/** @file
* All actions handling saving and loading goes on in this file. The general actions
* are as follows for saving a game (loading is analogous):
*
* - initialize the writer by creating a temporary memory-buffer for it
*
- go through all to-be saved elements, each 'chunk' (ChunkHandler) prefixed by a label
*
- use their description array (SaveLoad) to know what elements to save and in what version
* of the game it was active (used when loading)
*
- write all data byte-by-byte to the temporary buffer so it is endian-safe
*
- when the buffer is full; flush it to the output (eg save to file) (_sl.buf, _sl.bufp, _sl.bufe)
*
- repeat this until everything is done, and flush any remaining output to file
*
* @see ChunkHandler
* @see SaveLoad
*/
#include "stdafx.h"
#include "openttd.h"
#include "debug.h"
#include "vehicle.h"
#include "station.h"
#include "town.h"
#include "player.h"
#include "saveload.h"
enum {
SAVEGAME_MAJOR_VERSION = 15,
SAVEGAME_MINOR_VERSION = 0,
SAVEGAME_LOADABLE_VERSION = (SAVEGAME_MAJOR_VERSION << 8) + SAVEGAME_MINOR_VERSION
};
enum NeedLengthValues {NL_NONE = 0, NL_WANTLENGTH = 1, NL_CALCLENGTH = 2};
SaverLoader _sl;
/**
* Fill the input buffer by reading from the file with the given reader
*/
static void SlReadFill(void)
{
uint len = _sl.read_bytes();
assert(len != 0);
_sl.bufp = _sl.buf;
_sl.bufe = _sl.buf + len;
_sl.offs_base += len;
}
static inline uint32 SlGetOffs(void) {return _sl.offs_base - (_sl.bufe - _sl.bufp);}
/** Flush the output buffer by writing to disk with the given reader.
* If the buffer pointer has not yet been set up, set it up now. Usually
* only called when the buffer is full, or there is no more data to be processed
*/
static void SlWriteFill(void)
{
// flush the buffer to disk (the writer)
if (_sl.bufp != NULL) {
uint len = _sl.bufp - _sl.buf;
_sl.offs_base += len;
if (len) _sl.write_bytes(len);
}
/* All the data from the buffer has been written away, rewind to the beginning
* to start reading in more data */
_sl.bufp = _sl.buf;
_sl.bufe = _sl.buf + _sl.bufsize;
}
/** Error handler, calls longjmp to simulate an exception.
* @todo this was used to have a central place to handle errors, but it is
* pretty ugly, and seriously interferes with any multithreaded approaches */
static void NORETURN SlError(const char *msg)
{
_sl.excpt_msg = msg;
longjmp(_sl.excpt, 0);
}
/** Read in a single byte from file. If the temporary buffer is full,
* flush it to its final destination
* @return return the read byte from file
*/
static inline int SlReadByteInternal(void)
{
if (_sl.bufp == _sl.bufe) SlReadFill();
return *_sl.bufp++;
}
/** Wrapper for SlReadByteInternal */
int SlReadByte(void) {return SlReadByteInternal();}
/** Write away a single byte from memory. If the temporary buffer is full,
* flush it to its destination (file)
* @param b the byte that is currently written
*/
static inline void SlWriteByteInternal(byte b)
{
if (_sl.bufp == _sl.bufe) SlWriteFill();
*_sl.bufp++ = b;
}
/** Wrapper for SlWriteByteInternal */
void SlWriteByte(byte b) {SlWriteByteInternal(b);}
static inline int SlReadUint16(void)
{
int x = SlReadByte() << 8;
return x | SlReadByte();
}
static inline uint32 SlReadUint32(void)
{
uint32 x = SlReadUint16() << 16;
return x | SlReadUint16();
}
static inline uint64 SlReadUint64(void)
{
uint32 x = SlReadUint32();
uint32 y = SlReadUint32();
return (uint64)x << 32 | y;
}
static inline void SlWriteUint16(VarType v)
{
SlWriteByte((byte)(v >> 8));
SlWriteByte((byte)v);
}
static inline void SlWriteUint32(uint32 v)
{
SlWriteUint16((uint16)(v >> 16));
SlWriteUint16((uint16)v);
}
static inline void SlWriteUint64(uint64 x)
{
SlWriteUint32((uint32)(x >> 32));
SlWriteUint32((uint32)x);
}
/**
* Read in the header descriptor of an object or an array.
* If the highest bit is set (7), then the index is bigger than 127
* elements, so use the next byte to read in the real value.
* The actual value is then both bytes added with the first shifted
* 8 bits to the left, and dropping the highest bit (which only indicated a big index).
* x = ((x & 0x7F) << 8) + SlReadByte();
* @return Return the value of the index
*/
static uint SlReadSimpleGamma(void)
{
uint i = SlReadByte();
if (HASBIT(i, 7)) {
i &= ~0x80;
if (HASBIT(i, 6)) {
i &= ~0x40;
if (HASBIT(i, 5)) {
i &= ~0x20;
if (HASBIT(i, 4))
SlError("Unsupported gamma");
i = (i << 8) | SlReadByte();
}
i = (i << 8) | SlReadByte();
}
i = (i << 8) | SlReadByte();
}
return i;
}
/**
* Write the header descriptor of an object or an array.
