/* $Id$ */ /* * This file is part of OpenTTD. * OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2. * OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see . */ /** * @file elrail.cpp * This file deals with displaying wires and pylons for electric railways. *

Basics

* *

Tile Types

* * We have two different types of tiles in the drawing code: * Normal Railway Tiles (NRTs) which can have more than one track on it, and * Special Railways tiles (SRTs) which have only one track (like crossings, depots * stations, etc). * *

Location Categories

* * All tiles are categorized into three location groups (TLG): * Group 0: Tiles with both an even X coordinate and an even Y coordinate * Group 1: Tiles with an even X and an odd Y coordinate * Group 2: Tiles with an odd X and an even Y coordinate * Group 3: Tiles with both an odd X and Y coordnate. * *

Pylon Points

*

Control Points

* A Pylon Control Point (PCP) is a position where a wire (or rather two) * is mounted onto a pylon. * Each NRT does contain 4 PCPs which are bitmapped to a byte * variable and are represented by the DiagDirection enum * * Each track ends on two PCPs and thus requires one pylon on each end. However, * there is one exception: Straight-and-level tracks only have one pylon every * other tile. * * Now on each edge there are two PCPs: One from each adjacent tile. Both PCPs * are merged using an OR operation (i. e. if one tile needs a PCP at the postion * in question, both tiles get it). * *

Position Points

* A Pylon Position Point (PPP) is a position where a pylon is located on the * ground. Each PCP owns 8 in (45 degree steps) PPPs that are located around * it. PPPs are represented using the Direction enum. Each track bit has PPPs * that are impossible (because the pylon would be situated on the track) and * some that are preferred (because the pylon would be rectangular to the track). * * * * */ #include "stdafx.h" #include "station_map.h" #include "viewport_func.h" #include "train.h" #include "rail_gui.h" #include "tunnelbridge_map.h" #include "tunnelbridge.h" #include "elrail_func.h" #include "company_base.h" #include "newgrf_railtype.h" #include "table/elrail_data.h" /** * Get the tile location group of a tile. * @param t The tile to get the tile location group of. * @return The tile location group. */ static inline TLG GetTLG(TileIndex t) { return (TLG)((HasBit(TileX(t), 0) << 1) + HasBit(TileY(t), 0)); } /** * Finds which Electrified Rail Bits are present on a given tile. * @param t tile to check * @param override pointer to PCP override, can be NULL * @return trackbits of tile if it is electrified */ static TrackBits GetRailTrackBitsUniversal(TileIndex t, byte *override) { switch (GetTileType(t)) { case MP_RAILWAY: if (!HasCatenary(GetRailType(t))) return TRACK_BIT_NONE; switch (GetRailTileType(t)) { case RAIL_TILE_NORMAL: case RAIL_TILE_SIGNALS: return GetTrackBits(t); default: return TRACK_BIT_NONE; } break; case MP_TUNNELBRIDGE: if (!HasCatenary(GetRailType(t))) return TRACK_BIT_NONE; if (override != NULL && (IsTunnel(t) || GetTunnelBridgeLength(t, GetOtherBridgeEnd(t)) > 0)) { *override = 1 << GetTunnelBridgeDirection(t); } return DiagDirToDiagTrackBits(GetTunnelBridgeDirection(t)); case MP_ROAD: if (!IsLevelCrossing(t)) return TRACK_BIT_NONE; if (!HasCatenary(GetRailType(t))) return TRACK_BIT_NONE; return GetCrossingRailBits(t); case MP_STATION: