/* $Id$ */ #include "stdafx.h" #include "openttd.h" #include "bridge_map.h" #include "station_map.h" #include "depot.h" #include "functions.h" #include "map.h" #include "tile.h" #include "pathfind.h" #include "rail.h" #include "debug.h" #include "tunnel_map.h" #include "variables.h" #include "depot.h" // remember which tiles we have already visited so we don't visit them again. static bool TPFSetTileBit(TrackPathFinder *tpf, TileIndex tile, int dir) { uint hash, val, offs; TrackPathFinderLink *link, *new_link; uint bits = 1 << dir; if (tpf->disable_tile_hash) return true; hash = PATHFIND_HASH_TILE(tile); val = tpf->hash_head[hash]; if (val == 0) { /* unused hash entry, set the appropriate bit in it and return true * to indicate that a bit was set. */ tpf->hash_head[hash] = bits; tpf->hash_tile[hash] = tile; return true; } else if (!(val & 0x8000)) { /* single tile */ if (tile == tpf->hash_tile[hash]) { /* found another bit for the same tile, * check if this bit is already set, if so, return false */ if (val & bits) return false; /* otherwise set the bit and return true to indicate that the bit * was set */ tpf->hash_head[hash] = val | bits; return true; } else { /* two tiles with the same hash, need to make a link */ /* allocate a link. if out of links, handle this by returning * that a tile was already visisted. */ if (tpf->num_links_left == 0) { return false; } tpf->num_links_left--; link = tpf->new_link++; /* move the data that was previously in the hash_??? variables * to the link struct, and let the hash variables point to the link */ link->tile = tpf->hash_tile[hash]; tpf->hash_tile[hash] = PATHFIND_GET_LINK_OFFS(tpf, link); link->flags = tpf->hash_head[hash]; tpf->hash_head[hash] = 0xFFFF; /* multi link */ link->next = 0xFFFF; } } else { /* a linked list of many tiles, * find the one corresponding to the tile, if it exists. * otherwise make a new link */ offs = tpf->hash_tile[hash]; do { link = PATHFIND_GET_LINK_PTR(tpf, offs); if (tile == link->tile) { /* found the tile in the link list, * check if the bit was alrady set, if so return false to indicate that the * bit was already set */ if (link->flags & bits) return false; link->flags |= bits; return true; } } while ((offs=link->next) != 0xFFFF); } /* get here if we need to add a new link to link, * first, allocate a new link, in the same way as before */ if (tpf->num_links_left == 0) { return false; } tpf->num_links_left--; new_link = tpf->new_link++; /* then fill the link with the new info, and establish a ptr from the old * link to the new one */ new_link->tile = tile; new_link->flags = bits; new_link->next = 0xFFFF; link->next = PATHFIND_GET_LINK_OFFS(tpf, new_link); return true; } static const byte _bits_mask[4] = { 0x19, 0x16, 0x25, 0x2A, }; static const byte _tpf_new_direction[14] = { 0,1,0,1,2,1, 0,0, 2,3,3,2,3,0, }; static const byte _tpf_prev_direction[14] = { 0,1,1,0,1,2, 0,0, 2,3,2,3,0,3, }; static const byte _otherdir_mask[4] = { 0x10, 0, 0x5, 0x2A, }; static void TPFMode2(TrackPathFinder* tpf, TileIndex tile, DiagDirection direction) { uint bits; int i; RememberData rd; assert(tpf->tracktype == TRANSPORT_WATER); // This addition will sometimes overflow by a single tile. // The use of TILE_MASK here makes sure that we still point at a valid // tile, and then this tile will be in the sentinel row/col, so GetTileTrackStatus will fail. tile = TILE_MASK(tile + TileOffsByDir(direction)); if (++tpf->rd.cur_length > 50) return; bits = GetTileTrackStatus(tile, tpf->tracktype); bits = (byte)((bits | (bits >> 8)) & _bits_mask[direction]); if (bits == 0) return; assert(TileX(tile) != MapMaxX() && TileY(tile) != MapMaxY()); if ( (bits & (bits - 1)) == 0 ) { /* only one direction */ i = 0; while (!