* If the element is bigger than 127, use 2 bytes for saving
* and use the highest byte of the first written one as a notice
* that the length consists of 2 bytes, etc.. like this:
* 0xxxxxxx
* 10xxxxxx xxxxxxxx
* 110xxxxx xxxxxxxx xxxxxxxx
* 1110xxxx xxxxxxxx xxxxxxxx xxxxxxxx
* @param i Index being written
*/
static void SlWriteSimpleGamma(uint i)
{
if (i >= (1 << 7)) {
if (i >= (1 << 14)) {
if (i >= (1 << 21)) {
assert(i < (1 << 28));
SlWriteByte((byte)0xE0 | (i>>24));
SlWriteByte((byte)(i>>16));
} else {
SlWriteByte((byte)0xC0 | (i>>16));
}
SlWriteByte((byte)(i>>8));
} else {
SlWriteByte((byte)(0x80 | (i>>8)));
}
}
SlWriteByte(i);
}
/** Return how many bytes used to encode a gamma value */
static inline uint SlGetGammaLength(uint i) {
return 1 + (i >= (1 << 7)) + (i >= (1 << 14)) + (i >= (1 << 21));
}
static inline int SlReadSparseIndex(void) {return SlReadSimpleGamma();}
static inline void SlWriteSparseIndex(uint index) {SlWriteSimpleGamma(index);}
static inline int SlReadArrayLength(void) {return SlReadSimpleGamma();}
static inline void SlWriteArrayLength(uint length) {SlWriteSimpleGamma(length);}
void SlSetArrayIndex(uint index)
{
_sl.need_length = NL_WANTLENGTH;
_sl.array_index = index;
}
/**
* Iterate through the elements of an array and read the whole thing
* @return The index of the object, or -1 if we have reached the end of current block
*/
int SlIterateArray(void)
{
int index;
static uint32 next_offs;
/* After reading in the whole array inside the loop
* we must have read in all the data, so we must be at end of current block. */
assert(next_offs == 0 || SlGetOffs() == next_offs);
while (true) {
uint length = SlReadArrayLength();
if (length == 0) {
next_offs = 0;
return -1;
}
_sl.obj_len = --length;
next_offs = SlGetOffs() + length;
switch (_sl.block_mode) {
case CH_SPARSE_ARRAY: index = SlReadSparseIndex(); break;
case CH_ARRAY: index = _sl.array_index++; break;
default:
DEBUG(misc, 0) ("SlIterateArray: error");
return -1; // error
}
if (length != 0) return index;
}
}
/**
* Sets the length of either a RIFF object or the number of items in an array.
* This lets us load an object or an array of arbitrary size
* @param length The length of the sought object/array
*/
void SlSetLength(size_t length)
{
switch (_sl.need_length) {
case NL_WANTLENGTH:
_sl.need_length = NL_NONE;
switch (_sl.block_mode) {
case CH_RIFF:
// Ugly encoding of >16M RIFF chunks
// The lower 24 bits are normal
// The uppermost 4 bits are bits 24:27
assert(length < (1<<28));
SlWriteUint32((length & 0xFFFFFF) | ((length >> 24) << 28));
break;
case CH_ARRAY:
assert(_sl.last_array_index <= _sl.array_index);
while (++_sl.last_array_index <= _sl.array_index)
SlWriteArrayLength(1);
SlWriteArrayLength(length + 1);
break;
case CH_SPARSE_ARRAY:
SlWriteArrayLength(length + 1 + SlGetGammaLength(_sl.array_index)); // Also include length of sparse index.
SlWriteSparseIndex(_sl.array_index);
break;
default: NOT_REACHED();
} break;
case NL_CALCLENGTH:
_sl.obj_len += length;
break;
}
}
/**
* Save/Load bytes. These do not need to be converted to Little/Big Endian
* so directly write them or read them to/from file
* @param ptr The source or destination of the object being manipulated
* @param length number of bytes this fast CopyBytes lasts
*/
static void SlCopyBytes(void *ptr, size_t length)
{
byte *p = (byte*)ptr;
if (_sl.save) {
for (; length != 0; length--) {SlWriteByteInternal(*p++);}
} else {
for (; length != 0; length--) {*p++ = SlReadByteInternal();}
}
}
#if 0
/**
* Read in bytes from the file/data structure but don't do
* anything with them
* NOTICE: currently unused
* @param length The amount of bytes that is being treated this way
*/
static inline void SlSkipBytes(size_t length)
{
for (; length != 0; length--)
SlReadByte();
}
#endif
/* Get the length of the current object */
uint SlGetFieldLength(void) {return _sl.obj_len;}
/**
* Handle all conversion and typechecking of variables here.
* In the case of saving, read in the actual value from the struct
* and then write them to file, endian safely. Loading a value
* goes exactly the opposite way
* @param ptr The object being filled/read
* @param conv @VarType type of the current element of the struct
*/
static void SlSaveLoadConv(void *ptr, VarType conv)
{
int64 x = 0;
if (_sl.save) { /* SAVE values */
/* Read a value from the struct. These ARE endian safe. */
switch ((conv >> 4) & 0xF) {
case SLE_VAR_I8 >> 4: x = *(int8*)ptr; break;
case SLE_VAR_U8 >> 4: x = *(byte*)ptr; break;
case SLE_VAR_I16 >> 4: x = *(int16*)ptr; break;
case SLE_VAR_U16 >> 4: x = *(uint16*)ptr; break;
case SLE_VAR_I32 >> 4: x = *(int32*)ptr; break;
case SLE_VAR_U32 >> 4: x = *(uint32*)ptr; break;
case SLE_VAR_I64 >> 4: x = *(int64*)ptr; break;
case SLE_VAR_U64 >> 4: x = *(uint64*)ptr; break;
case SLE_VAR_NULL >> 4: x = 0; break;
default: NOT_REACHED();
}
// Write the value to the file and check if its value is in the desired range
switch (conv & 0xF) {
case SLE_FILE_I8: assert(x >= -128 && x <= 127); SlWriteByte(x);break;
case SLE_FILE_U8: assert(x >= 0 && x <= 255); SlWriteByte(x);break;
case SLE_FILE_I16:assert(x >= -32768 && x <= 32767); SlWriteUint16(x);break;
case SLE_FILE_STRINGID:
case SLE_FILE_U16:assert(x >= 0 && x <= 65535); SlWriteUint16(x);break;
case SLE_FILE_I32: case SLE_FILE_U32: SlWriteUint32((uint32)x);break;
case SLE_FILE_I64: case SLE_FILE_U64: SlWriteUint64(x);break;
default: NOT_REACHED();
}
} else { /* LOAD values */
// Read a value from the file
switch (conv & 0xF) {
case SLE_FILE_I8: x = (int8)SlReadByte(); break;
case SLE_FILE_U8: x = (byte)SlReadByte(); break;
