// Formatting library for C++ - the core API // // Copyright (c) 2012 - present, Victor Zverovich // All rights reserved. // // For the license information refer to format.h. #ifndef FMT_CORE_H_ #define FMT_CORE_H_ #include <cstdio> // std::FILE #include <cstring> #include <functional> #include <iterator> #include <memory> #include <string> #include <type_traits> #include <vector> // The fmt library version in the form major * 10000 + minor * 100 + patch. #define FMT_VERSION 70103 #ifdef __clang__ # define FMT_CLANG_VERSION (__clang_major__ * 100 + __clang_minor__) #else # define FMT_CLANG_VERSION 0 #endif #if defined(__GNUC__) && !defined(__clang__) # define FMT_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__) #else # define FMT_GCC_VERSION 0 #endif #if defined(__INTEL_COMPILER) # define FMT_ICC_VERSION __INTEL_COMPILER #else # define FMT_ICC_VERSION 0 #endif #if __cplusplus >= 201103L || defined(__GXX_EXPERIMENTAL_CXX0X__) # define FMT_HAS_GXX_CXX11 FMT_GCC_VERSION #else # define FMT_HAS_GXX_CXX11 0 #endif #ifdef __NVCC__ # define FMT_NVCC __NVCC__ #else # define FMT_NVCC 0 #endif #ifdef _MSC_VER # define FMT_MSC_VER _MSC_VER # define FMT_SUPPRESS_MSC_WARNING(n) __pragma(warning(suppress : n)) #else # define FMT_MSC_VER 0 # define FMT_SUPPRESS_MSC_WARNING(n) #endif #ifdef __has_feature # define FMT_HAS_FEATURE(x) __has_feature(x) #else # define FMT_HAS_FEATURE(x) 0 #endif #if defined(__has_include) && !defined(__INTELLISENSE__) && \ (!FMT_ICC_VERSION || FMT_ICC_VERSION >= 1600) # define FMT_HAS_INCLUDE(x) __has_include(x) #else # define FMT_HAS_INCLUDE(x) 0 #endif #ifdef __has_cpp_attribute # define FMT_HAS_CPP_ATTRIBUTE(x) __has_cpp_attribute(x) #else # define FMT_HAS_CPP_ATTRIBUTE(x) 0 #endif #define FMT_HAS_CPP14_ATTRIBUTE(attribute) \ (__cplusplus >= 201402L && FMT_HAS_CPP_ATTRIBUTE(attribute)) #define FMT_HAS_CPP17_ATTRIBUTE(attribute) \ (__cplusplus >= 201703L && FMT_HAS_CPP_ATTRIBUTE(attribute)) // Check if relaxed C++14 constexpr is supported. // GCC doesn't allow throw in constexpr until version 6 (bug 67371). #ifndef FMT_USE_CONSTEXPR # define FMT_USE_CONSTEXPR \ (FMT_HAS_FEATURE(cxx_relaxed_constexpr) || FMT_MSC_VER >= 1910 || \ (FMT_GCC_VERSION >= 600 && __cplusplus >= 201402L)) && \ !FMT_NVCC && !FMT_ICC_VERSION #endif #if FMT_USE_CONSTEXPR # define FMT_CONSTEXPR constexpr # define FMT_CONSTEXPR_DECL constexpr #else # define FMT_CONSTEXPR inline # define FMT_CONSTEXPR_DECL #endif #ifndef FMT_OVERRIDE # if FMT_HAS_FEATURE(cxx_override_control) || \ (FMT_GCC_VERSION >= 408 && FMT_HAS_GXX_CXX11) || FMT_MSC_VER >= 1900 # define FMT_OVERRIDE override # else # define FMT_OVERRIDE # endif #endif // Check if exceptions are disabled. #ifndef FMT_EXCEPTIONS # if (defined(__GNUC__) && !defined(__EXCEPTIONS)) || \ FMT_MSC_VER && !_HAS_EXCEPTIONS # define FMT_EXCEPTIONS 0 # else # define FMT_EXCEPTIONS 1 # endif #endif // Define FMT_USE_NOEXCEPT to make fmt use noexcept (C++11 feature). #ifndef FMT_USE_NOEXCEPT # define FMT_USE_NOEXCEPT 0 #endif #if FMT_USE_NOEXCEPT || FMT_HAS_FEATURE(cxx_noexcept) || \ (FMT_GCC_VERSION >= 408 && FMT_HAS_GXX_CXX11) || FMT_MSC_VER >= 1900 # define FMT_DETECTED_NOEXCEPT noexcept # define FMT_HAS_CXX11_NOEXCEPT 1 #else # define FMT_DETECTED_NOEXCEPT throw() # define FMT_HAS_CXX11_NOEXCEPT 0 #endif #ifndef FMT_NOEXCEPT # if FMT_EXCEPTIONS || FMT_HAS_CXX11_NOEXCEPT # define FMT_NOEXCEPT FMT_DETECTED_NOEXCEPT # else # define FMT_NOEXCEPT # endif #endif // [[noreturn]] is disabled on MSVC and NVCC because of bogus unreachable code // warnings. #if FMT_EXCEPTIONS && FMT_HAS_CPP_ATTRIBUTE(noreturn) && !FMT_MSC_VER && \ !FMT_NVCC # define FMT_NORETURN [[noreturn]] #else # define FMT_NORETURN #endif #ifndef FMT_DEPRECATED # if FMT_HAS_CPP14_ATTRIBUTE(deprecated) || FMT_MSC_VER >= 1900 # define FMT_DEPRECATED [[deprecated]] # else # if (defined(__GNUC__) && !defined(__LCC__)) || defined(__clang__) # define FMT_DEPRECATED __attribute__((deprecated)) # elif FMT_MSC_VER # define FMT_DEPRECATED __declspec(deprecated) # else # define FMT_DEPRECATED /* deprecated */ # endif # endif #endif // Workaround broken [[deprecated]] in the Intel, PGI and NVCC compilers. #if FMT_ICC_VERSION || defined(__PGI) || FMT_NVCC # define FMT_DEPRECATED_ALIAS #else # define FMT_DEPRECATED_ALIAS FMT_DEPRECATED #endif #ifndef FMT_INLINE # if FMT_GCC_VERSION || FMT_CLANG_VERSION # define FMT_INLINE inline __attribute__((always_inline)) # else # define FMT_INLINE inline # endif #endif #ifndef FMT_USE_INLINE_NAMESPACES # if FMT_HAS_FEATURE(cxx_inline_namespaces) || FMT_GCC_VERSION >= 404 || \ (FMT_MSC_VER >= 1900 && !_MANAGED) # define FMT_USE_INLINE_NAMESPACES 1 # else # define FMT_USE_INLINE_NAMESPACES 0 # endif #endif #ifndef FMT_BEGIN_NAMESPACE # if FMT_USE_INLINE_NAMESPACES # define FMT_INLINE_NAMESPACE inline namespace # define FMT_END_NAMESPACE \ } \ } # else # define FMT_INLINE_NAMESPACE namespace # define FMT_END_NAMESPACE \ } \ using namespace v7; \ } # endif # define FMT_BEGIN_NAMESPACE \ namespace fmt { \ FMT_INLINE_NAMESPACE v7 { #endif #if !defined(FMT_HEADER_ONLY) && defined(_WIN32) # define FMT_CLASS_API FMT_SUPPRESS_MSC_WARNING(4275) # ifdef FMT_EXPORT # define FMT_API __declspec(dllexport) # define FMT_EXTERN_TEMPLATE_API FMT_API # define FMT_EXPORTED # elif defined(FMT_SHARED) # define FMT_API __declspec(dllimport) # define FMT_EXTERN_TEMPLATE_API FMT_API # endif #else # define FMT_CLASS_API #endif #ifndef FMT_API # define FMT_API #endif #ifndef FMT_EXTERN_TEMPLATE_API # define FMT_EXTERN_TEMPLATE_API #endif #ifndef FMT_INSTANTIATION_DEF_API # define FMT_INSTANTIATION_DEF_API FMT_API #endif #ifndef FMT_HEADER_ONLY # define FMT_EXTERN extern #else # define FMT_EXTERN #endif // libc++ supports string_view in pre-c++17. #if (FMT_HAS_INCLUDE(<string_view>) && \ (__cplusplus > 201402L || defined(_LIBCPP_VERSION))) || \ (defined(_MSVC_LANG) && _MSVC_LANG > 201402L && _MSC_VER >= 1910) # include <string_view> # define FMT_USE_STRING_VIEW #elif FMT_HAS_INCLUDE("experimental/string_view") && __cplusplus >= 201402L # include <experimental/string_view> # define FMT_USE_EXPERIMENTAL_STRING_VIEW #endif #ifndef FMT_UNICODE # define FMT_UNICODE !FMT_MSC_VER #endif #if FMT_UNICODE && FMT_MSC_VER # pragma execution_character_set("utf-8") #endif FMT_BEGIN_NAMESPACE // Implementations of enable_if_t and other metafunctions for older systems. template <bool B, class T = void> using enable_if_t = typename std::enable_if<B, T>::type; template <bool B, class T, class F> using conditional_t = typename std::conditional<B, T, F>::type; template <bool B> using bool_constant = std::integral_constant<bool, B>; template <typename T> using remove_reference_t = typename std::remove_reference<T>::type; template <typename T> using remove_const_t = typename std::remove_const<T>::type; template <typename T> using remove_cvref_t = typename std::remove_cv<remove_reference_t<T>>::type; template <typename T> struct type_identity { using type = T; }; template <typename T> using type_identity_t = typename type_identity<T>::type; struct monostate {}; // An enable_if helper to be used in template parameters which results in much // shorter symbols: https://godbolt.org/z/sWw4vP. Extra parentheses are needed // to workaround a bug in MSVC 2019 (see #1140 and #1186). #define FMT_ENABLE_IF(...) enable_if_t<(__VA_ARGS__), int> = 0 namespace detail { // A helper function to suppress "conditional expression is constant" warnings. template <typename T> constexpr T const_check(T value) { return value; } FMT_NORETURN FMT_API void assert_fail(const char* file, int line, const char* message); #ifndef FMT_ASSERT # ifdef NDEBUG // FMT_ASSERT is not empty to avoid -Werror=empty-body. # define FMT_ASSERT(condition, message) ((void)0) # else # define FMT_ASSERT(condition, message) \ ((condition) /* void() fails with -Winvalid-constexpr on clang 4.0.1 */ \ ? (void)0 \ : ::fmt::detail::assert_fail(__FILE__, __LINE__, (message))) # endif #endif #if defined(FMT_USE_STRING_VIEW) template <typename Char> using std_string_view = std::basic_string_view<Char>; #elif defined(FMT_USE_EXPERIMENTAL_STRING_VIEW) template <typename Char> using std_string_view = std::experimental::basic_string_view<Char>; #else template <typename T> struct std_string_view {}; #endif #ifdef FMT_USE_INT128 // Do nothing. #elif defined(__SIZEOF_INT128__) && !FMT_NVCC && \ !