
const SpriteGroup *group;
ResolverObject object;
NewVehicleResolver(&object, engine, v);
object.callback_param1 = image_type;
group = SpriteGroup::Resolve(GetVehicleSpriteGroup(engine, v), &object);
if (group == NULL || group->GetNumResults() == 0) return 0;
return group->GetResult() + (direction % group->GetNumResults());
}
SpriteID GetRotorOverrideSprite(EngineID engine, const Aircraft *v, bool info_view, EngineImageType image_type)
{
const Engine *e = Engine::Get(engine);
/* Only valid for helicopters */
assert(e->type == VEH_AIRCRAFT);
assert(!(e->u.air.subtype & AIR_CTOL));
ResolverObject object;
NewVehicleResolver(&object, engine, v);
object.callback_param1 = image_type;
object.u.vehicle.info_view = info_view;
const SpriteGroup *group = GetWagonOverrideSpriteSet(engine, CT_DEFAULT, engine);
group = SpriteGroup::Resolve(group, &object);
if (group == NULL || group->GetNumResults() == 0) return 0;
if (v == NULL) return group->GetResult();
return group->GetResult() + (info_view ? 0 : (v->Next()->Next()->state % group->GetNumResults()));
}
/**
* Check if a wagon is currently using a wagon override
* @param v The wagon to check
* @return true if it is using an override, false otherwise
*/
bool UsesWagonOverride(const Vehicle *v)
{
assert(v->type == VEH_TRAIN);
return Train::From(v)->tcache.cached_override != NULL;
}
/**
* Evaluate a newgrf callback for vehicles
* @param callback The callback to evalute
* @param param1 First parameter of the callback
* @param param2 Second parameter of the callback
* @param engine Engine type of the vehicle to evaluate the callback for
* @param v The vehicle to evaluate the callback for, or NULL if it doesnt exist yet
* @return The value the callback returned, or CALLBACK_FAILED if it failed
*/
uint16 GetVehicleCallback(CallbackID callback, uint32 param1, uint32 param2, EngineID engine, const Vehicle *v)
{
const SpriteGroup *group;
ResolverObject object;
NewVehicleResolver(&object, engine, v);
object.callback = callback;
object.callback_param1 = param1;
object.callback_param2 = param2;
group = SpriteGroup::Resolve(GetVehicleSpriteGroup(engine, v, false), &object);
if (group == NULL) return CALLBACK_FAILED;
return group->GetCallbackResult();
}
/**
* Evaluate a newgrf callback for vehicles with a different vehicle for parent scope.
* @param callback The callback to evalute
* @param param1 First parameter of the callback
* @param param2 Second parameter of the callback
* @param engine Engine type of the vehicle to evaluate the callback for
* @param v The vehicle to evaluate the callback for, or NULL if it doesnt exist yet
* @param parent The vehicle to use for parent scope
* @return The value the callback returned, or CALLBACK_FAILED if it failed
*/
uint16 GetVehicleCallbackParent(CallbackID callback, uint32 param1, uint32 param2, EngineID engine, const Vehicle *v, const Vehicle *parent)
{
const SpriteGroup *group;
ResolverObject object;
NewVehicleResolver(&object, engine, v);
object.callback = callback;
object.callback_param1 = param1;
object.callback_param2 = param2;
object.u.vehicle.parent = parent;
group = SpriteGroup::Resolve(GetVehicleSpriteGroup(engine, v, false), &object);
if (group == NULL) return CALLBACK_FAILED;
return group->GetCallbackResult();
}
/* Callback 36 handlers */
uint GetVehicleProperty(const Vehicle *v, PropertyID property, uint orig_value)
{
return GetEngineProperty(v->engine_type, property, orig_value, v);
}
uint GetEngineProperty(EngineID engine, PropertyID property, uint orig_value, const Vehicle *v)
{
uint16 callback = GetVehicleCallback(CBID_VEHICLE_MODIFY_PROPERTY, property, 0, engine, v);
if (callback != CALLBACK_FAILED) return callback;
return orig_value;
}
static void DoTriggerVehicle(Vehicle *v, VehicleTrigger trigger, byte base_random_bits, bool first)
{
const SpriteGroup *group;
ResolverObject object;
byte new_random_bits;
/* We can't trigger a non-existent vehicle... */
assert(v != NULL);
NewVehicleResolver(&object, v->engine_type, v);
object.callback = CBID_RANDOM_TRIGGER;
object.trigger = trigger;
group = SpriteGroup::Resolve(GetVehicleSpriteGroup(v->engine_type, v), &object);
if (group == NULL) return;
new_random_bits = Random();
uint32 reseed = object.GetReseedSum(); // The scope only affects triggers, not the reseeding
v->random_bits &= ~reseed;
v->random_bits |= (first ? new_random_bits : base_random_bits) & reseed;
switch (trigger) {
case VEHICLE_TRIGGER_NEW_CARGO:
/* All vehicles in chain get ANY_NEW_CARGO trigger now.
* So we call it for the first one and they will recurse.
* Indexing part of vehicle random bits needs to be
* same for all triggered vehicles in the chain (to get
* all the random-cargo wagons carry the same cargo,
* i.e.), so we give them all the NEW_CARGO triggered
* vehicle's portion of random bits. */
assert(first);
DoTriggerVehicle(v->First(), VEHICLE_TRIGGER_ANY_NEW_CARGO, new_random_bits, false);
break;
case VEHICLE_TRIGGER_DEPOT:
/* We now trigger the next vehicle in chain recursively.