if (!HasStationRail(t)) return TRACK_BIT_NONE; if (!HasCatenary(GetRailType(t))) return TRACK_BIT_NONE; if (!IsStationTileElectrifiable(t)) return TRACK_BIT_NONE; return TrackToTrackBits(GetRailStationTrack(t)); default: return TRACK_BIT_NONE; } } /** * Masks out track bits when neighbouring tiles are unelectrified. */ static TrackBits MaskWireBits(TileIndex t, TrackBits tracks) { if (!IsPlainRailTile(t)) return tracks; TrackdirBits neighbour_tdb = TRACKDIR_BIT_NONE; for (DiagDirection d = DIAGDIR_BEGIN; d < DIAGDIR_END; d++) { /* If the neighbor tile is either not electrified or has no tracks that can be reached * from this tile, mark all trackdirs that can be reached from the neighbour tile * as needing no catenary. */ RailType rt = GetTileRailType(TileAddByDiagDir(t, d)); if (rt == INVALID_RAILTYPE || !HasCatenary(rt) || (TrackStatusToTrackBits(GetTileTrackStatus(TileAddByDiagDir(t, d), TRANSPORT_RAIL, 0)) & DiagdirReachesTracks(d)) == TRACK_BIT_NONE) { neighbour_tdb |= DiagdirReachesTrackdirs(ReverseDiagDir(d)); } } /* If the tracks from either a diagonal crossing or don't overlap, both * trackdirs have to be marked to mask the corresponding track bit. Else * one marked trackdir is enough the mask the track bit. */ TrackBits mask; if (tracks == TRACK_BIT_CROSS || !TracksOverlap(tracks)) { /* If the tracks form either a diagonal crossing or don't overlap, both * trackdirs have to be marked to mask the corresponding track bit. */ mask = ~(TrackBits)((neighbour_tdb & (neighbour_tdb >> 8)) & TRACK_BIT_MASK); /* If that results in no masked tracks and it is not a diagonal crossing, * require only one marked trackdir to mask. */ if (tracks != TRACK_BIT_CROSS && (mask & TRACK_BIT_MASK) == TRACK_BIT_MASK) mask = ~TrackdirBitsToTrackBits(neighbour_tdb); } else { /* Require only one marked trackdir to mask the track. */ mask = ~TrackdirBitsToTrackBits(neighbour_tdb); /* If that results in an empty set, require both trackdirs for diagonal track. */ if ((tracks & mask) == TRACK_BIT_NONE) { if ((neighbour_tdb & TRACKDIR_BIT_X_NE) == 0 || (neighbour_tdb & TRACKDIR_BIT_X_SW) == 0) mask |= TRACK_BIT_X; if ((neighbour_tdb & TRACKDIR_BIT_Y_NW) == 0 || (neighbour_tdb & TRACKDIR_BIT_Y_SE) == 0) mask |= TRACK_BIT_Y; /* If that still is not enough, require both trackdirs for any track. */ if ((tracks & mask) == TRACK_BIT_NONE) mask = ~(TrackBits)((neighbour_tdb & (neighbour_tdb >> 8)) & TRACK_BIT_MASK); } } /* Mask the tracks only if at least one track bit would remain. */ return (tracks & mask) != TRACK_BIT_NONE ? tracks & mask : tracks; } /** * Get the base wire sprite to use. */ static inline SpriteID GetWireBase(TileIndex tile, TileContext context = TCX_NORMAL) { const RailtypeInfo *rti = GetRailTypeInfo(GetRailType(tile)); SpriteID wires = GetCustomRailSprite(rti, tile, RTSG_WIRES, context); return wires == 0 ? SPR_WIRE_BASE : wires; } /** * Get the base pylon sprite to use. */ static inline SpriteID GetPylonBase(TileIndex tile, TileContext context = TCX_NORMAL) { const RailtypeInfo *rti = GetRailTypeInfo(GetRailType(tile)); SpriteID pylons = GetCustomRailSprite(rti, tile, RTSG_PYLONS, context); return pylons == 0 ? SPR_PYLON_BASE : pylons; } /** * Corrects the tileh for certain tile types. Returns an effective tileh for the track on the tile. * @param tile The tile to analyse * @param *tileh the tileh */ static void AdjustTileh(TileIndex tile, Slope *tileh) { if (IsTileType(tile, MP_TUNNELBRIDGE)) { if (IsTunnel(tile)) { *tileh = SLOPE_STEEP; // XXX - Hack to make tunnel entrances to always have a pylon } else if (*tileh != SLOPE_FLAT) { *tileh = SLOPE_FLAT; } else { *tileh = InclinedSlope(GetTunnelBridgeDirection(tile)); } } } /** * Returns the Z position of a Pylon Control Point. * * @param tile The tile the pylon should stand on. * @param PCPpos The PCP of the tile. * @return The Z position of the PCP. */ static byte GetPCPElevation(TileIndex tile, DiagDirection PCPpos) { /* The elevation of the "pylon"-sprite should be the elevation at the PCP. * PCPs are always on a tile edge. * * This position can be outside of the tile, i.e. ?_pcp_offset == TILE_SIZE > TILE_SIZE - 1. * So we have to move it inside the tile, because if the neighboured tile has a foundation, * that does not smoothly connect to the current tile, we will get a wrong elevation from GetSlopePixelZ(). * * When we move the position inside the tile, we will get a wrong elevation if we have a slope. * To catch all cases we round the Z position to the next (TILE_HEIGHT / 2). * This will return the correct elevation for slopes and will also detect non-continuous elevation on edges. * * Also note that the result of GetSlopePixelZ() is very special on bridge-ramps. */ byte z = GetSlopePixelZ(TileX(tile) * TILE_SIZE + min(x_pcp_offsets[PCPpos], TILE_SIZE - 1), TileY(tile) * TILE_SIZE + min(y_pcp_offsets[PCPpos], TILE_SIZE - 1)); return (z + 2) & ~3; // this means z = (z + TILE_HEIGHT / 4) / (TILE_HEIGHT / 2) * (TILE_HEIGHT / 2); } /** * Draws wires on a tunnel tile * * DrawTile_TunnelBridge() calls this function to draw the wires as SpriteCombine with the tunnel roof. * * @param ti The Tileinfo to draw the tile for */ void DrawCatenaryOnTunnel(const TileInfo *ti) { /* xmin, ymin, xmax + 1, ymax + 1 of BB */ static const int _tunnel_wire_BB[4][4] = { { 0, 1, 16, 15 }, // NE { 1, 0, 15, 16 }, // SE { 0, 1, 16, 15 }, // SW { 1, 0, 15, 16 }, // NW }; DiagDirection dir = GetTunnelBridgeDirection(ti->tile); SpriteID wire_base = GetWireBase(ti->tile); const SortableSpriteStruct *sss = &CatenarySpriteData_Tunnel[dir]; const int *BB_data = _tunnel_wire_BB[dir]; AddSortableSpriteToDraw( wire_base + sss->image_offset, PAL_NONE, ti->x + sss->x_offset, ti->y + sss->y_offset, BB_data[2] - sss->x_offset, BB_data[3] - sss->y_offset, BB_Z_SEPARATOR - sss->z_offset + 1, GetTilePixelZ(ti->tile) + sss->z_offset, IsTransparencySet(TO_CATENARY), BB_data[0] - sss->x_offset, BB_data[1] - sss->y_offset, BB_Z_SEPARATOR - sss->z_offset ); } /** * Draws wires and, if required, pylons on a given tile * @param ti The Tileinfo to draw the tile for */ static void DrawCatenaryRailway(const TileInfo *ti) { /* Pylons are placed on a tile edge, so we need to take into account * the track configuration of 2 adjacent tiles. trackconfig[0] stores the * current tile (home tile) while [1] holds the neighbour */ TrackBits trackconfig[TS_END]; TrackBits wireconfig[TS_END]; bool isflat[TS_END]; /* Note that ti->tileh has already been adjusted for Foundations */ Slope tileh[TS_END] = { ti->tileh, SLOPE_FLAT }; /* Half tile slopes coincide only with horizontal/vertical track. * Faking a flat slope results in the correct sprites on positions. */ Corner halftile_corner = CORNER_INVALID; if (IsHalftileSlope(tileh[TS_HOME])) { halftile_corner = GetHalftileSlopeCorner(tileh[TS_HOME]); tileh[TS_HOME] = SLOPE_FLAT; } TLG tlg = GetTLG(ti->tile); byte PCPstatus = 0; byte OverridePCP = 0; byte PPPpreferred[DIAGDIR_END]; byte PPPallowed[DIAGDIR_END]; /* Find which rail bits are present, and select the override points. * We don't draw a pylon: * 1) INSIDE a tunnel (we wouldn't see it anyway) * 2) on the "far" end of a bridge head (the one that connects to bridge middle), * because that one is drawn on the bridge. Exception is for length 0 bridges * which have no middle tiles */ trackconfig[TS_HOME] = GetRailTrackBitsUniversal(ti->tile, &OverridePCP); wireconfig[TS_HOME] = MaskWireBits(ti->tile, trackconfig[TS_HOME]); /* If a track bit is present that is not in the main direction, the track is level */ isflat[TS_HOME] = ((trackconfig[TS_HOME] & (TRACK_BIT_HORZ | TRACK_BIT_VERT)) != 0); AdjustTileh(ti->tile, &tileh[TS_HOME]); SpriteID pylon_normal = GetPylonBase(ti->tile); SpriteID pylon_halftile = (halftile_corner != CORNER_INVALID) ? GetPylonBase(ti->tile, TCX_UPPER_HALFTILE) : pylon_normal; for (DiagDirection i = DIAGDIR_BEGIN; i < DIAGDIR_END; i++) { static const uint edge_corners[] = { 1 << CORNER_N | 1 << CORNER_E, // DIAGDIR_NE 1 << CORNER_S | 1 << CORNER_E, // DIAGDIR_SE 1 << CORNER_S | 1 << CORNER_W, // DIAGDIR_SW 1 << CORNER_N | 1 << CORNER_W, // DIAGDIR_NW }; SpriteID pylon_base = (halftile_corner != CORNER_INVALID && HasBit(edge_corners[i], halftile_corner)) ? pylon_halftile : pylon_normal; TileIndex neighbour = ti->tile + TileOffsByDiagDir(i); byte elevation = GetPCPElevation(ti->tile, i); /* Here's one of the main headaches. GetTileSlope does not correct for possibly * existing foundataions, so we do have to do that manually later on.*/ tileh[TS_NEIGHBOUR] = GetTileSlope(neighbour); trackconfig[TS_NEIGHBOUR] = GetRailTrackBitsUniversal(neighbour, NULL); wireconfig[TS_NEIGHBOUR] = MaskWireBits(neighbour, trackconfig[TS_NEIGHBOUR]); if (IsTunnelTile(neighbour) && i != GetTunnelBridgeDirection(neighbour)) wireconfig[TS_NEIGHBOUR] = trackconfig[TS_NEIGHBOUR] = TRACK_BIT_NONE; /* If the neighboured tile does not smoothly connect to the current tile (because of a foundation), * we have to draw all pillars on the current tile. */ if (elevation != GetPCPElevation(neighbour, ReverseDiagDir(i))) wireconfig[TS_NEIGHBOUR] = trackconfig[TS_NEIGHBOUR] = TRACK_BIT_NONE; isflat[TS_NEIGHBOUR] = ((trackconfig[TS_NEIGHBOUR] & (TRACK_BIT_HORZ | TRACK_BIT_VERT)) != 0); PPPpreferred[i] = 0xFF; // We start with preferring everything (end-of-line in any direction) PPPallowed[i] = AllowedPPPonPCP[i]; /* We cycle through all the existing tracks at a PCP and see what * PPPs we want to have, or may not have at all */ for (uint k = 0; k < NUM_TRACKS_AT_PCP; k++) { /* Next to us, we have a bridge head, don't worry about that one, if it shows away from us */ if (TrackSourceTile[i][k] == TS_NEIGHBOUR && IsBridgeTile(neighbour) && GetTunnelBridgeDirection(neighbour) == ReverseDiagDir(i)) { continue; } /* We check whether the track in question (k) is present in the tile * (TrackSourceTile) */ DiagDirection PCPpos = i; if (HasBit(wireconfig[TrackSourceTile[i][k]], TracksAtPCP[i][k])) { /* track found, if track is in the neighbour tile, adjust the number * of the PCP for preferred/allowed determination*/ PCPpos = (TrackSourceTile[i][k] == TS_HOME) ? i : ReverseDiagDir(i); SetBit(PCPstatus, i); // This PCP is in use