case SLE_FILE_I16: x = (int16)SlReadUint16(); break;
case SLE_FILE_U16: x = (uint16)SlReadUint16(); break;
case SLE_FILE_I32: x = (int32)SlReadUint32(); break;
case SLE_FILE_U32: x = (uint32)SlReadUint32(); break;
case SLE_FILE_I64: x = (int64)SlReadUint64(); break;
case SLE_FILE_U64: x = (uint64)SlReadUint64(); break;
case SLE_FILE_STRINGID: x = RemapOldStringID((uint16)SlReadUint16()); break;
default: NOT_REACHED();
}
/* Write The value to the struct. These ARE endian safe. */
switch ((conv >> 4) & 0xF) {
case SLE_VAR_I8 >> 4: *(int8*)ptr = x; break;
case SLE_VAR_U8 >> 4: *(byte*)ptr = x; break;
case SLE_VAR_I16 >> 4: *(int16*)ptr = x; break;
case SLE_VAR_U16 >> 4: *(uint16*)ptr = x; break;
case SLE_VAR_I32 >> 4: *(int32*)ptr = x; break;
case SLE_VAR_U32 >> 4: *(uint32*)ptr = x; break;
case SLE_VAR_I64 >> 4: *(int64*)ptr = x; break;
case SLE_VAR_U64 >> 4: *(uint64*)ptr = x; break;
case SLE_VAR_NULL >> 4: break;
default: NOT_REACHED();
}
}
}
/* Length in bytes of the various datatypes in a savefile. These
* sizes are guaranteed by assert_compiles in stdafx.h */
static const byte _conv_lengths[] = {1, 1, 2, 2, 4, 4, 8, 8, 2};
/**
* Return the size in bytes of a certain type of normal/atomic variable
* @param var The variable the size is being asked of (NOTICE: unused)
* @param conv @VarType type of variable that is used for calculating the size
* @return Return the size of this type in byes
*/
static inline size_t SlCalcConvLen(const void *var, VarType conv) {return _conv_lengths[conv & 0xF];}
/**
* Return the size in bytes of a reference (pointer)
*/
static inline size_t SlCalcRefLen(void) {return 2;}
/**
* Return the size in bytes of a certain type of atomic array
* @param array The variable the size is being asked of (NOTICE: unused)
* @param length The length of the array counted in elements
* @param conv @VarType type of the variable that is used in calculating the size
*/
static inline size_t SlCalcArrayLen(const void *array, uint length, VarType conv) {return _conv_lengths[conv & 0xF] * length;}
/**
* Save/Load an array.
* @param array The array being manipulated
* @param length The length of the array in elements
* @param conv @VarType type of the atomic array (int, byte, uint64, etc.)
*/
void SlArray(void *array, uint length, VarType conv)
{
static const byte conv_mem_size[] = {1, 1, 2, 2, 4, 4, 8, 8, 0};
// Automatically calculate the length?
if (_sl.need_length != NL_NONE) {
SlSetLength(SlCalcArrayLen(array, length, conv));
// Determine length only?
if (_sl.need_length == NL_CALCLENGTH)
return;
}
/* NOTICE - handle some buggy stuff, in really old versions everything was saved
* as a byte-type. So detect this, and adjust array size accordingly */
if (!_sl.save && _sl.version == 0) {
if (conv == SLE_INT16 || conv == SLE_UINT16 || conv == SLE_STRINGID) {
length *= 2; // int16, uint16 and StringID are 2 bytes in size
conv = SLE_INT8;
} else if (conv == SLE_INT32 || conv == SLE_UINT32) {
length *= 4; // int32 and uint32 are 4 bytes in size
conv = SLE_INT8;
}
}
/* If the size of elements is 1 byte, no special conversion is needed,
* use specialized copy-to-copy function to speed up things */
if (conv == SLE_INT8 || conv == SLE_UINT8) {
SlCopyBytes(array, length);
} else {
byte *a = (byte*)array;
for (; length != 0; length --) {
SlSaveLoadConv(a, conv);
a += conv_mem_size[(conv >> 4) & 0xF]; // get size
}
}
}
/**
* Calculate the size of an object.
* @param object Object that needs its length calculated
* @param sld The @SaveLoad description of the object so we know how to manipulate it
*/
static size_t SlCalcObjLength(void *object, const SaveLoad *sld)
{
size_t length = 0;
// Need to determine the length and write a length tag.
for (; sld->cmd != SL_END; sld++) {
if (sld->cmd < SL_WRITEBYTE) {
if (HASBIT(sld->cmd, 2)) {
// check if the field is used in the current savegame version
if (_sl.version < sld->version_from || _sl.version > sld->version_to)
continue;
}
switch (sld->cmd) {
case SL_VAR: case SL_CONDVAR: /* Normal Variable */
length += SlCalcConvLen(NULL, sld->type); break;
case SL_REF: case SL_CONDREF: /* Reference variable */
length += SlCalcRefLen(); break;
case SL_ARR: case SL_CONDARR: /* Array */
length += SlCalcArrayLen(NULL, sld->length, sld->type); break;
default: NOT_REACHED();
}
} else if (sld->cmd == SL_WRITEBYTE) {
length++; // a byte is logically of size 1
} else if (sld->cmd == SL_INCLUDE) {
length += SlCalcObjLength(NULL, _sl.includes[sld->version_from]);
} else
assert(sld->cmd == SL_END);
}
return length;
}
/**
* Main SaveLoad function.
* @param object The object that is being saved or loaded
* @param sld The @SaveLoad description of the object so we know how to manipulate it
*/
void SlObject(void *object, const SaveLoad *sld)
{
// Automatically calculate the length?
if (_sl.need_length != NL_NONE) {
SlSetLength(SlCalcObjLength(object, sld));
if (_sl.need_length == NL_CALCLENGTH)
return;
}
for (; sld->cmd != SL_END; sld++) {
void *ptr = (byte*)object + sld->offset;
if (sld->cmd < SL_WRITEBYTE) {
/* CONDITIONAL saveload types depend on the savegame version */
if (HASBIT(sld->cmd, 2)) {
// check if the field is of the right version, if not, proceed to next one
if (_sl.version < sld->version_from || _sl.version > sld->version_to)
continue;
}
switch (sld->cmd) {
case SL_VAR: case SL_CONDVAR: /* Normal variable */
SlSaveLoadConv(ptr, sld->type); break;
case SL_REF: case SL_CONDREF: /* Reference variable, translate */
/// @todo XXX - another artificial limitof 65K elements of pointers?
if (_sl.save) { // XXX - read/write pointer as uint16? What is with higher indeces?