(FMT_CLANG_VERSION && FMT_MSC_VER) # define FMT_USE_INT128 1 using int128_t = __int128_t; using uint128_t = __uint128_t; #else # define FMT_USE_INT128 0 #endif #if !FMT_USE_INT128 struct int128_t {}; struct uint128_t {}; #endif // Casts a nonnegative integer to unsigned. template <typename Int> FMT_CONSTEXPR typename std::make_unsigned<Int>::type to_unsigned(Int value) { FMT_ASSERT(value >= 0, "negative value"); return static_cast<typename std::make_unsigned<Int>::type>(value); } FMT_SUPPRESS_MSC_WARNING(4566) constexpr unsigned char micro[] = "\u00B5"; template <typename Char> constexpr bool is_unicode() { return FMT_UNICODE || sizeof(Char) != 1 || (sizeof(micro) == 3 && micro[0] == 0xC2 && micro[1] == 0xB5); } #ifdef __cpp_char8_t using char8_type = char8_t; #else enum char8_type : unsigned char {}; #endif } // namespace detail #ifdef FMT_USE_INTERNAL namespace internal = detail; // DEPRECATED #endif /** An implementation of ``std::basic_string_view`` for pre-C++17. It provides a subset of the API. ``fmt::basic_string_view`` is used for format strings even if ``std::string_view`` is available to prevent issues when a library is compiled with a different ``-std`` option than the client code (which is not recommended). */ template <typename Char> class basic_string_view { private: const Char* data_; size_t size_; public: using value_type = Char; using iterator = const Char*; constexpr basic_string_view() FMT_NOEXCEPT : data_(nullptr), size_(0) {} /** Constructs a string reference object from a C string and a size. */ constexpr basic_string_view(const Char* s, size_t count) FMT_NOEXCEPT : data_(s), size_(count) {} /** \rst Constructs a string reference object from a C string computing the size with ``std::char_traits<Char>::length``. \endrst */ #if __cplusplus >= 201703L // C++17's char_traits::length() is constexpr. FMT_CONSTEXPR #endif basic_string_view(const Char* s) : data_(s), size_(std::char_traits<Char>::length(s)) {} /** Constructs a string reference from a ``std::basic_string`` object. */ template <typename Traits, typename Alloc> FMT_CONSTEXPR basic_string_view( const std::basic_string<Char, Traits, Alloc>& s) FMT_NOEXCEPT : data_(s.data()), size_(s.size()) {} template <typename S, FMT_ENABLE_IF(std::is_same< S, detail::std_string_view<Char>>::value)> FMT_CONSTEXPR basic_string_view(S s) FMT_NOEXCEPT : data_(s.data()), size_(s.size()) {} /** Returns a pointer to the string data. */ constexpr const Char* data() const { return data_; } /** Returns the string size. */ constexpr size_t size() const { return size_; } constexpr iterator begin() const { return data_; } constexpr iterator end() const { return data_ + size_; } constexpr const Char& operator[](size_t pos) const { return data_[pos]; } FMT_CONSTEXPR void remove_prefix(size_t n) { data_ += n; size_ -= n; } // Lexicographically compare this string reference to other. int compare(basic_string_view other) const { size_t str_size = size_ < other.size_ ? size_ : other.size_; int result = std::char_traits<Char>::compare(data_, other.data_, str_size); if (result == 0) result = size_ == other.size_ ? 0 : (size_ < other.size_ ? -1 : 1); return result; } friend bool operator==(basic_string_view lhs, basic_string_view rhs) { return lhs.compare(rhs) == 0; } friend bool operator!=(basic_string_view lhs, basic_string_view rhs) { return lhs.compare(rhs) != 0; } friend bool operator<(basic_string_view lhs, basic_string_view rhs) { return lhs.compare(rhs) < 0; } friend bool operator<=(basic_string_view lhs, basic_string_view rhs) { return lhs.compare(rhs) <= 0; } friend bool operator>(basic_string_view lhs, basic_string_view rhs) { return lhs.compare(rhs) > 0; } friend bool operator>=(basic_string_view lhs, basic_string_view rhs) { return lhs.compare(rhs) >= 0; } }; using string_view = basic_string_view<char>; using wstring_view = basic_string_view<wchar_t>; /** Specifies if ``T`` is a character type. Can be specialized by users. */ template <typename T> struct is_char : std::false_type {}; template <> struct is_char<char> : std::true_type {}; template <> struct is_char<wchar_t> : std::true_type {}; template <> struct is_char<detail::char8_type> : std::true_type {}; template <> struct is_char<char16_t> : std::true_type {}; template <> struct is_char<char32_t> : std::true_type {}; /** \rst Returns a string view of `s`. In order to add custom string type support to {fmt} provide an overload of `to_string_view` for it in the same namespace as the type for the argument-dependent lookup to work. **Example**:: namespace my_ns { inline string_view to_string_view(const my_string& s) { return {s.data(), s.length()}; } } std::string message = fmt::format(my_string("The answer is {}"), 42); \endrst */ template <typename Char, FMT_ENABLE_IF(is_char<Char>::value)> inline basic_string_view<Char> to_string_view(const Char* s) { return s; } template <typename Char, typename Traits, typename Alloc> inline basic_string_view<Char> to_string_view( const std::basic_string<Char, Traits, Alloc>& s) { return s; } template <typename Char> inline basic_string_view<Char> to_string_view(basic_string_view<Char> s) { return s; } template <typename Char, FMT_ENABLE_IF(!std::is_empty<detail::std_string_view<Char>>::value)> inline basic_string_view<Char> to_string_view(detail::std_string_view<Char> s) { return s; } // A base class for compile-time strings. It is defined in the fmt namespace to // make formatting functions visible via ADL, e.g. format(FMT_STRING("{}"), 42). struct compile_string {}; template <typename S> struct is_compile_string : std::is_base_of<compile_string, S> {}; template <typename S, FMT_ENABLE_IF(is_compile_string<S>::value)> constexpr basic_string_view<typename S::char_type> to_string_view(const S& s) { return s; } namespace detail { void to_string_view(...); using fmt::v7::to_string_view; // Specifies whether S is a string type convertible to fmt::basic_string_view. // It should be a constexpr function but MSVC 2017 fails to compile it in // enable_if and MSVC 2015 fails to compile it as an alias template. template <typename S> struct is_string : std::is_class<decltype(to_string_view(std::declval<S>()))> { }; template <typename S, typename = void> struct char_t_impl {}; template <typename S> struct char_t_impl<S, enable_if_t<is_string<S>::value>> { using result = decltype(to_string_view(std::declval<S>())); using type = typename result::value_type; }; // Reports a compile-time error if S is not a valid format string. template <typename..., typename S, FMT_ENABLE_IF(!is_compile_string<S>::value)> FMT_INLINE void check_format_string(const S&) { #ifdef FMT_ENFORCE_COMPILE_STRING static_assert(is_compile_string<S>::value, "FMT_ENFORCE_COMPILE_STRING requires all format strings to use " "FMT_STRING."); #endif } template <typename..., typename S, FMT_ENABLE_IF(is_compile_string<S>::value)> void check_format_string(S); struct error_handler { constexpr error_handler() = default; constexpr error_handler(const error_handler&) = default; // This function is intentionally not constexpr to give a compile-time error. FMT_NORETURN FMT_API void on_error(const char* message); }; } // namespace detail /** String's character type. */ template <typename S> using char_t = typename detail::char_t_impl<S>::type; /** \rst Parsing context consisting of a format string range being parsed and an argument counter for automatic indexing. You can use one of the following type aliases for common character types: +-----------------------+-------------------------------------+ | Type | Definition | +=======================+=====================================+ | format_parse_context | basic_format_parse_context<char> | +-----------------------+-------------------------------------+ | wformat_parse_context | basic_format_parse_context<wchar_t> | +-----------------------+-------------------------------------+ \endrst */ template <typename Char, typename ErrorHandler = detail::error_handler> class basic_format_parse_context : private ErrorHandler { private: basic_string_view<Char> format_str_; int next_arg_id_; public: using char_type = Char; using iterator = typename basic_string_view<Char>::iterator; explicit constexpr basic_format_parse_context( basic_string_view<Char> format_str, ErrorHandler eh = {}, int next_arg_id = 0) : ErrorHandler(eh), format_str_(format_str), next_arg_id_(next_arg_id) {} /** Returns an iterator to the beginning of the format string range being parsed. */ constexpr iterator begin() const FMT_NOEXCEPT { return format_str_.begin(); } /** Returns an iterator past the end of the format string range being parsed. */ constexpr iterator end() const FMT_NOEXCEPT { return format_str_.end(); } /** Advances the begin iterator to ``it``. */ FMT_CONSTEXPR void advance_to(iterator it) { format_str_.remove_prefix(detail::to_unsigned(it - begin())); } /** Reports an error if using the manual argument indexing; otherwise returns the next argument index and switches to the automatic indexing. */ FMT_CONSTEXPR int next_arg_id() { // Don't check if the argument id is valid to avoid overhead and because it // will be checked during formatting anyway. if (next_arg_id_ >= 0) return next_arg_id_++; on_error("cannot switch from manual to automatic argument indexing"); return 0; } /** Reports an error if using the automatic argument indexing; otherwise switches to the manual indexing. */ FMT_CONSTEXPR void check_arg_id(int) { if (next_arg_id_ > 0) on_error("cannot switch from automatic to manual argument indexing"); else next_arg_id_ = -1; } FMT_CONSTEXPR void check_arg_id(basic_string_view<Char>) {} FMT_CONSTEXPR void on_error(const char* message) { ErrorHandler::on_error(message); } constexpr ErrorHandler error_handler() const { return *this; } }; using format_parse_context = basic_format_parse_context<char>; using wformat_parse_context = basic_format_parse_context<wchar_t>; template <typename Context> class basic_format_arg; template <typename Context> class basic_format_args; template <typename Context> class dynamic_format_arg_store; // A formatter for objects of type T. template <typename T, typename Char = char, typename Enable = void> struct formatter { // A deleted default constructor indicates a disabled formatter. formatter() = delete; }; // Specifies if T has an enabled formatter specialization. A type can be // formattable even if it doesn't have a formatter e.g. via a conversion. template <typename T, typename Context> using has_formatter = std::is_constructible<typename Context::template formatter_type<T>>; // Checks whether T is a container with contiguous storage. template <typename T> struct is_contiguous : std::false_type {}; template <typename Char> struct is_contiguous<std::basic_string<Char>> : std::true_type {}; namespace detail { // Extracts a reference to the container from back_insert_iterator. template <typename Container> inline Container& get_container(std::back_insert_iterator<Container> it) { using bi_iterator = std::back_insert_iterator<Container>; struct accessor : bi_iterator { accessor(bi_iterator iter) : bi_iterator(iter) {} using bi_iterator::container; }; return *accessor(it).container; } /** \rst A contiguous memory buffer with an optional growing ability. It is an internal class and shouldn't be used directly, only via `~fmt::basic_memory_buffer`. \endrst */ template <typename T> class buffer { private: T* ptr_; size_t size_; size_t capacity_; protected: // Don't initialize ptr_ since it is not accessed to save a few cycles. FMT_SUPPRESS_MSC_WARNING(26495) buffer(size_t sz) FMT_NOEXCEPT : size_(sz), capacity_(sz) {} buffer(T* p = nullptr, size_t sz = 0, size_t cap = 0) FMT_NOEXCEPT : ptr_(p), size_(sz), capacity_(cap) {} ~buffer() = default; /** Sets the buffer data and capacity. */ void set(T* buf_data, size_t buf_capacity) FMT_NOEXCEPT { ptr_ = buf_data; capacity_ = buf_capacity; } /** Increases the buffer capacity to hold at least *capacity* elements. */ virtual void grow(size_t capacity) = 0; public: using value_type = T; using const_reference = const T&; buffer(const buffer&) = delete; void operator=(const buffer&) = delete; T* begin() FMT_NOEXCEPT { return ptr_; } T* end() FMT_NOEXCEPT { return ptr_ + size_; } const T* begin() const FMT_NOEXCEPT { return ptr_; } const T* end() const FMT_NOEXCEPT { return ptr_ + size_; } /** Returns the size of this buffer. */ size_t size() const FMT_NOEXCEPT { return size_; } /** Returns the capacity of this buffer. */ size_t capacity() const FMT_NOEXCEPT { return capacity_; } /** Returns a pointer to the buffer data. */ T* data() FMT_NOEXCEPT { return ptr_; } /** Returns a pointer to the buffer data. */ const T* data() const FMT_NOEXCEPT { return ptr_; } /** Clears this buffer. */ void clear() { size_ = 0; } // Tries resizing the buffer to contain *count* elements. If T is a POD type // the new elements may not be initialized. void try_resize(size_t count) { try_reserve(count); size_ = count <= capacity_ ? count : capacity_; } // Tries increasing the buffer capacity to *new_capacity*. It can increase the // capacity by a smaller amount than requested but guarantees there is space // for at least one additional element either by increasing the capacity or by // flushing the buffer if it is full. void try_reserve(size_t new_capacity) { if (new_capacity > capacity_) grow(new_capacity); } void push_back(const T& value) { try_reserve(size_ + 1); ptr_[size_++] = value; } /** Appends data to the end of the buffer. */ template <typename U> void append(const U* begin, const U* end); template <typename I> T& operator[](I index) { return ptr_[index]; } template <typename I> const T& operator[](I index) const { return ptr_[index]; } }; struct buffer_traits { explicit buffer_traits(size_t) {} size_t count() const { return 0; } size_t limit(size_t size) { return size; } }; class fixed_buffer_traits { private: size_t count_ = 0; size_t limit_; public: explicit fixed_buffer_traits(size_t limit) : limit_(limit) {} size_t count() const { return count_; } size_t limit(size_t size) { size_t n = limit_ > count_ ? limit_ - count_ : 0; count_ += size; return size < n ? size : n; } }; // A buffer that writes to an output iterator when flushed. template <typename OutputIt, typename T, typename Traits = buffer_traits> class iterator_buffer final : public Traits, public buffer<T> { private: OutputIt out_; enum { buffer_size = 256 }; T data_[buffer_size]; protected: void grow(size_t) final FMT_OVERRIDE { if (this->size() == buffer_size) flush(); } void flush(); public: explicit iterator_buffer(OutputIt out, size_t n = buffer_size) : Traits(n), buffer<T>(data_, 0, buffer_size), out_(out) {} ~iterator_buffer() { flush(); } OutputIt out() { flush(); return out_; } size_t count() const { return Traits::count() + this->size(); } }; template <typename T> class iterator_buffer<T*, T> final : public buffer<T> { protected: void grow(size_t) final FMT_OVERRIDE {} public: explicit iterator_buffer(T* out, size_t = 0) : buffer<T>(out, 0, ~size_t()) {} T* out() { return &*this->end(); } }; // A buffer that writes to a container with the contiguous storage. template <typename Container> class iterator_buffer<std::back_insert_iterator<Container>, enable_if_t<is_contiguous<Container>::value, typename Container::value_type>> final : public buffer<typename Container::value_type> { private: Container& container_; protected: void grow(size_t capacity) final FMT_OVERRIDE { container_.resize(capacity); this->set(&container_[0], capacity); } public: explicit iterator_buffer(Container& c) : buffer<typename Container::value_type>(c.size()), container_(c) {} explicit iterator_buffer(std::back_insert_iterator<Container> out, size_t = 0) : iterator_buffer(get_container(out)) {} std::back_insert_iterator<Container> out() { return std::back_inserter(container_); } }; // A buffer that counts the number of code units written discarding the output. template <typename T = char> class counting_buffer final : public buffer<T> { private: enum { buffer_size = 256 }; T data_[buffer_size]; size_t count_ = 0; protected: void grow(size_t) final FMT_OVERRIDE { if (this->size() != buffer_size) return; count_ += this->size(); this->clear(); } public: counting_buffer() : buffer<T>(data_, 0, buffer_size) {} size_t count() { return count_ + this->size(); } }; // An output iterator that appends to the