/* $Id$ */ /* * This file is part of OpenTTD. * OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2. * OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>. */ /** @file binaryheap.hpp Binary heap implementation. */ #ifndef BINARYHEAP_HPP #define BINARYHEAP_HPP /** * Binary Heap as C++ template. * * For information about Binary Heap algotithm, * see: http://www.policyalmanac.org/games/binaryHeaps.htm * * Implementation specific notes: * * 1) It allocates space for item pointers (array). Items are allocated elsewhere. * * 2) ItemPtr [0] is never used. Total array size is max_items + 1, because we * use indices 1..max_items instead of zero based C indexing. * * 3) Item of the binary heap should support these public members: * - 'lower-than' operator '<' - used for comparing items before moving * */ template <class Titem_> class CBinaryHeapT { public: typedef Titem_ *ItemPtr; private: int m_size; ///< Number of items in the heap int m_max_size; ///< Maximum number of items the heap can hold ItemPtr *m_items; ///< The heap item pointers public: explicit CBinaryHeapT(int max_items = 102400) : m_size(0) , m_max_size(max_items) { m_items = new ItemPtr[max_items + 1]; } ~CBinaryHeapT() { Clear(); delete [] m_items; m_items = NULL; } public: /** Return the number of items stored in the priority queue. * @return number of items in the queue */ FORCEINLINE int Size() const {return m_size;}; /** Test if the priority queue is empty. * @return true if empty */ FORCEINLINE bool IsEmpty() const {return (m_size == 0);}; /** Test if the priority queue is full. * @return true if full. */ FORCEINLINE bool IsFull() const {return (m_size >= m_max_size);}; /** Find the smallest item in the priority queue. * Return the smallest item, or throw assert if empty. */ FORCEINLINE Titem_& GetHead() {assert(!IsEmpty()); return *m_items[1];} /** Insert new item into the priority queue, maintaining heap order. * @return false if the queue is full. */ bool Push(Titem_& new_item); /** Remove and return the smallest item from the priority queue. */ FORCEINLINE Titem_& PopHead() {Titem_& ret = GetHead(); RemoveHead(); return ret;}; /** Remove the smallest item from the priority queue. */ void RemoveHead(); /** Remove item specified by index */ void RemoveByIdx(int idx); /** return index of the item that matches (using &item1 == &item2) the given item. */ int FindLinear(const Titem_& item) const; /** Make the priority queue empty. * All remaining items will remain untouched. */ void Clear() {m_size = 0;}; /** verifies the heap consistency (added during first YAPF debug phase) */ void CheckConsistency(); }; template <class Titem_> FORCEINLINE bool CBinaryHeapT<Titem_>::Push(Titem_& new_item) { if (IsFull()) return false; /* make place for new item */ int gap = ++m_size; /* Heapify up */ for (int parent = gap / 2; (parent > 0) && (new_item < *m_items[parent]); gap = parent, parent /= 2) m_items[gap] = m_items[parent]; m_items[gap] = &new_item; CheckConsistency(); return true; } template <class Titem_> FORCEINLINE void CBinaryHeapT<Titem_>::RemoveHead() { assert(!IsEmpty()); /* at index 1 we have a gap now */ int gap = 1; /* Heapify down: * last item becomes a candidate for the head. Call it new_item. */ Titem_& new_item = *m_items[m_size--]; /* now we must maintain relation between parent and its children: * parent <= any child * from head down to the tail */ int child = 2; // first child is at [parent * 2] /* while children are valid */ while (child <= m_size) { /* choose the smaller child */ if (child < m_size && *m_items[child + 1] < *m_items[child]) child++; /* is it smaller than our parent? */ if (!(*m_items[child] < new_item)) { /* the smaller child is still bigger or same as parent => we are done */ break; } /* if smaller child is smaller than parent, it will become new parent */ m_items[gap] = m_items[child]; gap = child; /* where do we have our new children? */ child = gap * 2; } /* move last item to the proper place */ if (m_size > 0) m_items[gap] = &new_item; CheckConsistency(); } template <class Titem_> inline void CBinaryHeapT<Titem_>::RemoveByIdx(int idx) { /* at position idx we have a gap now */ int gap = idx; Titem_& last = *m_items[m_size]; if (idx < m_size) { assert(idx >= 1); m_size--; /* and the candidate item for fixing this gap is our last item 'last' * Move gap / last item up: */ while (gap > 1) { /* compare [gap] with its parent */ int parent = gap / 2; if (last < *m_items[parent]) { m_items[gap] = m_items[parent]; gap = parent; } else { /* we don't need to continue upstairs */ break; } } /* Heapify (move gap) down: */ while (true) { /* where we do have our children? */ int child = gap * 2; // first child is at [parent * 2] if (child > m_size) break; /* choose the smaller child */ if (child < m_size && *m_items[child + 1] < *m_items[child]) child++; /* is it smaller than our parent? */ if (!(*m_items[child] < last)) { /* the smaller child is still bigger or same as parent => we are done */ break; } /* if smaller child is smaller than parent, it will become new parent */ m_items[gap] = m_items[child]; gap = child; } /* move parent to the proper place */ if (m_size > 0) m_items[gap] = &last; } else { assert(idx == m_size); m_size--; } CheckConsistency(); } template <class Titem_> inline int CBinaryHeapT<Titem_>::FindLinear(const Titem_& item) const { if (IsEmpty()) return 0; for (ItemPtr *ppI = m_items + 1, *ppLast = ppI + m_size; ppI <= ppLast; ppI++) { if (*ppI == &item) { return ppI - m_items; } } return 0; } template <class Titem_> FORCEINLINE void CBinaryHeapT<Titem_>::CheckConsistency() { /* enable it if you suspect binary heap doesn't work well */ #if 0 for (int child = 2; child <= m_size; child++) { int parent = child / 2; assert(!(m_items[child] < m_items[parent])); } #endif } #endif /* BINARYHEAP_HPP */