PPPpreferred[i] &= PreferredPPPofTrackAtPCP[TracksAtPCP[i][k]][PCPpos]; } if (HasBit(trackconfig[TrackSourceTile[i][k]], TracksAtPCP[i][k])) { PPPallowed[i] &= ~DisallowedPPPofTrackAtPCP[TracksAtPCP[i][k]][PCPpos]; } } /* Deactivate all PPPs if PCP is not used */ if (!HasBit(PCPstatus, i)) { PPPpreferred[i] = 0; PPPallowed[i] = 0; } Foundation foundation = FOUNDATION_NONE; /* Station and road crossings are always "flat", so adjust the tileh accordingly */ if (IsTileType(neighbour, MP_STATION) || IsTileType(neighbour, MP_ROAD)) tileh[TS_NEIGHBOUR] = SLOPE_FLAT; /* Read the foundataions if they are present, and adjust the tileh */ if (trackconfig[TS_NEIGHBOUR] != TRACK_BIT_NONE && IsTileType(neighbour, MP_RAILWAY) && HasCatenary(GetRailType(neighbour))) foundation = GetRailFoundation(tileh[TS_NEIGHBOUR], trackconfig[TS_NEIGHBOUR]); if (IsBridgeTile(neighbour)) { foundation = GetBridgeFoundation(tileh[TS_NEIGHBOUR], DiagDirToAxis(GetTunnelBridgeDirection(neighbour))); } ApplyPixelFoundationToSlope(foundation, &tileh[TS_NEIGHBOUR]); /* Half tile slopes coincide only with horizontal/vertical track. * Faking a flat slope results in the correct sprites on positions. */ if (IsHalftileSlope(tileh[TS_NEIGHBOUR])) tileh[TS_NEIGHBOUR] = SLOPE_FLAT; AdjustTileh(neighbour, &tileh[TS_NEIGHBOUR]); /* If we have a straight (and level) track, we want a pylon only every 2 tiles * Delete the PCP if this is the case. * Level means that the slope is the same, or the track is flat */ if (tileh[TS_HOME] == tileh[TS_NEIGHBOUR] || (isflat[TS_HOME] && isflat[TS_NEIGHBOUR])) { for (uint k = 0; k < NUM_IGNORE_GROUPS; k++) { if (PPPpreferred[i] == IgnoredPCP[k][tlg][i]) ClrBit(PCPstatus, i); } } /* Now decide where we draw our pylons. First try the preferred PPPs, but they may not exist. * In that case, we try the any of the allowed ones. if they don't exist either, don't draw * anything. Note that the preferred PPPs still contain the end-of-line markers. * Remove those (simply by ANDing with allowed, since these markers are never allowed) */ if ((PPPallowed[i] & PPPpreferred[i]) != 0) PPPallowed[i] &= PPPpreferred[i]; if (MayHaveBridgeAbove(ti->tile) && IsBridgeAbove(ti->tile)) { Track bridgetrack = GetBridgeAxis(ti->tile) == AXIS_X ? TRACK_X : TRACK_Y; uint height = GetBridgeHeight(GetNorthernBridgeEnd(ti->tile)); if ((height <= GetTileMaxZ(ti->tile) + 1) && (i == PCPpositions[bridgetrack][0] || i == PCPpositions[bridgetrack][1])) { SetBit(OverridePCP, i); } } if (PPPallowed[i] != 0 && HasBit(PCPstatus, i) && !HasBit(OverridePCP, i)) { for (Direction k = DIR_BEGIN; k < DIR_END; k++) { byte temp = PPPorder[i][GetTLG(ti->tile)][k]; if (HasBit(PPPallowed[i], temp)) { uint x = ti->x + x_pcp_offsets[i] + x_ppp_offsets[temp]; uint y = ti->y + y_pcp_offsets[i] + y_ppp_offsets[temp]; /* Don't build the pylon if it would be outside the tile */ if (!HasBit(OwnedPPPonPCP[i], temp)) { /* We have a neighour that will draw it, bail out */ if (trackconfig[TS_NEIGHBOUR] != TRACK_BIT_NONE) break; continue; // No neighbour, go looking for a better position } AddSortableSpriteToDraw(pylon_base + pylon_sprites[temp], PAL_NONE, x, y, 1, 1, BB_HEIGHT_UNDER_BRIDGE, elevation, IsTransparencySet(TO_CATENARY), -1, -1); break; // We already have drawn a pylon, bail out } } } } /* The wire above the tunnel is drawn together with the tunnel-roof (see DrawCatenaryOnTunnel()) */ if (IsTunnelTile(ti->tile)) return; /* Don't