/* * This file is part of OpenTTD. * OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2. * OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see . */ /** @file math_func.hpp Integer math functions */ #ifndef MATH_FUNC_HPP #define MATH_FUNC_HPP /** * Returns the absolute value of (scalar) variable. * * @note assumes variable to be signed * @param a The value we want to unsign * @return The unsigned value */ template static inline T abs(const T a) { return (a < (T)0) ? -a : a; } /** * Return the smallest multiple of n equal or greater than x * * @note n must be a power of 2 * @param x The min value * @param n The base of the number we are searching * @return The smallest multiple of n equal or greater than x */ template static inline T Align(const T x, uint n) { assert((n & (n - 1)) == 0 && n != 0); n--; return (T)((x + n) & ~((T)n)); } /** * Return the smallest multiple of n equal or greater than x * Applies to pointers only * * @note n must be a power of 2 * @param x The min value * @param n The base of the number we are searching * @return The smallest multiple of n equal or greater than x * @see Align() */ template static inline T *AlignPtr(T *x, uint n) { static_assert(sizeof(size_t) == sizeof(void *)); return reinterpret_cast(Align((size_t)x, n)); } /** * Clamp a value between an interval. * * This function returns a value which is between the given interval of * min and max. If the given value is in this interval the value itself * is returned otherwise the border of the interval is returned, according * which side of the interval was 'left'. * * @note The min value must be less or equal of max or you get some * unexpected results. * @param a The value to clamp/truncate. * @param min The minimum of the interval. * @param max the maximum of the interval. * @returns A value between min and max which is closest to a. * @see ClampU(uint, uint, uint) * @see Clamp(int, int, int) */ template static inline T Clamp(const T a, const T min, const T max) { assert(min <= max); if (a <= min) return min; if (a >= max) return max; return a; } /** * Clamp an integer between an interval. * * This function returns a value which is between the given interval of * min and max. If the given value is in this interval the value itself * is returned otherwise the border of the interval is returned, according * which side of the interval was 'left'. * * @note The min value must be less or equal of max or you get some * unexpected results. * @param a The value to clamp/truncate. * @param min The minimum of the interval. * @param max the maximum of the interval. * @returns A value between min and max which is closest to a. * @see ClampU(uint, uint, uint) */ static inline int Clamp(const int a, const int min, const int max) { return Clamp(a, min, max); } /** * Clamp an unsigned integer between an interval. * * This function returns a value which is between the given interval of * min and max. If the given value is in this interval the value itself * is returned otherwise the border of the interval is returned, according * which side of the interval was 'left'. * * @note The min value must be less or equal of max or you get some * unexpected results. * @param a The value to clamp/truncate. * @param min The minimum of the interval. * @param max the maximum of the interval. * @returns A value between min and max which is closest to a. * @see Clamp(int, int, int) */ static inline uint ClampU(const uint a, const uint min, const uint max) { return Clamp(a, min, max); } /** * Reduce a signed 64-bit int to a signed 32-bit one * * This function clamps a 64-bit integer to a 32-bit integer. * If the 64-bit value is smaller than the smallest 32-bit integer * value 0x80000000 this value is returned (the left one bit is the sign bit). * If the 64-bit value is greater than the greatest 32-bit integer value 0x7FFFFFFF * this value is returned. In all other cases the 64-bit value 'fits' in a * 32-bits integer field and so the value is casted to int32 and returned. * * @param a The 64-bit value to clamps * @return The 64-bit value reduced to a 32-bit value * @see Clamp(int, int, int) */ static inline int32 ClampToI32(const int64 a) { return static_cast(Clamp(a, INT32_MIN, INT32_MAX)); } /** * Reduce an unsigned 64-bit int to an unsigned 16-bit one * * @param a The 64-bit value to clamp * @return The 64-bit value reduced to a 16-bit value * @see ClampU(uint, uint, uint) */ static inline uint16 ClampToU16(const uint64 a) { /* MSVC thinks, in its infinite wisdom, that int min(int, int) is a better * match for min(uint64, uint) than uint64 min(uint64, uint64). As such we * need to cast the UINT16_MAX to prevent MSVC from displaying its * infinite loads of warnings. */ return static_cast(std::min(a, static_cast(UINT16_MAX))); } /** * Returns the (absolute) difference between two (scalar) variables * * @param a The first scalar * @param b The second scalar * @return The absolute difference between the given scalars */ template static inline T Delta(const T a, const T b) { return (a < b) ? b - a : a - b; } /** * Checks if a value is between a window started at some base point. * * This function checks if the value x is between the value of base * and base+size. If x equals base this returns true. If x equals * base+size this returns false. * * @param x The value to check * @param base The base value of the interval * @param size The size of the interval * @return True if the value is in the interval, false else. */ template static inline bool IsInsideBS(const T x, const size_t base, const size_t size) { return (size_t)(x - base) < size; } /** * Checks if a value is in an interval. * * Returns true if a value is in the interval of [min, max). * * @param x The value to check * @param min The minimum of the interval * @param max The maximum of the interval * @see IsInsideBS() */ template static inline bool IsInsideMM(const T x, const size_t min, const size_t max) { return (size_t)(x - min) < (max - min); } /** * Type safe swap operation * @param a variable to swap with b * @param b variable to swap with a */ template static inline void Swap(T &a, T &b) { T t = a; a = b; b = t; } /** * Converts a "fract" value 0..255 to "percent" value 0..100 * @param i value to convert, range 0..255 * @return value in range 0..100 */ static inline uint ToPercent8(uint i) { assert(i < 256); return i * 101 >> 8; } /** * Converts a "fract" value 0..65535 to "percent" value 0..100 * @param i value to convert, range 0..65535 * @return value in range 0..100 */ static inline uint ToPercent16(uint i) { assert(i < 65536); return i * 101 >> 16; } int LeastCommonMultiple(int a, int b); int GreatestCommonDivisor(int a, int b); int DivideApprox(int a, int b); /** * Computes ceil(a / b) for non-negative a and b. * @param a Numerator * @param b Denominator * @return Quotient, rounded up */ static inline uint CeilDiv(uint a, uint b) { return (a + b - 1) / b; } /** * Computes ceil(a / b) * b for non-negative a and b. * @param a Numerator * @param b Denominator * @return a rounded up to the nearest multiple of b. */ static inline uint Ceil(uint a, uint b) { return CeilDiv(a, b) * b; } /** * Computes round(a / b) for signed a and unsigned b. * @param a Numerator * @param b Denominator * @return Quotient, rounded to nearest */ static inline int RoundDivSU(int a, uint b) { if (a > 0) { /* 0.5 is rounded to 1 */ return (a + static_cast(b) / 2) / static_cast(b); } else { /* -0.5 is rounded to 0 */ return (a - (static_cast(b) - 1) / 2) / static_cast(b); } } /** * Computes (a / b) rounded away from zero. * @param a Numerator * @param b Denominator * @return Quotient, rounded away from zero */ static inline int DivAwayFromZero(int a, uint b) { const int _b = static_cast(b); if (a > 0) { return (a + _b - 1) / _b; } else { /* Note: Behaviour of negative numerator division is truncation toward zero. */ return (a - _b + 1) / _b; } } uint32 IntSqrt(uint32 num); #endif /* MATH_FUNC_HPP */