SlWriteUint16(_sl.ref_to_int_proc(*(void**)ptr, sld->type));
} else
*(void**)ptr = _sl.int_to_ref_proc(SlReadUint16(), sld->type);
break;
case SL_ARR: case SL_CONDARR: /* Array */
SlArray(ptr, sld->length, sld->type); break;
default: NOT_REACHED();
}
/* SL_WRITEBYTE translates a value of a variable to another one upon
* saving or loading.
* XXX - variable renaming abuse
* g_value: the value of the variable ingame is abused by sld->version_from
* f_value: the value of the variable in the savegame is abused by sld->version_to */
} else if (sld->cmd == SL_WRITEBYTE) {
if (_sl.save) {
SlWriteByte(sld->version_to);
} else
*(byte*)ptr = sld->version_from;
/* SL_INCLUDE loads common code for a type
* XXX - variable renaming abuse
* include_index: common code to include from _desc_includes[], abused by sld->version_from */
} else if (sld->cmd == SL_INCLUDE) {
SlObject(ptr, _sl.includes[sld->version_from]);
} else
assert(sld->cmd == SL_END);
}
}
/** Calculate the length of global variables
* @param desc The global variable that we want to know the size of
* @return Returns the length of the sought global object
*/
static size_t SlCalcGlobListLength(const SaveLoadGlobVarList *desc)
{
size_t length = 0;
for (; desc->address != NULL; desc++) {
// Of course the global variable must exist in the sought savegame version
if (_sl.version >= desc->from_version && _sl.version <= desc->to_version)
length += SlCalcConvLen(NULL, desc->conv);
}
return length;
}
/**
* Save or Load (a list of) global variables
* @param desc The global variable that is being loaded or saved
*/
void SlGlobList(const SaveLoadGlobVarList *desc)
{
if (_sl.need_length != NL_NONE) {
SlSetLength(SlCalcGlobListLength(desc));
if (_sl.need_length == NL_CALCLENGTH)
return;
}
for (; desc->address != NULL; desc++) {
if (_sl.version >= desc->from_version && _sl.version <= desc->to_version)
SlSaveLoadConv(desc->address, desc->conv);
}
}
/**
* Do something of which I have no idea what it is :P
* @param proc The callback procedure that is called
* @param arg The variable that will be used for the callback procedure
*/
void SlAutolength(AutolengthProc *proc, void *arg)
{
uint32 offs;
assert(_sl.save);
// Tell it to calculate the length
_sl.need_length = NL_CALCLENGTH;
_sl.obj_len = 0;
proc(arg);
// Setup length
_sl.need_length = NL_WANTLENGTH;
SlSetLength(_sl.obj_len);
offs = SlGetOffs() + _sl.obj_len;
// And write the stuff
proc(arg);
assert(offs == SlGetOffs());
}
/**
* Load a chunk of data (eg vehicles, stations, etc.)
* @param ch The chunkhandler that will be used for the operation
*/
static void SlLoadChunk(const ChunkHandler *ch)
{
byte m = SlReadByte();
size_t len;
uint32 endoffs;
_sl.block_mode = m;
_sl.obj_len = 0;
switch (m) {
case CH_ARRAY:
_sl.array_index = 0;
ch->load_proc();
break;
case CH_SPARSE_ARRAY:
ch->load_proc();
break;
default:
if ((m & 0xF) == CH_RIFF) {
// Read length
len = (SlReadByte() << 16) | ((m >> 4) << 24);
len += SlReadUint16();
_sl.obj_len = len;
endoffs = SlGetOffs() + len;
ch->load_proc();
assert(SlGetOffs() == endoffs);
} else {
SlError("Invalid chunk type");
}
break;
}
}
/* Stub Chunk handlers to only calculate length and do nothing else */
static ChunkSaveLoadProc *_tmp_proc_1;
static inline void SlStubSaveProc2(void *arg) {_tmp_proc_1();}
static void SlStubSaveProc(void) {SlAutolength(SlStubSaveProc2, NULL);}
/** Save a chunk of data (eg. vehicles, stations, etc.). Each chunk is
* prefixed by an ID identifying it, followed by data, and terminator where appropiate
* @param ch The chunkhandler that will be used for the operation
*/
static void SlSaveChunk(const ChunkHandler *ch)
{
ChunkSaveLoadProc *proc = ch->save_proc;
SlWriteUint32(ch->id);
if (ch->flags & CH_AUTO_LENGTH) {
// Need to calculate the length. Solve that by calling SlAutoLength in the save_proc.