(bits&1)) i++, bits>>=1; rd = tpf->rd; goto continue_here; } /* several directions */ i=0; do { if (!(bits & 1)) continue; rd = tpf->rd; // Change direction 4 times only if ((byte)i != tpf->rd.pft_var6) { if (++tpf->rd.depth > 4) { tpf->rd = rd; return; } tpf->rd.pft_var6 = (byte)i; } continue_here:; tpf->the_dir = HASBIT(_otherdir_mask[direction],i) ? (i+8) : i; if (!tpf->enum_proc(tile, tpf->userdata, tpf->the_dir, tpf->rd.cur_length, NULL)) { TPFMode2(tpf, tile, _tpf_new_direction[tpf->the_dir]); } tpf->rd = rd; } while (++i, bits>>=1); } /* Returns the end tile and the length of a tunnel. The length does not * include the starting tile (entry), it does include the end tile (exit). */ FindLengthOfTunnelResult FindLengthOfTunnel(TileIndex tile, DiagDirection dir) { TileIndexDiff delta = TileOffsByDir(dir); uint z = GetTileZ(tile); FindLengthOfTunnelResult flotr; flotr.length = 0; dir = ReverseDiagDir(dir); do { flotr.length++; tile += delta; } while( !IsTunnelTile(tile) || GetTunnelDirection(tile) != dir || GetTileZ(tile) != z ); flotr.tile = tile; return flotr; } static const uint16 _tpfmode1_and[4] = { 0x1009, 0x16, 0x520, 0x2A00 }; static uint SkipToEndOfTunnel(TrackPathFinder* tpf, TileIndex tile, DiagDirection direction) { FindLengthOfTunnelResult flotr; TPFSetTileBit(tpf, tile, 14); flotr = FindLengthOfTunnel(tile, direction); tpf->rd.cur_length += flotr.length; TPFSetTileBit(tpf, flotr.tile, 14); return flotr.tile; } const byte _ffb_64[128] = { 0,0,1,0,2,0,1,0, 3,0,1,0,2,0,1,0, 4,0,1,0,2,0,1,0, 3,0,1,0,2,0,1,0, 5,0,1,0,2,0,1,0, 3,0,1,0,2,0,1,0, 4,0,1,0,2,0,1,0, 3,0,1,0,2,0,1,0, 0,0,0,2,0,4,4,6, 0,8,8,10,8,12,12,14, 0,16,16,18,16,20,20,22, 16,24,24,26,24,28,28,30, 0,32,32,34,32,36,36,38, 32,40,40,42,40,44,44,46, 32,48,48,50,48,52,52,54, 48,56,56,58,56,60,60,62, }; static void TPFMode1(TrackPathFinder* tpf, TileIndex tile, DiagDirection direction) { uint bits; int i; RememberData rd; TileIndex tile_org = tile; // check if the old tile can be left at that direction if (tpf->tracktype == TRANSPORT_ROAD) { // road stops and depots now have a track (r4419) // don't enter road stop from the back if (IsRoadStopTile(tile) && GetRoadStopDir(tile) != direction) return; // don't enter road depot from the back if (IsTileDepotType(tile, TRANSPORT_ROAD) && GetRoadDepotDirection(tile) != direction) return; } if (IsTunnelTile(tile)) { if (GetTunnelDirection(tile) != direction || GetTunnelTransportType(tile) != tpf->tracktype) { return; } tile = SkipToEndOfTunnel(tpf, tile, direction); } tile += TileOffsByDir(direction); /* Check in case of rail if the owner is the same */ if (tpf->tracktype == TRANSPORT_RAIL) { // don't enter train depot from the back if (IsTileDepotType(tile, TRANSPORT_RAIL) && GetRailDepotDirection(tile) == direction) return; if (IsTileType(tile_org, MP_RAILWAY) || IsTileType(tile_org, MP_STATION) || IsTileType(tile_org, MP_TUNNELBRIDGE)) if (IsTileType(tile, MP_RAILWAY) || IsTileType(tile, MP_STATION) || IsTileType(tile, MP_TUNNELBRIDGE)) /* Check