draw a wire under a low bridge */ if (MayHaveBridgeAbove(ti->tile) && IsBridgeAbove(ti->tile) && !IsTransparencySet(TO_CATENARY)) { uint height = GetBridgeHeight(GetNorthernBridgeEnd(ti->tile)); if (height <= GetTileMaxZ(ti->tile) + 1) return; } SpriteID wire_normal = GetWireBase(ti->tile); SpriteID wire_halftile = (halftile_corner != CORNER_INVALID) ? GetWireBase(ti->tile, TCX_UPPER_HALFTILE) : wire_normal; Track halftile_track; switch (halftile_corner) { case CORNER_W: halftile_track = TRACK_LEFT; break; case CORNER_S: halftile_track = TRACK_LOWER; break; case CORNER_E: halftile_track = TRACK_RIGHT; break; case CORNER_N: halftile_track = TRACK_UPPER; break; default: halftile_track = INVALID_TRACK; break; } /* Drawing of pylons is finished, now draw the wires */ Track t; FOR_EACH_SET_TRACK(t, wireconfig[TS_HOME]) { SpriteID wire_base = (t == halftile_track) ? wire_halftile : wire_normal; byte PCPconfig = HasBit(PCPstatus, PCPpositions[t][0]) + (HasBit(PCPstatus, PCPpositions[t][1]) << 1); const SortableSpriteStruct *sss; int tileh_selector = !(tileh[TS_HOME] % 3) * tileh[TS_HOME] / 3; // tileh for the slopes, 0 otherwise assert(PCPconfig != 0); // We have a pylon on neither end of the wire, that doesn't work (since we have no sprites for that) assert(!IsSteepSlope(tileh[TS_HOME])); sss = &CatenarySpriteData[Wires[tileh_selector][t][PCPconfig]]; /* * The "wire"-sprite position is inside the tile, i.e. 0 <= sss->?_offset < TILE_SIZE. * Therefore it is safe to use GetSlopePixelZ() for the elevation. * Also note that the result of GetSlopePixelZ() is very special for bridge-ramps. */ AddSortableSpriteToDraw(wire_base + sss->image_offset, PAL_NONE, ti->x + sss->x_offset, ti->y + sss->y_offset, sss->x_size, sss->y_size, sss->z_size, GetSlopePixelZ(ti->x + sss->x_offset, ti->y + sss->y_offset) + sss->z_offset, IsTransparencySet(TO_CATENARY)); } } /** * Draws wires on a tunnel tile * * DrawTile_TunnelBridge() calls this function to draw the wires on the bridge. * * @param ti The Tileinfo to draw the tile for */ void DrawCatenaryOnBridge(const TileInfo *ti) { TileIndex end = GetSouthernBridgeEnd(ti->tile); TileIndex start = GetOtherBridgeEnd(end); uint length = GetTunnelBridgeLength(start, end); uint num = GetTunnelBridgeLength(ti->tile, start) + 1; uint height; const SortableSpriteStruct *sss; Axis axis = GetBridgeAxis(ti->tile); TLG tlg = GetTLG(ti->tile); CatenarySprite offset = (CatenarySprite)(axis == AXIS_X ? 0 : WIRE_Y_FLAT_BOTH - WIRE_X_FLAT_BOTH); if ((length % 2) && num == length) { /* Draw the "short" wire on the southern end of the bridge * only needed if the length of the bridge is odd */ sss = &CatenarySpriteData[WIRE_X_FLAT_BOTH + offset]; } else { /* Draw "long" wires on all other tiles of the bridge (one pylon every two tiles) */ sss = &CatenarySpriteData[WIRE_X_FLAT_SW + (num % 2) + offset]; } height = GetBridgePixelHeight(end); SpriteID wire_base = GetWireBase(end, TCX_ON_BRIDGE); AddSortableSpriteToDraw(wire_base + sss->image_offset, PAL_NONE, ti->x + sss->x_offset, ti->y + sss->y_offset, sss->x_size, sss->y_size, sss->z_size, height + sss->z_offset, IsTransparencySet(TO_CATENARY) ); SpriteID pylon_base = GetPylonBase(end, TCX_ON_BRIDGE); /* Finished with wires, draw pylons * every other tile needs a pylon on the northern end */ if (num % 2) { DiagDirection PCPpos = (axis == AXIS_X ? DIAGDIR_NE : DIAGDIR_NW); Direction PPPpos = (axis == AXIS_X ? DIR_NW : DIR_NE); if (HasBit(tlg, (axis == AXIS_X ? 