_tmp_proc_1 = proc;
proc = SlStubSaveProc;
}
_sl.block_mode = ch->flags & CH_TYPE_MASK;
switch (ch->flags & CH_TYPE_MASK) {
case CH_RIFF:
_sl.need_length = NL_WANTLENGTH;
proc();
break;
case CH_ARRAY:
_sl.last_array_index = 0;
SlWriteByte(CH_ARRAY);
proc();
SlWriteArrayLength(0); // Terminate arrays
break;
case CH_SPARSE_ARRAY:
SlWriteByte(CH_SPARSE_ARRAY);
proc();
SlWriteArrayLength(0); // Terminate arrays
break;
default: NOT_REACHED();
}
}
/** Save all chunks */
static void SlSaveChunks(void)
{
const ChunkHandler *ch;
const ChunkHandler* const *chsc;
uint p;
for (p = 0; p != CH_NUM_PRI_LEVELS; p++) {
for (chsc = _sl.chs; (ch = *chsc++) != NULL;) {
while (true) {
if (((ch->flags >> CH_PRI_SHL) & (CH_NUM_PRI_LEVELS - 1)) == p)
SlSaveChunk(ch);
if (ch->flags & CH_LAST)
break;
ch++;
}
}
}
// Terminator
SlWriteUint32(0);
}
/** Find the ChunkHandler that will be used for processing the found
* chunk in the savegame or in memory
* @param id the chunk in question
* @return returns the appropiate chunkhandler
*/
static const ChunkHandler *SlFindChunkHandler(uint32 id)
{
const ChunkHandler *ch;
const ChunkHandler *const *chsc;
for (chsc = _sl.chs; (ch=*chsc++) != NULL;) {
while(true) {
if (ch->id == id)
return ch;
if (ch->flags & CH_LAST)
break;
ch++;
}
}
return NULL;
}
/** Load all chunks */
static void SlLoadChunks(void)
{
uint32 id;
const ChunkHandler *ch;
for (id = SlReadUint32(); id != 0; id = SlReadUint32()) {
DEBUG(misc, 1) ("Loading chunk %c%c%c%c", id >> 24, id>>16, id>>8, id);
ch = SlFindChunkHandler(id);
if (ch == NULL) SlError("found unknown tag in savegame (sync error)");
SlLoadChunk(ch);
}
}
//*******************************************
//********** START OF LZO CODE **************
//*******************************************
#define LZO_SIZE 8192
#include "minilzo.h"
static uint ReadLZO(void)
{
byte out[LZO_SIZE + LZO_SIZE / 64 + 16 + 3 + 8];
uint32 tmp[2];
uint32 size;
uint len;
// Read header
if (fread(tmp, sizeof(tmp), 1, _sl.fh) != 1) SlError("file read failed");
// Check if size is bad
((uint32*)out)[0] = size = tmp[1];
if (_sl.version != 0) {
tmp[0] = TO_BE32(tmp[0]);
size = TO_BE32(size);
}
if (size >= sizeof(out)) SlError("inconsistent size");
// Read block
if (fread(out + sizeof(uint32), size, 1, _sl.fh) != 1) SlError("file read failed");
// Verify checksum
if (tmp[0] != lzo_adler32(0, out, size + sizeof(uint32))) SlError("bad checksum");
// Decompress
lzo1x_decompress(out + sizeof(uint32)*1, size, _sl.buf, &len, NULL);
return len;
}
// p contains the pointer to the buffer, len contains the pointer to the length.
// len bytes will be written, p and l will be updated to reflect the next buffer.
static void WriteLZO(uint size)
{
byte out[LZO_SIZE + LZO_SIZE / 64 + 16 + 3 + 8];
byte wrkmem[sizeof(byte*)*4096];
uint outlen;
lzo1x_1_compress(_sl.buf, size, out + sizeof(uint32)*2, &outlen, wrkmem);
((uint32*)out)[1] = TO_BE32(outlen);
((uint32*)out)[0] = TO_BE32(lzo_adler32(0, out + sizeof(uint32), outlen + sizeof(uint32)));
if (fwrite(out, outlen + sizeof(uint32)*2, 1, _sl.fh) != 1) SlError("file write failed");
}
static bool InitLZO(void)
{
_sl.bufsize = LZO_SIZE;
_sl.buf = (byte*)malloc(LZO_SIZE);
return true;
}
static void UninitLZO(void)
{
free(_sl.buf);
}
//*********************************************
//******** START OF NOCOMP CODE (uncompressed)*
//*********************************************
static uint ReadNoComp(void)
{
return fread(_sl.buf, 1, LZO_SIZE, _sl.fh);
}
static void WriteNoComp(uint size)
{
fwrite(_sl.buf, 1, size, _sl.fh);
}
static bool InitNoComp(void)
{
_sl.bufsize = LZO_SIZE;
_sl.buf = (byte*)malloc(LZO_SIZE);
return true;
}
static void UninitNoComp(void)
{
free(_sl.buf);
}
//********************************************
//********** START OF MEMORY CODE (in ram)****
//********************************************
enum {
SAVE_POOL_BLOCK_SIZE_BITS = 17,
SAVE_POOL_MAX_BLOCKS = 500
};
#include "network.h"
#include "table/strings.h"
#include "table/sprites.h"
#include "gfx.h"
#include "gui.h"
typedef struct ThreadedSave {
MemoryPool *save;
uint count;
bool ff_state;
bool saveinprogress;
CursorID cursor;
} ThreadedSave;
/* A maximum size of of 128K * 500 = 64.000KB savegames */
static MemoryPool _save_pool = {"Savegame", SAVE_POOL_MAX_BLOCKS, SAVE_POOL_BLOCK_SIZE_BITS, sizeof(byte), NULL, 0, 0, NULL};
static ThreadedSave _ts;
static bool InitMem(void)
{
_ts.save = &_save_pool;
_ts.count = 0;
CleanPool(_ts.save);
AddBlockToPool(_ts.save);
/* A block from the pool is a contigious area of memory, so it is safe to write to it sequentially */
_sl.bufsize = _ts.save->total_items;
_sl.buf = (byte*)GetItemFromPool(_ts.save, _ts.count);
return true;
}
static void UnInitMem(void)
{
CleanPool(_ts.save);
_ts.save = NULL;
}
static void WriteMem(uint size)
{
_ts.count += size;
/* Allocate new block and new buffer-pointer */
AddBlockIfNeeded(_ts.save, _ts.count);
_sl.buf = (byte*)GetItemFromPool(_ts.save, _ts.count);
}
//********************************************
//********** START OF ZLIB CODE **************
//********************************************
#if defined(WITH_ZLIB)
#include
static z_stream _z;
static bool InitReadZlib(void)
{
memset(&_z, 0, sizeof(_z));
if (inflateInit(&_z) != Z_OK) return false;
_sl.bufsize = 4096;
_sl.buf = (byte*)malloc(4096 + 4096); // also contains fread buffer
return true;
}
static uint ReadZlib(void)
{
int r;
_z.next_out = _sl.buf;
_z.avail_out = 4096;
do {
// read more bytes from the file?
if (_z.avail_in == 0) {
_z.avail_in = fread(_z.next_in = _sl.buf + 4096, 1, 4096, _sl.fh);
}
// inflate the data
r = inflate(&_z, 0);
if (r == Z_STREAM_END)
break;
if (r != Z_OK)
SlError("inflate() failed");
} while (_z.avail_out);
return 4096 - _z.avail_out;
}
static void UninitReadZlib(void)
{
inflateEnd(&_z);
free(_sl.buf);
}
static bool InitWriteZlib(void)
{
memset(&_z, 0, sizeof(_z));
if (deflateInit(&_z, 6) != Z_OK) return false;
_sl.bufsize = 4096;
_sl.buf = (byte*)malloc(4096); // also contains fread buffer
return true;
}
static void WriteZlibLoop(z_streamp z, byte *p, uint len, int mode)
{
byte buf[1024]; // output buffer
int r;
uint n;
z->next_in = p;
z->avail_in = len;
do {
z->next_out = buf;
z->avail_out = sizeof(buf);
r = deflate(z, mode);
// bytes were emitted?