if we are on a bridge (middle parts don't have an owner */ if (!IsBridgeTile(tile) || !IsBridgeMiddle(tile)) if (!IsBridgeTile(tile_org) || !IsBridgeMiddle(tile_org)) if (GetTileOwner(tile_org) != GetTileOwner(tile)) return; } // check if the new tile can be entered from that direction if (tpf->tracktype == TRANSPORT_ROAD) { // road stops and depots now have a track (r4419) // don't enter road stop from the back if (IsRoadStopTile(tile) && GetRoadStopDir(tile) == direction) return; // don't enter road depot from the back if (IsTileDepotType(tile, TRANSPORT_ROAD) && GetRoadDepotDirection(tile) == direction) return; } tpf->rd.cur_length++; bits = GetTileTrackStatus(tile, tpf->tracktype); if ((byte)bits != tpf->var2) { bits &= _tpfmode1_and[direction]; bits = bits | (bits>>8); } bits &= 0xBF; if (bits != 0) { if (!tpf->disable_tile_hash || (tpf->rd.cur_length <= 64 && (KILL_FIRST_BIT(bits) == 0 || ++tpf->rd.depth <= 7))) { do { i = FIND_FIRST_BIT(bits); bits = KILL_FIRST_BIT(bits); tpf->the_dir = (_otherdir_mask[direction] & (byte)(1 << i)) ? (i+8) : i; rd = tpf->rd; if (TPFSetTileBit(tpf, tile, tpf->the_dir) && !tpf->enum_proc(tile, tpf->userdata, tpf->the_dir, tpf->rd.cur_length, &tpf->rd.pft_var6) ) { TPFMode1(tpf, tile, _tpf_new_direction[tpf->the_dir]); } tpf->rd = rd; } while (bits != 0); } } /* the next is only used when signals are checked. * seems to go in 2 directions simultaneously */ /* if i can get rid of this, tail end recursion can be used to minimize * stack space dramatically. */ /* If we are doing signal setting, we must reverse at evere tile, so we * iterate all the tracks in a signal block, even when a normal train would * not reach it (for example, when two lines merge */ if (tpf->hasbit_13) return; tile = tile_org; direction = ReverseDiagDir(direction); bits = GetTileTrackStatus(tile, tpf->tracktype); bits |= (bits >> 8); if ( (byte)bits != tpf->var2) { bits &= _bits_mask[direction]; } bits &= 0xBF; if (bits == 0) return; do { i = FIND_FIRST_BIT(bits); bits = KILL_FIRST_BIT(bits); tpf->the_dir = (_otherdir_mask[direction] & (byte)(1 << i)) ? (i+8) : i; rd = tpf->rd; if (TPFSetTileBit(tpf, tile, tpf->the_dir) && !tpf->enum_proc(tile, tpf->userdata, tpf->the_dir, tpf->rd.cur_length, &tpf->rd.pft_var6) ) { TPFMode1(tpf, tile, _tpf_new_direction[tpf->the_dir]); } tpf->rd = rd; } while (bits != 0); } void FollowTrack(TileIndex tile, uint16 flags, DiagDirection direction, TPFEnumProc *enum_proc, TPFAfterProc *after_proc, void *data) { TrackPathFinder tpf; assert(direction < 4); /* initialize path finder variables */ tpf.userdata = data; tpf.enum_proc = enum_proc; tpf.new_link = tpf.links; tpf.num_links_left = lengthof(tpf.links); tpf.rd.cur_length = 0; tpf.rd.depth = 0; tpf.rd.pft_var6 = 0; tpf.var2 = HASBIT(flags, 15) ? 0x43 : 0xFF; /* 0x8000 */ tpf.disable_tile_hash = HASBIT(flags, 12); /* 0x1000 */ tpf.hasbit_13 = HASBIT(flags, 13); /* 0x2000 */ tpf.tracktype = (byte)flags; if (HASBIT(flags, 11)) { tpf.rd.pft_var6 = 0xFF; tpf.enum_proc(tile, data, 0, 0, 0); TPFMode2(&tpf, tile, direction); } else { /* clear the hash_heads */ memset(tpf.hash_head, 0, sizeof(tpf.hash_head)); TPFMode1(&tpf, tile, direction); } if (after_proc != NULL) after_proc(&tpf); } typedef struct { TileIndex tile; uint16 cur_length; // This is the current length to this tile. uint16 priority; // This is the current