buffer. // It is used to reduce symbol sizes for the common case. template <typename T> class buffer_appender : public std::back_insert_iterator<buffer<T>> { using base = std::back_insert_iterator<buffer<T>>; public: explicit buffer_appender(buffer<T>& buf) : base(buf) {} buffer_appender(base it) : base(it) {} buffer_appender& operator++() { base::operator++(); return *this; } buffer_appender operator++(int) { buffer_appender tmp = *this; ++*this; return tmp; } }; // Maps an output iterator into a buffer. template <typename T, typename OutputIt> iterator_buffer<OutputIt, T> get_buffer(OutputIt); template <typename T> buffer<T>& get_buffer(buffer_appender<T>); template <typename OutputIt> OutputIt get_buffer_init(OutputIt out) { return out; } template <typename T> buffer<T>& get_buffer_init(buffer_appender<T> out) { return get_container(out); } template <typename Buffer> auto get_iterator(Buffer& buf) -> decltype(buf.out()) { return buf.out(); } template <typename T> buffer_appender<T> get_iterator(buffer<T>& buf) { return buffer_appender<T>(buf); } template <typename T, typename Char = char, typename Enable = void> struct fallback_formatter { fallback_formatter() = delete; }; // Specifies if T has an enabled fallback_formatter specialization. template <typename T, typename Context> using has_fallback_formatter = std::is_constructible<fallback_formatter<T, typename Context::char_type>>; struct view {}; template <typename Char, typename T> struct named_arg : view { const Char* name; const T& value; named_arg(const Char* n, const T& v) : name(n), value(v) {} }; template <typename Char> struct named_arg_info { const Char* name; int id; }; template <typename T, typename Char, size_t NUM_ARGS, size_t NUM_NAMED_ARGS> struct arg_data { // args_[0].named_args points to named_args_ to avoid bloating format_args. // +1 to workaround a bug in gcc 7.5 that causes duplicated-branches warning. T args_[1 + (NUM_ARGS != 0 ? NUM_ARGS : +1)]; named_arg_info<Char> named_args_[NUM_NAMED_ARGS]; template <typename... U> arg_data(const U&... init) : args_{T(named_args_, NUM_NAMED_ARGS), init...} {} arg_data(const arg_data& other) = delete; const T* args() const { return args_ + 1; } named_arg_info<Char>* named_args() { return named_args_; } }; template <typename T, typename Char, size_t NUM_ARGS> struct arg_data<T, Char, NUM_ARGS, 0> { // +1 to workaround a bug in gcc 7.5 that causes duplicated-branches warning. T args_[NUM_ARGS != 0 ? NUM_ARGS : +1]; template <typename... U> FMT_INLINE arg_data(const U&... init) : args_{init...} {} FMT_INLINE const T* args() const { return args_; } FMT_INLINE std::nullptr_t named_args() { return nullptr; } }; template <typename Char> inline void init_named_args(named_arg_info<Char>*, int, int) {} template <typename Char, typename T, typename... Tail> void init_named_args(named_arg_info<Char>* named_args, int arg_count, int named_arg_count, const T&, const Tail&... args) { init_named_args(named_args, arg_count + 1, named_arg_count, args...); } template <typename Char, typename T, typename... Tail> void init_named_args(named_arg_info<Char>* named_args, int arg_count, int named_arg_count, const named_arg<Char, T>& arg, const Tail&... args) { named_args[named_arg_count++] = {arg.name, arg_count}; init_named_args(named_args, arg_count + 1, named_arg_count, args...); } template <typename... Args> FMT_INLINE void init_named_args(std::nullptr_t, int, int, const Args&...) {} template <typename T> struct is_named_arg : std::false_type {}; template <typename T, typename Char> struct is_named_arg<named_arg<Char, T>> : std::true_type {}; template <bool B = false> constexpr size_t count() { return B ? 1 : 0; } template <bool B1, bool B2, bool... Tail> constexpr size_t count() { return (B1 ? 1 : 0) + count<B2, Tail...>(); } template <typename... Args> constexpr size_t count_named_args() { return count<is_named_arg<Args>::value...>(); } enum class type { none_type, // Integer types should go first, int_type, uint_type, long_long_type, ulong_long_type, int128_type, uint128_type, bool_type, char_type, last_integer_type = char_type, // followed by floating-point types. float_type, double_type, long_double_type, last_numeric_type = long_double_type, cstring_type, string_type, pointer_type, custom_type }; // Maps core type T to the corresponding type enum constant. template <typename T, typename Char> struct type_constant : std::integral_constant<type, type::custom_type> {}; #define FMT_TYPE_CONSTANT(Type, constant) \ template <typename Char> \ struct type_constant<Type, Char> \ : std::integral_constant<type, type::constant> {} FMT_TYPE_CONSTANT(int, int_type); FMT_TYPE_CONSTANT(unsigned, uint_type); FMT_TYPE_CONSTANT(long long, long_long_type); FMT_TYPE_CONSTANT(unsigned long long, ulong_long_type); FMT_TYPE_CONSTANT(int128_t, int128_type); FMT_TYPE_CONSTANT(uint128_t, uint128_type); FMT_TYPE_CONSTANT(bool, bool_type); FMT_TYPE_CONSTANT(Char, char_type); FMT_TYPE_CONSTANT(float, float_type); FMT_TYPE_CONSTANT(double, double_type); FMT_TYPE_CONSTANT(long double, long_double_type); FMT_TYPE_CONSTANT(const Char*, cstring_type); FMT_TYPE_CONSTANT(basic_string_view<Char>, string_type); FMT_TYPE_CONSTANT(const void*, pointer_type); constexpr bool is_integral_type(type t) { return t > type::none_type && t <= type::last_integer_type; } constexpr bool is_arithmetic_type(type t) { return t > type::none_type && t <= type::last_numeric_type; } template <typename Char> struct string_value { const Char* data; size_t size; }; template <typename Char> struct named_arg_value { const named_arg_info<Char>* data; size_t size; }; template <typename Context> struct custom_value { using parse_context = typename Context::parse_context_type; const void* value; void (*format)(const void* arg, parse_context& parse_ctx, Context& ctx); }; // A formatting argument value. template <typename Context> class value { public: using char_type = typename Context::char_type; union { int int_value; unsigned uint_value; long long long_long_value; unsigned long long ulong_long_value; int128_t int128_value; uint128_t uint128_value; bool bool_value; char_type char_value; float float_value; double double_value; long double long_double_value; const void* pointer; string_value<char_type> string; custom_value<Context> custom; named_arg_value<char_type> named_args; }; constexpr FMT_INLINE value(int val = 0) : int_value(val) {} constexpr FMT_INLINE value(unsigned val) : uint_value(val) {} FMT_INLINE value(long long val) : long_long_value(val) {} FMT_INLINE value(unsigned long long val) : ulong_long_value(val) {} FMT_INLINE value(int128_t val) : int128_value(val) {} FMT_INLINE value(uint128_t val) : uint128_value(val) {} FMT_INLINE value(float val) : float_value(val) {} FMT_INLINE value(double val) : double_value(val) {} FMT_INLINE value(long double val) : long_double_value(val) {} FMT_INLINE value(bool val) : bool_value(val) {} FMT_INLINE value(char_type val) : char_value(val) {} FMT_INLINE value(const char_type* val) { string.data = val; } FMT_INLINE value(basic_string_view<char_type> val) { string.data = val.data(); string.size = val.size(); } FMT_INLINE value(const void* val) : pointer(val) {} FMT_INLINE value(const named_arg_info<char_type>* args, size_t size) : named_args{args, size} {} template <typename T> FMT_INLINE value(const T& val) { custom.value = &val; // Get the formatter type through the context to allow different contexts // have different extension points, e.g. `formatter<T>` for `format` and // `printf_formatter<T>` for `printf`. custom.format = format_custom_arg< T, conditional_t<has_formatter<T, Context>::value, typename Context::template formatter_type<T>, fallback_formatter<T, char_type>>>; } private: // Formats an argument of a custom type, such as a user-defined class. template <typename T, typename Formatter> static void format_custom_arg(const void* arg, typename Context::parse_context_type& parse_ctx, Context& ctx) { Formatter f; parse_ctx.advance_to(f.parse(parse_ctx)); ctx.advance_to(f.format(*static_cast<const T*>(arg), ctx)); } }; template <typename Context, typename T> FMT_CONSTEXPR basic_format_arg<Context> make_arg(const T& value); // To minimize the number of types we need to deal with, long is