if ((n=sizeof(buf) - z->avail_out) != 0) {
if (fwrite(buf, n, 1, _sl.fh) != 1) SlError("file write error");
}
if (r == Z_STREAM_END)
break;
if (r != Z_OK) SlError("zlib returned error code");
} while (z->avail_in || !z->avail_out);
}
static void WriteZlib(uint len)
{
WriteZlibLoop(&_z, _sl.buf, len, 0);
}
static void UninitWriteZlib(void)
{
// flush any pending output.
if (_sl.fh) WriteZlibLoop(&_z, NULL, 0, Z_FINISH);
deflateEnd(&_z);
free(_sl.buf);
}
#endif /* WITH_ZLIB */
//*******************************************
//************* END OF CODE *****************
//*******************************************
// these define the chunks
extern const ChunkHandler _misc_chunk_handlers[];
extern const ChunkHandler _player_chunk_handlers[];
extern const ChunkHandler _veh_chunk_handlers[];
extern const ChunkHandler _waypoint_chunk_handlers[];
extern const ChunkHandler _depot_chunk_handlers[];
extern const ChunkHandler _order_chunk_handlers[];
extern const ChunkHandler _town_chunk_handlers[];
extern const ChunkHandler _sign_chunk_handlers[];
extern const ChunkHandler _station_chunk_handlers[];
extern const ChunkHandler _industry_chunk_handlers[];
extern const ChunkHandler _engine_chunk_handlers[];
extern const ChunkHandler _economy_chunk_handlers[];
extern const ChunkHandler _animated_tile_chunk_handlers[];
static const ChunkHandler * const _chunk_handlers[] = {
_misc_chunk_handlers,
_veh_chunk_handlers,
_waypoint_chunk_handlers,
_depot_chunk_handlers,
_order_chunk_handlers,
_industry_chunk_handlers,
_economy_chunk_handlers,
_engine_chunk_handlers,
_town_chunk_handlers,
_sign_chunk_handlers,
_station_chunk_handlers,
_player_chunk_handlers,
_animated_tile_chunk_handlers,
NULL,
};
// used to include a vehicle desc in another desc.
extern const SaveLoad _common_veh_desc[];
static const SaveLoad* const _desc_includes[] = {
_common_veh_desc
};
/**
* Pointers cannot be saved to a savegame, so this functions gets
* the index of the item, and if not available, it hussles with
* pointers (looks really bad :()
* Remember that a NULL item has value 0, and all
* indeces have +1, so vehicle 0 is saved as index 1.
* @param obj The object that we want to get the index of
* @param rt @SLRefType type of the object the index is being sought of
* @return Return the pointer converted to an index of the type pointed to
*/
static uint ReferenceToInt(const void *obj, SLRefType rt)
{
if (obj == NULL) return 0;
switch (rt) {
case REF_VEHICLE_OLD: // Old vehicles we save as new onces
case REF_VEHICLE: return ((Vehicle *)obj)->index + 1;
case REF_STATION: return ((Station *)obj)->index + 1;
case REF_TOWN: return ((Town *)obj)->index + 1;
case REF_ORDER: return ((Order *)obj)->index + 1;
case REF_ROADSTOPS: return ((RoadStop *)obj)->index + 1;
default: NOT_REACHED();
}
return 0; // avoid compiler warning
}
/**
* Pointers cannot be loaded from a savegame, so this function
* gets the index from the savegame and returns the appropiate
* pointer from the already loaded base.
* Remember that an index of 0 is a NULL pointer so all indeces
* are +1 so vehicle 0 is saved as 1.
* @param index The index that is being converted to a pointer
* @param rt @SLRefType type of the object the pointer is sought of
* @return Return the index converted to a pointer of any type
*/
static void *IntToReference(uint index, SLRefType rt)
{
/* After version 4.3 REF_VEHICLE_OLD is saved as REF_VEHICLE,
* and should be loaded like that */
if (rt == REF_VEHICLE_OLD && _sl.full_version >= ((4 << 8) | 4))
rt = REF_VEHICLE;
/* No need to look up NULL pointers, just return immediately */
if (rt != REF_VEHICLE_OLD && index == 0)
return NULL;
index--; // correct for the NULL index
switch (rt) {
case REF_ORDER: {
if (!AddBlockIfNeeded(&_order_pool, index))
error("Orders: failed loading savegame: too many orders");
return GetOrder(index);
}
case REF_VEHICLE: {
if (!AddBlockIfNeeded(&_vehicle_pool, index))
error("Vehicles: failed loading savegame: too many vehicles");
return GetVehicle(index);
}
case REF_STATION: {
if (!AddBlockIfNeeded(&_station_pool, index))
error("Stations: failed loading savegame: too many stations");
return GetStation(index);
}
case REF_TOWN: {
if (!AddBlockIfNeeded(&_town_pool, index))
error("Towns: failed loading savegame: too many towns");
return GetTown(index);
}
case REF_ROADSTOPS: {
if (!AddBlockIfNeeded(&_roadstop_pool, index))
error("RoadStops: failed loading savegame: too many RoadStops");
return GetRoadStop(index);
}
case REF_VEHICLE_OLD: {
/* Old vehicles were saved differently:
* invalid vehicle was 0xFFFF,
* and the index was not - 1.. correct for this */
index++;
if (index == INVALID_VEHICLE)
return NULL;
if (!AddBlockIfNeeded(&_vehicle_pool, index))
error("Vehicles: failed loading savegame: too many vehicles");
return GetVehicle(index);
}
default: NOT_REACHED();
}
return NULL;
}
/** The format for a reader/writer type of a savegame */
typedef struct {
const char *name; /// name of the compressor/decompressor (debug-only)
uint32 tag; /// the 4-letter tag by which it is identified in the savegame
bool (*init_read)(void); /// function executed upon initalization of the loader
ReaderProc *reader; /// function that loads the data from the file
void (*uninit_read)(void); /// function executed when reading is finished
bool (*init_write)(void); /// function executed upon intialization of the saver
WriterProc *writer; /// function that saves the data to the file
void (*uninit_write)(void); /// function executed when writing is done
} SaveLoadFormat;
static const SaveLoadFormat _saveload_formats[] = {
{"memory", 0, NULL, NULL, NULL, InitMem, WriteMem, UnInitMem},
{"lzo", TO_BE32X('OTTD'), InitLZO, ReadLZO, UninitLZO, InitLZO, WriteLZO, UninitLZO},