length + estimated length to the goal. byte track; byte depth; byte state; byte first_track; } StackedItem; static const byte _new_track[6][4] = { {0,0xff,8,0xff,}, {0xff,1,0xff,9,}, {0xff,2,10,0xff,}, {3,0xff,0xff,11,}, {12,4,0xff,0xff,}, {0xff,0xff,5,13,}, }; typedef struct HashLink { TileIndex tile; uint16 typelength; uint16 next; } HashLink; typedef struct { NTPEnumProc *enum_proc; void *userdata; TileIndex dest; TransportType tracktype; RailTypeMask railtypes; uint maxlength; HashLink *new_link; uint num_links_left; uint nstack; StackedItem stack[256]; // priority queue of stacked items uint16 hash_head[0x400]; // hash heads. 0 means unused. 0xFFFC = length, 0x3 = dir TileIndex hash_tile[0x400]; // tiles. or links. HashLink links[0x400]; // hash links } NewTrackPathFinder; #define NTP_GET_LINK_OFFS(tpf, link) ((byte*)(link) - (byte*)tpf->links) #define NTP_GET_LINK_PTR(tpf, link_offs) (HashLink*)((byte*)tpf->links + (link_offs)) #define ARR(i) tpf->stack[(i)-1] // called after a new element was added in the queue at the last index. // move it down to the proper position static inline void HeapifyUp(NewTrackPathFinder *tpf) { StackedItem si; int i = ++tpf->nstack; while (i != 1 && ARR(i).priority < ARR(i>>1).priority) { // the child element is larger than the parent item. // swap the child item and the parent item. si = ARR(i); ARR(i) = ARR(i>>1); ARR(i>>1) = si; i>>=1; } } // called after the element 0 was eaten. fill it with a new element static inline void HeapifyDown(NewTrackPathFinder *tpf) { StackedItem si; int i = 1, j; int n; assert(tpf->nstack > 0); n = --tpf->nstack; if (n == 0) return; // heap is empty so nothing to do? // copy the last item to index 0. we use it as base for heapify. ARR(1) = ARR(n+1); while ((j=i*2) <= n) { // figure out which is smaller of the children. if (j != n && ARR(j).priority > ARR(j+1).priority) j++; // right item is smaller assert(i <= n && j <= n); if (ARR(i).priority <= ARR(j).priority) break; // base elem smaller than smallest, done! // swap parent with the child si = ARR(i); ARR(i) = ARR(j); ARR(j) = si; i = j; } } // mark a tile as visited and store the length of the path. // if we already had a better path to this tile, return false. // otherwise return true. static bool NtpVisit(NewTrackPathFinder* tpf, TileIndex tile, DiagDirection dir, uint length) { uint hash,head; HashLink *link, *new_link; assert(length < 16384-1); hash = PATHFIND_HASH_TILE(tile); // never visited before? if ((head=tpf->hash_head[hash]) == 0) { tpf->hash_tile[hash] = tile; tpf->hash_head[hash] = dir | (length << 2); return true; } if (head != 0xffff) { if (tile == tpf->hash_tile[hash] && (head & 0x3) == dir) { // longer length if (length >= (head >> 2)) return false; tpf->hash_head[hash] = dir | (length << 2); return true; } // two tiles with the same hash, need to make a link // allocate a link. if out of links, handle this by returning // that a tile was already visisted. if (tpf->num_links_left == 0) { DEBUG(ntp, 1) ("[NTP] no links left"); return false; } tpf->num_links_left--; link = tpf->new_link++; /* move the data that was previously in the hash_??? variables * to the link struct, and let the hash variables point to the link */ link->tile = tpf->hash_tile[hash]; tpf->hash_tile[hash] = NTP_GET_LINK_OFFS(tpf, link); link->typelength = tpf->hash_head[hash]; tpf->hash_head[hash] = 