translated // either to int or to long long depending on its size. enum { long_short = sizeof(long) == sizeof(int) }; using long_type = conditional_t<long_short, int, long long>; using ulong_type = conditional_t<long_short, unsigned, unsigned long long>; struct unformattable {}; // Maps formatting arguments to core types. template <typename Context> struct arg_mapper { using char_type = typename Context::char_type; FMT_CONSTEXPR int map(signed char val) { return val; } FMT_CONSTEXPR unsigned map(unsigned char val) { return val; } FMT_CONSTEXPR int map(short val) { return val; } FMT_CONSTEXPR unsigned map(unsigned short val) { return val; } FMT_CONSTEXPR int map(int val) { return val; } FMT_CONSTEXPR unsigned map(unsigned val) { return val; } FMT_CONSTEXPR long_type map(long val) { return val; } FMT_CONSTEXPR ulong_type map(unsigned long val) { return val; } FMT_CONSTEXPR long long map(long long val) { return val; } FMT_CONSTEXPR unsigned long long map(unsigned long long val) { return val; } FMT_CONSTEXPR int128_t map(int128_t val) { return val; } FMT_CONSTEXPR uint128_t map(uint128_t val) { return val; } FMT_CONSTEXPR bool map(bool val) { return val; } template <typename T, FMT_ENABLE_IF(is_char<T>::value)> FMT_CONSTEXPR char_type map(T val) { static_assert( std::is_same<T, char>::value || std::is_same<T, char_type>::value, "mixing character types is disallowed"); return val; } FMT_CONSTEXPR float map(float val) { return val; } FMT_CONSTEXPR double map(double val) { return val; } FMT_CONSTEXPR long double map(long double val) { return val; } FMT_CONSTEXPR const char_type* map(char_type* val) { return val; } FMT_CONSTEXPR const char_type* map(const char_type* val) { return val; } template <typename T, FMT_ENABLE_IF(is_string<T>::value)> FMT_CONSTEXPR basic_string_view<char_type> map(const T& val) { static_assert(std::is_same<char_type, char_t<T>>::value, "mixing character types is disallowed"); return to_string_view(val); } template <typename T, FMT_ENABLE_IF( std::is_constructible<basic_string_view<char_type>, T>::value && !is_string<T>::value && !has_formatter<T, Context>::value && !has_fallback_formatter<T, Context>::value)> FMT_CONSTEXPR basic_string_view<char_type> map(const T& val) { return basic_string_view<char_type>(val); } template < typename T, FMT_ENABLE_IF( std::is_constructible<std_string_view<char_type>, T>::value && !std::is_constructible<basic_string_view<char_type>, T>::value && !is_string<T>::value && !has_formatter<T, Context>::value && !has_fallback_formatter<T, Context>::value)> FMT_CONSTEXPR basic_string_view<char_type> map(const T& val) { return std_string_view<char_type>(val); } FMT_CONSTEXPR const char* map(const signed char* val) { static_assert(std::is_same<char_type, char>::value, "invalid string type"); return reinterpret_cast<const char*>(val); } FMT_CONSTEXPR const char* map(const unsigned char* val) { static_assert(std::is_same<char_type, char>::value, "invalid string type"); return reinterpret_cast<const char*>(val); } FMT_CONSTEXPR const char* map(signed char* val) { const auto* const_val = val; return map(const_val); } FMT_CONSTEXPR const char* map(unsigned char* val) { const auto* const_val = val; return map(const_val); } FMT_CONSTEXPR const void* map(void* val) { return val; } FMT_CONSTEXPR const void* map(const void* val) { return val; } FMT_CONSTEXPR const void* map(std::nullptr_t val) { return val; } template <typename T> FMT_CONSTEXPR int map(const T*) { // Formatting of arbitrary pointers is disallowed. If you want to output // a pointer cast it to "void *" or "const void *". In particular, this // forbids formatting of "[const] volatile char *" which is printed as bool // by iostreams. static_assert(!sizeof(T), "formatting of non-void pointers is disallowed"); return 0; } template <typename T, FMT_ENABLE_IF(std::is_enum<T>::value && !has_formatter<T, Context>::value && !has_fallback_formatter<T, Context>::value)> FMT_CONSTEXPR auto map(const T& val) -> decltype(std::declval<arg_mapper>().map( static_cast<typename std::underlying_type<T>::type>(val))) { return map(static_cast<typename std::underlying_type<T>::type>(val)); } template <typename T, FMT_ENABLE_IF(!is_string<T>::value && !is_char<T>::value && (has_formatter<T, Context>::value || has_fallback_formatter<T, Context>::value))> FMT_CONSTEXPR const T& map(const T& val) { return val; } template <typename T> FMT_CONSTEXPR auto map(const named_arg<char_type, T>& val) -> decltype(std::declval<arg_mapper>().map(val.value)) { return map(val.value); } unformattable map(...) { return {}; } }; // A type constant after applying arg_mapper<Context>. template <typename T, typename Context> using mapped_type_constant = type_constant<decltype(arg_mapper<Context>().map(std::declval<const T&>())), typename Context::char_type>; enum { packed_arg_bits = 4 }; // Maximum number of arguments with packed types. enum { max_packed_args = 62 / packed_arg_bits }; enum : unsigned long long { is_unpacked_bit = 1ULL << 63 }; enum : unsigned long long { has_named_args_bit = 1ULL << 62 }; } // namespace detail // A formatting argument. It is a trivially copyable/constructible type to // allow storage in basic_memory_buffer. template <typename Context> class basic_format_arg { private: detail::value<Context> value_; detail::type type_; template <typename ContextType, typename T> friend FMT_CONSTEXPR basic_format_arg<ContextType> detail::make_arg( const T& value); template <typename Visitor, typename Ctx> friend FMT_CONSTEXPR auto visit_format_arg(Visitor&& vis, const basic_format_arg<Ctx>& arg) -> decltype(vis(0)); friend class basic_format_args<Context>; friend class dynamic_format_arg_store<Context>; using char_type = typename Context::char_type; template <typename T, typename Char, size_t NUM_ARGS, size_t NUM_NAMED_ARGS> friend struct detail::arg_data; basic_format_arg(const detail::named_arg_info<char_type>* args, size_t size) : value_(args, size) {} public: class handle { public: explicit handle(detail::custom_value<Context> custom) : custom_(custom) {} void format(typename Context::parse_context_type& parse_ctx, Context& ctx) const { custom_.format(custom_.value, parse_ctx, ctx); } private: detail::custom_value<Context> custom_; }; constexpr basic_format_arg() : type_(detail::type::none_type) {} constexpr explicit operator bool() const FMT_NOEXCEPT { return type_ != detail::type::none_type; } detail::type type() const { return type_; } bool is_integral() const { return detail::is_integral_type(type_); } bool is_arithmetic() const { return detail::is_arithmetic_type(type_); } }; /** \rst Visits an argument dispatching to the appropriate visit method based on the argument type. For example, if the argument type is ``double`` then ``vis(value)`` will be called with the value of type ``double``. \endrst */ template <typename Visitor, typename Context> FMT_CONSTEXPR_DECL FMT_INLINE auto visit_format_arg( Visitor&& vis, const basic_format_arg<Context>& arg) -> decltype(vis(0)) { using char_type = typename Context::char_type; switch (arg.type_) { case detail::type::none_type: break; case detail::type::int_type: return vis(arg.value_.int_value); case detail::type::uint_type: return vis(arg.value_.uint_value); case detail::type::long_long_type: return vis(arg.value_.long_long_value); case detail::type::ulong_long_type: return vis(arg.value_.ulong_long_value); #if FMT_USE_INT128 case detail::type::int128_type: return vis(arg.value_.int128_value); case detail::type::uint128_type: return vis(arg.value_.uint128_value); #else case detail::type::int128_type: case detail::type::uint128_type: break; #endif case detail::type::bool_type: return vis(arg.value_.bool_value); case detail::type::char_type: return vis(arg.value_.char_value); case detail::type::float_type: return vis(arg.value_.float_value); case detail::type::double_type: return vis(arg.value_.double_value); case detail::type::long_double_type: return vis(arg.value_.long_double_value); case detail::type::cstring_type: return vis(arg.value_.string.data); case detail::type::string_type: return vis(basic_string_view<char_type>(arg.value_.string.data, arg.value_.string.size)); case detail::type::pointer_type: return vis(arg.value_.pointer); case detail::type::custom_type: return vis(typename basic_format_arg<Context>::handle(arg.value_.custom)); } return vis(monostate()); } template <typename T> struct formattable : std::false_type {}; namespace detail { // A workaround for gcc 4.8 to make void_t work in a SFINAE context. template <typename... Ts> struct void_t_impl { using type = void; }; template <typename... Ts> using void_t = typename detail::void_t_impl<Ts...