{"none", TO_BE32X('OTTN'), InitNoComp, ReadNoComp, UninitNoComp, InitNoComp, WriteNoComp, UninitNoComp},
#if defined(WITH_ZLIB)
{"zlib", TO_BE32X('OTTZ'), InitReadZlib, ReadZlib, UninitReadZlib, InitWriteZlib, WriteZlib, UninitWriteZlib},
#else
{"zlib", TO_BE32X('OTTZ'), NULL, NULL, NULL, NULL, NULL, NULL},
#endif
};
/**
* Return the savegameformat of the game. Whether it was create with ZLIB compression
* uncompressed, or another type
* @param s Name of the savegame format. If NULL it picks the first available one
* @return Pointer to @SaveLoadFormat struct giving all characteristics of this type of savegame
*/
static const SaveLoadFormat *GetSavegameFormat(const char *s)
{
const SaveLoadFormat *def = endof(_saveload_formats) - 1;
// find default savegame format, the highest one with which files can be written
while (!def->init_write) def--;
if (s != NULL && s[0] != '\0') {
const SaveLoadFormat *slf;
for (slf = &_saveload_formats[0]; slf != endof(_saveload_formats); slf++) {
if (slf->init_write != NULL && strcmp(s, slf->name) == 0)
return slf;
}
ShowInfoF("Savegame format '%s' is not available. Reverting to '%s'.", s, def->name);
}
return def;
}
// actual loader/saver function
void InitializeGame(uint log_x, uint log_y);
extern bool AfterLoadGame(uint version);
extern void BeforeSaveGame(void);
extern bool LoadOldSaveGame(const char *file);
/** Small helper function to close the to be loaded savegame an signal error */
static inline int AbortSaveLoad(void)
{
if (_sl.fh != NULL) fclose(_sl.fh);
_sl.fh = NULL;
return SL_ERROR;
}
/** Update the gui accordingly when starting saving
* and set locks on saveload. Also turn off fast-forward cause with that
* saving takes Aaaaages */
static inline void SaveFileStart(void)
{
_ts.ff_state = _fast_forward;
_fast_forward = false;
if (_cursor.sprite == SPR_CURSOR_MOUSE) SetMouseCursor(SPR_CURSOR_ZZZ);
SendWindowMessage(WC_STATUS_BAR, 0, true, 0, 0);
_ts.saveinprogress = true;
}
/** Update the gui accordingly when saving is done and release locks
* on saveload */
static inline void SaveFileDone(void)
{
_fast_forward = _ts.ff_state;
if (_cursor.sprite == SPR_CURSOR_ZZZ) SetMouseCursor(SPR_CURSOR_MOUSE);
SendWindowMessage(WC_STATUS_BAR, 0, false, 0, 0);
_ts.saveinprogress = false;
}
/** We have written the whole game into memory, _save_pool, now find
* and appropiate compressor and start writing to file.
*/
static bool SaveFileToDisk(void *ptr)
{
const SaveLoadFormat *fmt = GetSavegameFormat(_savegame_format);
/* XXX - backup _sl.buf cause it is used internally by the writer
* and we update it for our own purposes */
byte *tmp = _sl.buf;
uint32 hdr[2];
SaveFileStart();
/* XXX - Setup setjmp error handler if an error occurs anywhere deep during
* loading/saving execute a longjmp() and continue execution here */
if (setjmp(_sl.excpt)) {
AbortSaveLoad();
_sl.buf = tmp;
_sl.excpt_uninit();
ShowInfoF("Save game failed: %s.", _sl.excpt_msg);
ShowErrorMessage(STR_4007_GAME_SAVE_FAILED, STR_NULL, 0, 0);
SaveFileDone();
return false;
}
/* We have written our stuff to memory, now write it to file! */
hdr[0] = fmt->tag;
hdr[1] = TO_BE32((SAVEGAME_MAJOR_VERSION << 16) + (SAVEGAME_MINOR_VERSION << 8));
if (fwrite(hdr, sizeof(hdr), 1, _sl.fh) != 1) SlError("file write failed");
if (!fmt->init_write()) SlError("cannot initialize compressor");
tmp = _sl.buf; // XXX - init_write can change _sl.buf, so update it
{
uint i;
uint count = 1 << _ts.save->block_size_bits;
assert(_ts.count == _sl.offs_base);
for (i = 0; i != _ts.save->current_blocks - 1; i++) {
_sl.buf = _ts.save->blocks[i];
fmt->writer(count);
}
/* The last block is (almost) always not fully filled, so only write away
* as much data as it is in there */
_sl.buf = _ts.save->blocks[i];
fmt->writer(_ts.count - (i * count));
_sl.buf = tmp; // XXX - reset _sl.buf to its original value to let it continue its internal usage
}
fmt->uninit_write();
assert(_ts.count == _sl.offs_base);
GetSavegameFormat("memory")->uninit_write(); // clean the memorypool
fclose(_sl.fh);
SaveFileDone();
CloseOTTDThread();
return true;
}
/**
* Main Save or Load function where the high-level saveload functions are
* handled. It opens the savegame, selects format and checks versions
* @param filename The name of the savegame being created/loaded
* @param mode Save or load. Load can also be a TTD(Patch) game. Use SL_LOAD, SL_OLD_LOAD or SL_SAVE
* @return Return the results of the action. SL_OK, SL_ERROR or SL_REINIT ("unload" the game)
*/
int SaveOrLoad(const char *filename, int mode)
{
uint32 hdr[2];
const SaveLoadFormat *fmt;
uint version;
/* An instance of saving is already active, so wait until it is done */
if (_ts.saveinprogress) {
if (!_do_autosave) ShowErrorMessage(_error_message, STR_SAVE_STILL_IN_PROGRESS, 0, 0);
JoinOTTDThread(); // synchronize and wait until save is finished to continue
// nonsense to do an autosave while we were still saving our game, so skip it
if (_do_autosave) return SL_OK;
}
/* Load a TTDLX or TTDPatch game */
if (mode == SL_OLD_LOAD) {
InitializeGame(8, 8); // set a mapsize of 256x256 for TTDPatch games or it might get confused
if (!LoadOldSaveGame(filename)) return SL_REINIT;
AfterLoadGame(0);
return SL_OK;
}
_sl.fh = fopen(filename, (mode == SL_SAVE) ? "wb" : "rb");
if (_sl.fh == NULL) {
DEBUG(misc, 0) ("Cannot open savegame for saving/loading.");
return SL_ERROR;
}
_sl.bufe = _sl.bufp = NULL;
_sl.offs_base = 0;
_sl.int_to_ref_proc = IntToReference;
_sl.ref_to_int_proc = ReferenceToInt;
_sl.save = mode;
_sl.includes = _desc_includes;
_sl.chs = _chunk_handlers;
/* XXX - Setup setjmp error handler if an error occurs anywhere deep during
* loading/saving execute a longjmp() and continue execution here */
if (setjmp(_sl.excpt)) {
AbortSaveLoad();
// deinitialize compressor.