0xFFFF; /* multi link */ link->next = 0xFFFF; } else { // a linked list of many tiles, // find the one corresponding to the tile, if it exists. // otherwise make a new link uint offs = tpf->hash_tile[hash]; do { link = NTP_GET_LINK_PTR(tpf, offs); if (tile == link->tile && (link->typelength & 0x3U) == dir) { if (length >= (uint)(link->typelength >> 2)) return false; link->typelength = dir | (length << 2); return true; } } while ((offs = link->next) != 0xFFFF); } /* get here if we need to add a new link to link, * first, allocate a new link, in the same way as before */ if (tpf->num_links_left == 0) { DEBUG(ntp, 1) ("[NTP] no links left"); return false; } tpf->num_links_left--; new_link = tpf->new_link++; /* then fill the link with the new info, and establish a ptr from the old * link to the new one */ new_link->tile = tile; new_link->typelength = dir | (length << 2); new_link->next = 0xFFFF; link->next = NTP_GET_LINK_OFFS(tpf, new_link); return true; } /** * Checks if the shortest path to the given tile/dir so far is still the given * length. * @return true if the length is still the same * @pre The given tile/dir combination should be present in the hash, by a * previous call to NtpVisit(). */ static bool NtpCheck(NewTrackPathFinder *tpf, TileIndex tile, uint dir, uint length) { uint hash,head,offs; HashLink *link; hash = PATHFIND_HASH_TILE(tile); head=tpf->hash_head[hash]; assert(head); if (head != 0xffff) { assert( tpf->hash_tile[hash] == tile && (head & 3) == dir); assert( (head >> 2) <= length); return length == (head >> 2); } // else it's a linked list of many tiles offs = tpf->hash_tile[hash]; for (;;) { link = NTP_GET_LINK_PTR(tpf, offs); if (tile == link->tile && (link->typelength & 0x3U) == dir) { assert((uint)(link->typelength >> 2) <= length); return length == (uint)(link->typelength >> 2); } offs = link->next; assert(offs != 0xffff); } } static const uint16 _is_upwards_slope[15] = { 0, // no tileh (1 << TRACKDIR_X_SW) | (1 << TRACKDIR_Y_NW), // 1 (1 << TRACKDIR_X_SW) | (1 << TRACKDIR_Y_SE), // 2 (1 << TRACKDIR_X_SW), // 3 (1 << TRACKDIR_X_NE) | (1 << TRACKDIR_Y_SE), // 4 0, // 5 (1 << TRACKDIR_Y_SE), // 6 0, // 7 (1 << TRACKDIR_X_NE) | (1 << TRACKDIR_Y_NW), // 8, (1 << TRACKDIR_Y_NW), // 9 0, //10 0, //11, (1 << TRACKDIR_X_NE), //12 0, //13 0, //14 }; #define DIAG_FACTOR 3 #define STR_FACTOR 2 static uint DistanceMoo(TileIndex t0, TileIndex t1) { const uint dx = abs(TileX(t0) - TileX(t1)); const uint dy = abs(TileY(t0) - TileY(t1)); const uint straightTracks = 2 * min(dx, dy); /* The number of straight (not full length) tracks */ /* OPTIMISATION: * Original: diagTracks = max(dx, dy) - min(dx,dy); * Proof: * (dx-dy) - straightTracks == (min + max) - straightTracks = min + // max - 2 * min = max - min */ const uint diagTracks = dx + dy - straightTracks; /* The number of diagonal (full tile length) tracks. */ return diagTracks*DIAG_FACTOR + straightTracks*STR_FACTOR; } // These has to be small cause the max length of a track // is currently limited to 16384 static const byte _length_of_track[16] = { DIAG_FACTOR,DIAG_FACTOR,STR_FACTOR,STR_FACTOR,STR_FACTOR,STR_FACTOR,0,0, DIAG_FACTOR,DIAG_FACTOR,STR_FACTOR,STR_FACTOR,STR_FACTOR,STR_FACTOR,0,0 }; // new more optimized pathfinder for trains... // Tile is the tile the train is at. // direction is the tile the train is moving towards. static