* The random bits portions may be different for each
* vehicle in chain. */
if (v->Next() != NULL) DoTriggerVehicle(v->Next(), trigger, 0, true);
break;
case VEHICLE_TRIGGER_EMPTY:
/* We now trigger the next vehicle in chain
* recursively. The random bits portions must be same
* for each vehicle in chain, so we give them all
* first chained vehicle's portion of random bits. */
if (v->Next() != NULL) DoTriggerVehicle(v->Next(), trigger, first ? new_random_bits : base_random_bits, false);
break;
case VEHICLE_TRIGGER_ANY_NEW_CARGO:
/* Now pass the trigger recursively to the next vehicle
* in chain. */
assert(!first);
if (v->Next() != NULL) DoTriggerVehicle(v->Next(), VEHICLE_TRIGGER_ANY_NEW_CARGO, base_random_bits, false);
break;
case VEHICLE_TRIGGER_CALLBACK_32:
/* Do not do any recursion */
break;
}
}
void TriggerVehicle(Vehicle *v, VehicleTrigger trigger)
{
if (trigger == VEHICLE_TRIGGER_DEPOT) {
/* store that the vehicle entered a depot this tick */
VehicleEnteredDepotThisTick(v);
}
v->InvalidateNewGRFCacheOfChain();
DoTriggerVehicle(v, trigger, 0, true);
v->InvalidateNewGRFCacheOfChain();
}
/* Functions for changing the order of vehicle purchase lists */
struct ListOrderChange {
EngineID engine;
uint target; ///< local ID
};
static SmallVector _list_order_changes;
/**
* Record a vehicle ListOrderChange.
* @param engine Engine to move
* @param target Local engine ID to move \a engine in front of
* @note All sorting is done later in CommitVehicleListOrderChanges
*/
void AlterVehicleListOrder(EngineID engine, uint target)
{
/* Add the list order change to a queue */
ListOrderChange *loc = _list_order_changes.Append();
loc->engine = engine;
loc->target = target;
}
/**
* Comparator function to sort engines via scope-GRFID and local ID.
* @param a left side
* @param b right side
* @return comparison result
*/
static int CDECL EnginePreSort(const EngineID *a, const EngineID *b)
{
const EngineIDMapping *id_a = _engine_mngr.Get(*a);
const EngineIDMapping *id_b = _engine_mngr.Get(*b);
/* 1. Sort by engine type */
if (id_a->type != id_b->type) return (int)id_a->type - (int)id_b->type;
/* 2. Sort by scope-GRFID */
if (id_a->grfid != id_b->grfid) return id_a->grfid < id_b->grfid ? -1 : 1;
/* 3. Sort by local ID */
return (int)id_a->internal_id - (int)id_b->internal_id;
}
/**
* Deternine default engine sorting and execute recorded ListOrderChanges from AlterVehicleListOrder.
*/
void CommitVehicleListOrderChanges()
{
/* Pre-sort engines by scope-grfid and local index */
SmallVector ordering;
Engine *e;
FOR_ALL_ENGINES(e) {
*ordering.Append() = e->index;
}
QSortT(ordering.Begin(), ordering.Length(), EnginePreSort);
/* Apply Insertion-Sort opeations */
const ListOrderChange *end = _list_order_changes.End();
for (const ListOrderChange *it = _list_order_changes.Begin(); it != end; ++it) {
EngineID source = it->engine;
uint local_target = it->target;
const EngineIDMapping *id_source = _engine_mngr.Get(source);
if (id_source->internal_id == local_target) continue;
EngineID target = _engine_mngr.GetID(id_source->type, local_target, id_source->grfid);
if (target == INVALID_ENGINE) continue;
int source_index = ordering.FindIndex(source);
int target_index = ordering.FindIndex(target);
assert(source_index >= 0 && target_index >= 0);
assert(source_index != target_index);
EngineID *list = ordering.Begin();
if (source_index < target_index) {
--target_index;
for (int i = source_index; i < target_index; ++i) list[i] = list[i + 1];
list[target_index] = source;
} else {
for (int i = source_index; i > target_index; --i) list[i] = list[i - 1];
list[target_index] = source;
}
}
/* Store final sort-order */
const EngineID *idend = ordering.End();
uint index = 0;
for (const EngineID *it = ordering.Begin(); it != idend; ++it, ++index) {
Engine::Get(*it)->list_position = index;
}
/* Clear out the queue */
_list_order_changes.Reset();
}
/**
* Resolve an engine's spec and such so we can get a variable.
* @param ro The resolver object to fill.
* @param index The vehicle to get the data from.
*/
void GetVehicleResolver(ResolverObject *ro, uint index)
{
Vehicle *v = Vehicle::Get(index);
NewVehicleResolver(ro, v->engine_type, v);
}
/**
* Fill the grf_cache of the given vehicle.
* @param v The vehicle to fill the cache for.
*/
void FillNewGRFVehicleCache(const Vehicle *v)
{
ResolverObject ro;
memset(&ro, 0, sizeof(ro));
GetVehicleResolver(&ro, v->index);
/* These variables we have to check; these are the ones with a cache. */
static const int cache_entries[][2] = {
{ 0x40, NCVV_POSITION_CONSIST_LENGTH },
{ 0x41, NCVV_POSITION_SAME_ID_LENGTH },
{ 0x42, NCVV_CONSIST_CARGO_INFORMATION },
{ 0x43, NCVV_COMPANY_INFORMATION },
};
assert_compile(NCVV_END == lengthof(cache_entries));
/* Resolve all the variables, so their caches are set. */
for (size_t i = 0; i < lengthof(cache_entries); i++) {
/* Only resolve when the cache isn't valid. */
if (HasBit(v->grf_cache.cache_valid, cache_entries[i][1])) continue;
bool stub;
ro.GetVariable(&ro, cache_entries[i][0], 0, &stub);
}
/* Make sure really all bits are set. */
assert(v->grf_cache.cache_valid == (1 << NCVV_END) - 1);
}