0 : 1))) PPPpos = ReverseDir(PPPpos); uint x = ti->x + x_pcp_offsets[PCPpos] + x_ppp_offsets[PPPpos]; uint y = ti->y + y_pcp_offsets[PCPpos] + y_ppp_offsets[PPPpos]; AddSortableSpriteToDraw(pylon_base + pylon_sprites[PPPpos], PAL_NONE, x, y, 1, 1, BB_HEIGHT_UNDER_BRIDGE, height, IsTransparencySet(TO_CATENARY), -1, -1); } /* need a pylon on the southern end of the bridge */ if (GetTunnelBridgeLength(ti->tile, start) + 1 == length) { DiagDirection PCPpos = (axis == AXIS_X ? DIAGDIR_SW : DIAGDIR_SE); Direction PPPpos = (axis == AXIS_X ? DIR_NW : DIR_NE); if (HasBit(tlg, (axis == AXIS_X ? 0 : 1))) PPPpos = ReverseDir(PPPpos); uint x = ti->x + x_pcp_offsets[PCPpos] + x_ppp_offsets[PPPpos]; uint y = ti->y + y_pcp_offsets[PCPpos] + y_ppp_offsets[PPPpos]; AddSortableSpriteToDraw(pylon_base + pylon_sprites[PPPpos], PAL_NONE, x, y, 1, 1, BB_HEIGHT_UNDER_BRIDGE, height, IsTransparencySet(TO_CATENARY), -1, -1); } } /** * Draws overhead wires and pylons for electric railways. * @param ti The TileInfo struct of the tile being drawn * @see DrawCatenaryRailway */ void DrawCatenary(const TileInfo *ti) { switch (GetTileType(ti->tile)) { case MP_RAILWAY: if (IsRailDepot(ti->tile)) { const SortableSpriteStruct *sss = &CatenarySpriteData_Depot[GetRailDepotDirection(ti->tile)]; SpriteID wire_base = GetWireBase(ti->tile); /* This wire is not visible with the default depot sprites */ AddSortableSpriteToDraw( wire_base + sss->image_offset, PAL_NONE, ti->x + sss->x_offset, ti->y + sss->y_offset, sss->x_size, sss->y_size, sss->z_size, GetTileMaxPixelZ(ti->tile) + sss->z_offset, IsTransparencySet(TO_CATENARY) ); return; } break; case MP_TUNNELBRIDGE: case MP_ROAD: case MP_STATION: break; default: return; } DrawCatenaryRailway(ti); } bool SettingsDisableElrail(int32 p1) { Company *c; Train *t; bool disable = (p1 != 0); /* we will now walk through all electric train engines and change their railtypes if it is the wrong one*/ const RailType old_railtype = disable ? RAILTYPE_ELECTRIC : RAILTYPE_RAIL; const RailType new_railtype = disable ? RAILTYPE_RAIL : RAILTYPE_ELECTRIC; /* walk through all train engines */ Engine *e; FOR_ALL_ENGINES_OF_TYPE(e, VEH_TRAIN) { RailVehicleInfo *rv_info = &e->u.rail; /* if it is an electric rail engine and its railtype is the wrong one */ if (rv_info->engclass == 2 && rv_info->railtype == old_railtype) { /* change it to the proper one */ rv_info->railtype = new_railtype; } } /* when disabling elrails, make sure that all existing trains can run on * normal rail too */ if (disable) { FOR_ALL_TRAINS(t) { if (t->railtype == RAILTYPE_ELECTRIC) { /* this railroad vehicle is now compatible only with elrail, * so add there also normal rail compatibility */ t->compatible_railtypes |= RAILTYPES_RAIL; t->railtype = RAILTYPE_RAIL; SetBit(t->flags, VRF_EL_ENGINE_ALLOWED_NORMAL_RAIL); } } } /* Fix the total power and acceleration for trains */ FOR_ALL_TRAINS(t) { /* power and acceleration is cached only for front engines */ if (t->IsFrontEngine()) { t->ConsistChanged(true); } } FOR_ALL_COMPANIES(c) c->avail_railtypes = GetCompanyRailtypes(c->index); /* This resets the _last_built_railtype, which will be invalid for electric * rails. It may have unintended consequences if that function is ever * extended, though. */ ReinitGuiAfterToggleElrail(disable); return true; }