>::type; template <typename It, typename T, typename Enable = void> struct is_output_iterator : std::false_type {}; template <typename It, typename T> struct is_output_iterator< It, T, void_t<typename std::iterator_traits<It>::iterator_category, decltype(*std::declval<It>() = std::declval<T>())>> : std::true_type {}; template <typename OutputIt> struct is_back_insert_iterator : std::false_type {}; template <typename Container> struct is_back_insert_iterator<std::back_insert_iterator<Container>> : std::true_type {}; template <typename OutputIt> struct is_contiguous_back_insert_iterator : std::false_type {}; template <typename Container> struct is_contiguous_back_insert_iterator<std::back_insert_iterator<Container>> : is_contiguous<Container> {}; template <typename Char> struct is_contiguous_back_insert_iterator<buffer_appender<Char>> : std::true_type {}; // A type-erased reference to an std::locale to avoid heavy <locale> include. class locale_ref { private: const void* locale_; // A type-erased pointer to std::locale. public: locale_ref() : locale_(nullptr) {} template <typename Locale> explicit locale_ref(const Locale& loc); explicit operator bool() const FMT_NOEXCEPT { return locale_ != nullptr; } template <typename Locale> Locale get() const; }; template <typename> constexpr unsigned long long encode_types() { return 0; } template <typename Context, typename Arg, typename... Args> constexpr unsigned long long encode_types() { return static_cast<unsigned>(mapped_type_constant<Arg, Context>::value) | (encode_types<Context, Args...>() << packed_arg_bits); } template <typename Context, typename T> FMT_CONSTEXPR basic_format_arg<Context> make_arg(const T& value) { basic_format_arg<Context> arg; arg.type_ = mapped_type_constant<T, Context>::value; arg.value_ = arg_mapper<Context>().map(value); return arg; } template <typename T> int check(unformattable) { static_assert( formattable<T>(), "Cannot format an argument. To make type T formattable provide a " "formatter<T> specialization: https://fmt.dev/latest/api.html#udt"); return 0; } template <typename T, typename U> inline const U& check(const U& val) { return val; } // The type template parameter is there to avoid an ODR violation when using // a fallback formatter in one translation unit and an implicit conversion in // another (not recommended). template <bool IS_PACKED, typename Context, type, typename T, FMT_ENABLE_IF(IS_PACKED)> inline value<Context> make_arg(const T& val) { return check<T>(arg_mapper<Context>().map(val)); } template <bool IS_PACKED, typename Context, type, typename T, FMT_ENABLE_IF(!IS_PACKED)> inline basic_format_arg<Context> make_arg(const T& value) { return make_arg<Context>(value); } template <typename T> struct is_reference_wrapper : std::false_type {}; template <typename T> struct is_reference_wrapper<std::reference_wrapper<T>> : std::true_type {}; template <typename T> const T& unwrap(const T& v) { return v; } template <typename T> const T& unwrap(const std::reference_wrapper<T>& v) { return static_cast<const T&>(v); } class dynamic_arg_list { // Workaround for clang's -Wweak-vtables. Unlike for regular classes, for // templates it doesn't complain about inability to deduce single translation // unit for placing vtable. So storage_node_base is made a fake template. template <typename = void> struct node { virtual ~node() = default; std::unique_ptr<node<>> next; }; template <typename T> struct typed_node : node<> { T value; template <typename Arg> FMT_CONSTEXPR typed_node(const Arg& arg) : value(arg) {} template <typename Char> FMT_CONSTEXPR typed_node(const basic_string_view<Char>& arg) : value(arg.data(), arg.size()) {} }; std::unique_ptr<node<>> head_; public: template <typename T, typename Arg> const T& push(const Arg& arg) { auto new_node = std::unique_ptr<typed_node<T>>(new typed_node<T>(arg)); auto& value = new_node->value; new_node->next = std::move(head_); head_ = std::move(new_node); return value; } }; } // namespace detail // Formatting context. template <typename OutputIt, typename Char> class basic_format_context { public: /** The character type for the output. */ using char_type = Char; private: OutputIt out_; basic_format_args<basic_format_context> args_; detail::locale_ref loc_; public: using iterator = OutputIt; using format_arg = basic_format_arg<basic_format_context>; using parse_context_type = basic_format_parse_context<Char>; template <typename T> using formatter_type = formatter<T, char_type>; basic_format_context(const basic_format_context&) = delete; void operator=(const basic_format_context&) = delete; /** Constructs a ``basic_format_context`` object. References to the arguments are stored in the object so make sure they have appropriate lifetimes. */ basic_format_context(OutputIt out, basic_format_args<basic_format_context> ctx_args, detail::locale_ref loc = detail::locale_ref()) : out_(out), args_(ctx_args), loc_(loc) {} format_arg arg(int id) const { return args_.get(id); } format_arg arg(basic_string_view<char_type> name) { return args_.get(name); } int arg_id(basic_string_view<char_type> name) { return args_.get_id(name); } const basic_format_args<basic_format_context>& args() const { return args_; } detail::error_handler error_handler() { return {}; } void on_error(const char* message) { error_handler().on_error(message); } // Returns an iterator to the beginning of the output range. iterator out() { return out_; } // Advances the begin iterator to ``it``. void advance_to(iterator it) { if (!detail::is_back_insert_iterator<iterator>()) out_ = it; } detail::locale_ref locale() { return loc_; } }; template <typename Char> using buffer_context = basic_format_context<detail::buffer_appender<Char>, Char>; using format_context = buffer_context<char>; using wformat_context = buffer_context<wchar_t>; // Workaround an alias issue: https://stackoverflow.com/q/62767544/471164. #define FMT_BUFFER_CONTEXT(Char) \ basic_format_context<detail::buffer_appender<Char>, Char> /** \rst An array of references to arguments. It can be implicitly converted into `~fmt::basic_format_args` for passing into type-erased formatting functions such as `~fmt::vformat`. \endrst */ template <typename Context, typename... Args> class format_arg_store #if FMT_GCC_VERSION && FMT_GCC_VERSION < 409 // Workaround a GCC template argument substitution bug. : public basic_format_args<Context> #endif { private: static const size_t num_args = sizeof...(Args); static const size_t num_named_args = detail::count_named_args<Args...>(); static const bool is_packed = num_args <= detail::max_packed_args; using value_type = conditional_t<is_packed, detail::value<Context>, basic_format_arg<Context>>; detail::arg_data<value_type, typename Context::char_type, num_args, num_named_args> data_; friend class basic_format_args<Context>; static constexpr unsigned long long desc = (is_packed ? detail::encode_types<Context, Args...>() : detail::is_unpacked_bit | num_args) | (num_named_args != 0 ? static_cast<unsigned long long>(detail::has_named_args_bit) : 0); public: format_arg_store(const Args&... args) : #if FMT_GCC_VERSION && FMT_GCC_VERSION < 409 basic_format_args<Context>(*this), #endif data_{detail::make_arg< is_packed, Context, detail::mapped_type_constant<Args, Context>::value>(args)...} { detail::init_named_args(data_.named_args(), 0, 0, args...); } }; /** \rst Constructs a `~fmt::format_arg_store` object that contains references to arguments and can be implicitly converted to `~fmt::format_args`. `Context` can be omitted in which case it defaults to `~fmt::context`. See `~fmt::arg` for lifetime considerations. \endrst */ template <typename Context = format_context, typename... Args> inline format_arg_store<Context, Args...> make_format_args( const Args&... args) { return {args...