_sl.excpt_uninit();
/* A saver/loader exception!! reinitialize all variables to prevent crash! */
if (mode == SL_LOAD) {
ShowInfoF("Load game failed: %s.", _sl.excpt_msg);
return SL_REINIT;
} else {
ShowInfoF("Save game failed: %s.", _sl.excpt_msg);
return SL_ERROR;
}
}
/* We first initialize here to avoid: "warning: variable `version' might
* be clobbered by `longjmp' or `vfork'" */
version = 0;
/* General tactic is to first save the game to memory, then use an available writer
* to write it to file, either in threaded mode if possible, or single-threaded */
if (mode == SL_SAVE) { /* SAVE game */
fmt = GetSavegameFormat("memory"); // write to memory
_sl.write_bytes = fmt->writer;
_sl.excpt_uninit = fmt->uninit_write;
if (!fmt->init_write()) {
DEBUG(misc, 0) ("Initializing writer %s failed.", fmt->name);
return AbortSaveLoad();
}
_sl.version = SAVEGAME_MAJOR_VERSION;
BeforeSaveGame();
SlSaveChunks();
SlWriteFill(); // flush the save buffer
/* Write to file */
if (_network_server || !CreateOTTDThread(&SaveFileToDisk, NULL)) {
DEBUG(misc, 1) ("cannot create savegame thread, reverting to single-threaded mode...");
SaveFileToDisk(NULL);
}
} else { /* LOAD game */
assert(mode == SL_LOAD);
if (fread(hdr, sizeof(hdr), 1, _sl.fh) != 1) {
DEBUG(misc, 0) ("Cannot read savegame header, aborting.");
return AbortSaveLoad();
}
// see if we have any loader for this type.
for (fmt = _saveload_formats; ; fmt++) {
/* No loader found, treat as version 0 and use LZO format */
if (fmt == endof(_saveload_formats)) {
DEBUG(misc, 0) ("Unknown savegame type, trying to load it as the buggy format.");
rewind(_sl.fh);
_sl.version = version = 0;
_sl.full_version = 0;
fmt = _saveload_formats + 1; // LZO
break;
}
if (fmt->tag == hdr[0]) {
// check version number
version = TO_BE32(hdr[1]) >> 8;
/* Is the version higher than the current? */
if (version > SAVEGAME_LOADABLE_VERSION) {
DEBUG(misc, 0) ("Savegame version invalid.");
return AbortSaveLoad();
}
_sl.version = (version >> 8);
_sl.full_version = version;
break;
}
}
_sl.read_bytes = fmt->reader;
_sl.excpt_uninit = fmt->uninit_read;
// loader for this savegame type is not implemented?
if (fmt->init_read == NULL) {
ShowInfoF("Loader for '%s' is not available.", fmt->name);
return AbortSaveLoad();
}
if (!fmt->init_read()) {
DEBUG(misc, 0) ("Initializing loader %s failed.", fmt->name);
return AbortSaveLoad();
}
/* Old maps were hardcoded to 256x256 and thus did not contain
* any mapsize information. Pre-initialize to 256x256 to not to
* confuse old games */
InitializeGame(8, 8);
SlLoadChunks();
fmt->uninit_read();
fclose(_sl.fh);
/* After loading fix up savegame for any internal changes that
* might've occured since then. If it fails, load back the old game */
if (!AfterLoadGame(version)) return SL_REINIT;
}
return SL_OK;
}
/** Do a save when exiting the game (patch option) _patches.autosave_on_exit */
void DoExitSave(void)
{
char buf[200];
snprintf(buf, sizeof(buf), "%s%sexit.sav", _path.autosave_dir, PATHSEP);
SaveOrLoad(buf, SL_SAVE);
}
#if 0
/**
* Function to get the type of the savegame by looking at the file header.
* NOTICE: Not used right now, but could be used if extensions of savegames are garbled
* @param file Savegame to be checked
* @return SL_OLD_LOAD or SL_LOAD of the file
*/
int GetSavegameType(char *file)
{
const SaveLoadFormat *fmt;
uint32 hdr;
FILE *f;
int mode = SL_OLD_LOAD;
f = fopen(file, "rb");
if (fread(&hdr, sizeof(hdr), 1, f) != 1) {
printf("Savegame is obsolete or invalid format.\n");
mode = SL_LOAD; // don't try to get filename, just show name as it is written
}
else {
// see if we have any loader for this type.
for (fmt = _saveload_formats; fmt != endof(_saveload_formats); fmt++) {
if (fmt->tag == hdr) {
mode = SL_LOAD; // new type of savegame
break;
}
}
}
fclose(f);
return mode;
}
#endif