}; } /** \rst Constructs a `~fmt::format_arg_store` object that contains references to arguments and can be implicitly converted to `~fmt::format_args`. If ``format_str`` is a compile-time string then `make_args_checked` checks its validity at compile time. \endrst */ template <typename... Args, typename S, typename Char = char_t<S>> inline auto make_args_checked(const S& format_str, const remove_reference_t<Args>&... args) -> format_arg_store<buffer_context<Char>, remove_reference_t<Args>...> { static_assert( detail::count<( std::is_base_of<detail::view, remove_reference_t<Args>>::value && std::is_reference<Args>::value)...>() == 0, "passing views as lvalues is disallowed"); detail::check_format_string<Args...>(format_str); return {args...}; } /** \rst Returns a named argument to be used in a formatting function. It should only be used in a call to a formatting function. **Example**:: fmt::print("Elapsed time: {s:.2f} seconds", fmt::arg("s", 1.23)); \endrst */ template <typename Char, typename T> inline detail::named_arg<Char, T> arg(const Char* name, const T& arg) { static_assert(!detail::is_named_arg<T>(), "nested named arguments"); return {name, arg}; } /** \rst A dynamic version of `fmt::format_arg_store`. It's equipped with a storage to potentially temporary objects which lifetimes could be shorter than the format arguments object. It can be implicitly converted into `~fmt::basic_format_args` for passing into type-erased formatting functions such as `~fmt::vformat`. \endrst */ template <typename Context> class dynamic_format_arg_store #if FMT_GCC_VERSION && FMT_GCC_VERSION < 409 // Workaround a GCC template argument substitution bug. : public basic_format_args<Context> #endif { private: using char_type = typename Context::char_type; template <typename T> struct need_copy { static constexpr detail::type mapped_type = detail::mapped_type_constant<T, Context>::value; enum { value = !(detail::is_reference_wrapper<T>::value || std::is_same<T, basic_string_view<char_type>>::value || std::is_same<T, detail::std_string_view<char_type>>::value || (mapped_type != detail::type::cstring_type && mapped_type != detail::type::string_type && mapped_type != detail::type::custom_type)) }; }; template <typename T> using stored_type = conditional_t<detail::is_string<T>::value, std::basic_string<char_type>, T>; // Storage of basic_format_arg must be contiguous. std::vector<basic_format_arg<Context>> data_; std::vector<detail::named_arg_info<char_type>> named_info_; // Storage of arguments not fitting into basic_format_arg must grow // without relocation because items in data_ refer to it. detail::dynamic_arg_list dynamic_args_; friend class basic_format_args<Context>; unsigned long long get_types() const { return detail::is_unpacked_bit | data_.size() | (named_info_.empty() ? 0ULL : static_cast<unsigned long long>(detail::has_named_args_bit)); } const basic_format_arg<Context>* data() const { return named_info_.empty() ? data_.data() : data_.data() + 1; } template <typename T> void emplace_arg(const T& arg) { data_.emplace_back(detail::make_arg<Context>(arg)); } template <typename T> void emplace_arg(const detail::named_arg<char_type, T>& arg) { if (named_info_.empty()) { constexpr const detail::named_arg_info<char_type>* zero_ptr{nullptr}; data_.insert(data_.begin(), {zero_ptr, 0}); } data_.emplace_back(detail::make_arg<Context>(detail::unwrap(arg.value))); auto pop_one = [](std::vector<basic_format_arg<Context>>* data) { data->pop_back(); }; std::unique_ptr<std::vector<basic_format_arg<Context>>, decltype(pop_one)> guard{&data_, pop_one}; named_info_.push_back({arg.name, static_cast<int>(data_.size() - 2u)}); data_[0].value_.named_args = {named_info_.data(), named_info_.size()}; guard.release(); } public: /** \rst Adds an argument into the dynamic store for later passing to a formatting function. Note that custom types and string types (but not string views) are copied into the store dynamically allocating memory if necessary. **Example**:: fmt::dynamic_format_arg_store<fmt::format_context> store; store.push_back(42); store.push_back("abc"); store.push_back(1.5f); std::string result = fmt::vformat("{} and {} and {}", store); \endrst */ template <typename T> void push_back(const T& arg) { if (detail::const_check(need_copy<T>::value)) emplace_arg(dynamic_args_.push<stored_type<T>>(arg)); else emplace_arg(detail::unwrap(arg)); } /** \rst Adds a reference to the argument into the dynamic store for later passing to a formatting function. Supports named arguments wrapped in ``std::reference_wrapper`` via ``std::ref()``/``std::cref()``. **Example**:: fmt::dynamic_format_arg_store<fmt::format_context> store; char str[] = "1234567890"; store.push_back(std::cref(str)); int a1_val{42}; auto a1 = fmt::arg("a1_", a1_val); store.push_back(std::cref(a1)); // Changing str affects the output but only for string and custom types. str[0] = 'X'; std::string result = fmt::vformat("{} and {a1_}"); assert(result == "X234567890 and 42"); \endrst */ template <typename T> void push_back(std::reference_wrapper<T> arg) { static_assert( detail::is_named_arg<typename std::remove_cv<T>::type>::value || need_copy<T>::value, "objects of built-in types and string views are always copied"); emplace_arg(arg.get()); } /** Adds named argument into the dynamic store for later passing to a formatting function. ``std::reference_wrapper`` is supported to avoid copying of the argument. */ template <typename T> void push_back(const detail::named_arg<char_type, T>& arg) { const char_type* arg_name = dynamic_args_.push<std::basic_string<char_type>>(arg.name).c_str(); if (detail::const_check(need_copy<T>::value)) { emplace_arg( fmt::arg(arg_name, dynamic_args_.push<stored_type<T>>(arg.value))); } else { emplace_arg(fmt::arg(arg_name, arg.value)); } } /** Erase all elements from the store */ void clear() { data_.clear(); named_info_.clear(); dynamic_args_ = detail::dynamic_arg_list(); } /** \rst Reserves space to store at least *new_cap* arguments including *new_cap_named* named arguments. \endrst */ void reserve(size_t new_cap, size_t new_cap_named) { FMT_ASSERT(new_cap >= new_cap_named, "Set of arguments includes set of named arguments"); data_.reserve(new_cap); named_info_.reserve(new_cap_named); } }; /** \rst A view of a collection of formatting arguments. To avoid lifetime issues it should only be used as a parameter type in type-erased functions such as ``vformat``:: void vlog(string_view format_str, format_args args); // OK format_args args = make_format_args(42); // Error: dangling reference \endrst */ template <typename Context> class basic_format_args { public: using size_type = int; using format_arg = basic_format_arg<Context>; private: // A descriptor that contains information about formatting arguments. // If the number of arguments is less or equal to max_packed_args then // argument types are passed in the descriptor. This reduces binary code size // per formatting function call. unsigned long long desc_; union { // If is_packed() returns true then argument values are stored in values_; // otherwise they are stored in args_. This is done to improve cache // locality and reduce compiled code size since storing larger objects // may require more code (at least on x86-64) even if the same amount of // data is actually copied to stack. It saves ~10% on the bloat test. const detail::value<Context>* values_; const format_arg* args_; }; bool is_packed() const { return (desc_ & detail::is_unpacked_bit) == 0; } bool has_named_args() const { return (desc_ & detail::has_named_args_bit) != 0; } detail::type type(int index) const { int shift = index * detail::packed_arg_bits; unsigned int mask = (1 << detail::packed_arg_bits) - 1; return static_cast<detail::type>((desc_ >> shift) & mask); } basic_format_args(unsigned long long desc, const detail::value<Context>* values) : desc_(desc), values_(values) {} basic_format_args(unsigned long long desc, const format_arg* args) : desc_(desc), args_(args) {} public: basic_format_args() : desc_(0) {} /** \rst Constructs a `basic_format_args` object from `~fmt::format_arg_store`. \endrst */ template <typename... Args> FMT_INLINE basic_format_args(const format_arg_store<Context, Args...>& store) : basic_format_args(store.desc, store.data_.args()) {} /** \rst Constructs a `basic_format_args` object from `~fmt::dynamic_format_arg_store`. \endrst */ FMT_INLINE basic_format_args(const dynamic_format_arg_store<Context>& store) : basic_format_args(store.get_types(), store.data()) {} /** \rst Constructs a `basic_format_args` object from a dynamic set of arguments. \endrst */ basic_format_args(const format_arg* args, int count) : basic_format_args(detail::is_unpacked_bit | detail::to_unsigned(count), args) {} /** Returns the argument with the specified id. */ format_arg get(int id) const { format_arg arg; if (!is_packed()) { if (id < max_size()) arg = args_[id]; return arg; } if (id >= detail::max_packed_args) return arg; arg.type_ = type(id); if (arg.type_ == detail::type::none_type) return arg; arg.value_ = values_[id]; return arg; } template <typename Char> format_arg get(basic_string_view<Char> name) const { int id = get_id(name); return id >= 0 ? get(id) : format_arg(); } template <typename Char> int get_id(basic_string_view<Char> name) const { if (!has_named_args()) return -1; const auto& named_args = (is_packed() ? values_[-1] : args_[-1].value_).named_args; for (size_t i = 0; i < named_args.size; ++i) { if (named_args.data[i].name == name) return named_args.data[i].id; } return -1; } int max_size() const { unsigned long long max_packed = detail::max_packed_args; return static_cast<int>(is_packed() ? max_packed : desc_ & ~detail::is_unpacked_bit); } }; #ifdef FMT_ARM_ABI_COMPATIBILITY /** An alias to ``basic_format_args<format_context>``. */ // Separate types would result in shorter symbols but break ABI compatibility // between clang and gcc on ARM (#1919). using format_args = basic_format_args<format_context>; using wformat_args = basic_format_args<wformat_context>; #else // DEPRECATED! These are kept for ABI compatibility. // It is a separate type rather than an alias to make symbols readable. struct format_args : basic_format_args<format_context> { template <typename... Args> FMT_INLINE format_args(const Args&... args) : basic_format_args(args...) {} }; struct wformat_args : basic_format_args<wformat_context> { using basic_format_args::basic_format_args; }; #endif namespace detail { template <typename Char, FMT_ENABLE_IF(!std::is_same<Char, char>::value)> std::basic_string<Char> vformat( basic_string_view<Char> format_str, basic_format_args<buffer_context<type_identity_t<Char>>> args); FMT_API std::string vformat(string_view format_str, format_args args); template <typename Char> void vformat_to( buffer<Char>& buf, basic_string_view<Char> format_str, basic_format_args<FMT_BUFFER_CONTEXT(type_identity_t<Char>)> args, detail::locale_ref loc = {}); template <typename Char, typename Args, FMT_ENABLE_IF(!std::is_same<Char, char>::value)> inline void vprint_mojibake(std::FILE*, basic_string_view<Char>, const Args&) {} FMT_API void vprint_mojibake(std::FILE*, string_view, format_args); #ifndef _WIN32 inline void vprint_mojibake(std::FILE*, string_view, format_args) {} #endif } // namespace detail /** Formats a string and writes the output to ``out``. */ // GCC 8 and earlier cannot handle std::back_insert_iterator<Container> with // vformat_to<ArgFormatter>(...) overload, so SFINAE on iterator type instead. template <typename OutputIt, typename S, typename Char = char_t<S>, bool enable = detail::is_output_iterator<OutputIt, Char>::value> auto vformat_to(OutputIt out, const S& format_str, basic_format_args<buffer_context<type_identity_t<Char>>> args) -> typename std::enable_if<enable, OutputIt>::type { decltype(detail::get_buffer<Char>(out)) buf(detail::get_buffer_init(out)); detail::vformat_to(buf, to_string_view(format_str), args); return detail::get_iterator(buf); } /** \rst Formats arguments, writes the result to the output iterator ``out`` and returns the iterator past the end of the output range. **Example**:: std::vector<char> out; fmt::format_to(std::back_inserter(out), "{}", 42); \endrst */ // We cannot use FMT_ENABLE_IF because of a bug in gcc 8.3. template <typename OutputIt, typename S, typename... Args, bool enable = detail::is_output_iterator<OutputIt, char_t<S>>::value> inline auto format_to(OutputIt out, const S& format_str, Args&&... args) -> typename std::enable_if<enable, OutputIt>::type { const auto& vargs = fmt::make_args_checked<Args...>(format_str, args...); return vformat_to(out, to_string_view(format_str), vargs); } template <typename OutputIt> struct format_to_n_result { /** Iterator past the end of the output range. */ OutputIt out; /** Total (not truncated) output size. */ size_t size; }; template <typename OutputIt, typename Char, typename... Args, FMT_ENABLE_IF(detail::is_output_iterator<OutputIt, Char>::value)> inline format_to_n_result<OutputIt> vformat_to_n( OutputIt out, size_t n, basic_string_view<Char> format_str, basic_format_args<buffer_context<type_identity_t<Char>>> args) { detail::iterator_buffer<OutputIt, Char, detail::fixed_buffer_traits> buf(out, n); detail::vformat_to(buf, format_str, args); return {buf.out(), buf.count()}; } /** \rst Formats arguments, writes up to ``n`` characters of the result to the output iterator ``out`` and returns the total output size and the iterator past the end of the output range. \endrst */ template <typename OutputIt, typename S, typename... Args, bool enable = detail::is_output_iterator<OutputIt, char_t<S>>::value> inline auto format_to_n(OutputIt out, size_t n, const S& format_str, const Args&... args) -> typename std::enable_if<enable, format_to_n_result<OutputIt>>::type { const auto& vargs = fmt::make_args_checked<Args...>(format_str, args...); return vformat_to_n(out, n, to_string_view(format_str), vargs); } /** Returns the number of characters in the output of ``format(format_str, args...)``. */ template <typename... Args> inline size_t formatted_size(string_view format_str, Args&&... args) { const auto& vargs = fmt::make_args_checked<Args...>(format_str, args...); detail::counting_buffer<> buf; detail::vformat_to(buf, format_str, vargs); return buf.count(); } template <typename S, typename Char = char_t<S>> FMT_INLINE std::basic_string<Char> vformat( const S& format_str, basic_format_args<buffer_context<type_identity_t<Char>>> args) { return detail::vformat(to_string_view(format_str), args); } /** \rst Formats arguments and returns the result as a string. **Example**:: #include <fmt/core.h> std::string message = fmt::format("The answer is {}", 42); \endrst */ // Pass char_t as a default template parameter instead of using // std::basic_string<char_t<S>> to reduce the symbol size. template <typename S, typename... Args, typename Char = char_t<S>> FMT_INLINE std::basic_string<Char> format(const S& format_str, Args&&... args) { const auto& vargs = fmt::make_args_checked<Args...>(format_str, args...); return detail::vformat(to_string_view(format_str), vargs); } FMT_API void vprint(string_view, format_args); FMT_API void vprint(std::FILE*, string_view, format_args); /** \rst Formats ``args`` according to specifications in ``format_str`` and writes the output to the file ``f``. Strings are assumed to be Unicode-encoded unless the ``FMT_UNICODE`` macro is set to 0. **Example**:: fmt::print(stderr, "Don't {}!", "panic"); \endrst */ template <typename S, typename... Args, typename Char = char_t<S>> inline void print(std::FILE* f, const S& format_str, Args&&... args) { const auto& vargs = fmt::make_args_checked<Args...>(format_str, args...); return detail::is_unicode<Char>() ? vprint(f, to_string_view(format_str), vargs) : detail::vprint_mojibake(f, to_string_view(format_str), vargs); } /** \rst Formats ``args`` according to specifications in ``format_str`` and writes the output to ``stdout``. Strings are assumed to be Unicode-encoded unless the ``FMT_UNICODE`` macro is set to 0. **Example**:: fmt::print("Elapsed time: {0:.2f} seconds", 1.23); \endrst */ template <typename S, typename... Args, typename Char = char_t<S>> inline void print(const S& format_str, Args&&... args) { const auto& vargs = fmt::make_args_checked<Args...>(format_str, args...); return detail::is_unicode<Char>() ? vprint(to_string_view(format_str), vargs) : detail::vprint_mojibake(stdout, to_string_view(format_str), vargs); } FMT_END_NAMESPACE #endif // FMT_CORE_H_