void NTPEnum(NewTrackPathFinder* tpf, TileIndex tile, DiagDirection direction) { TrackBits bits, allbits; uint track; TileIndex tile_org; StackedItem si; FindLengthOfTunnelResult flotr; int estimation; // Need to have a special case for the start. // We shouldn't call the callback for the current tile. si.cur_length = 1; // Need to start at 1 cause 0 is a reserved value. si.depth = 0; si.state = 0; si.first_track = 0xFF; goto start_at; for (;;) { // Get the next item to search from from the priority queue do { if (tpf->nstack == 0) return; // nothing left? then we're done! si = tpf->stack[0]; tile = si.tile; HeapifyDown(tpf); // Make sure we havn't already visited this tile. } while (!NtpCheck(tpf, tile, _tpf_prev_direction[si.track], si.cur_length)); // Add the length of this track. si.cur_length += _length_of_track[si.track]; callback_and_continue: if (tpf->enum_proc(tile, tpf->userdata, si.first_track, si.cur_length)) return; assert(si.track <= 13); direction = _tpf_new_direction[si.track]; start_at: // If the tile is the entry tile of a tunnel, and we're not going out of the tunnel, // need to find the exit of the tunnel. if (IsTunnelTile(tile) && GetTunnelDirection(tile) != ReverseDiagDir(direction)) { /* We are not just driving out of the tunnel */ if (GetTunnelDirection(tile) != direction || GetTunnelTransportType(tile) != tpf->tracktype) { // We are not driving into the tunnel, or it is an invalid tunnel continue; } if (!HASBIT(tpf->railtypes, GetRailType(tile))) { bits = 0; break; } flotr = FindLengthOfTunnel(tile, direction); si.cur_length += flotr.length * DIAG_FACTOR; tile = flotr.tile; // tile now points to the exit tile of the tunnel } // This is a special loop used to go through // a rail net and find the first intersection tile_org = tile; for (;;) { assert(direction <= 3); tile += TileOffsByDir(direction); // too long search length? bail out. if (si.cur_length >= tpf->maxlength) { DEBUG(ntp,1) ("[NTP] cur_length too big"); bits = 0; break; } // Not a regular rail tile? // Then we can't use the code below, but revert to more general code. if (!IsTileType(tile, MP_RAILWAY) || !IsPlainRailTile(tile)) { // We found a tile which is not a normal railway tile. // Determine which tracks that exist on this tile. bits = GetTileTrackStatus(tile, TRANSPORT_RAIL) & _tpfmode1_and[direction]; bits = (bits | (bits >> 8)) & 0x3F; // Check that the tile contains exactly one track if (bits == 0 || KILL_FIRST_BIT(bits) != 0) break; /* Check the rail type only if the train is *NOT* on top of * a bridge. */ if (!(IsBridgeTile(tile) && IsBridgeMiddle(tile) && GetBridgeAxis(tile) == DiagDirToAxis(direction))) { if (IsTileType(tile, MP_STREET) ? !HASBIT(tpf->railtypes, GetRailTypeCrossing(tile)) : !HASBIT(tpf->railtypes, GetRailType(tile))) { bits = 0; break; } } /////////////////// // If we reach here, the tile has exactly one track. // tile - index to a tile that is not rail tile, but still straight (with optional signals) // bits - bitmask of which track that exist on the tile (exactly one bit is set) // direction - which direction are we moving in? /////////////////// si.track = _new_track[FIND_FIRST_BIT(bits)][direction]; si.cur_length += _length_of_track[si.track]; goto callback_and_continue; } /* Regular rail tile, determine which tracks exist. */ allbits = GetTrackBits(tile); /* Which tracks are reachable? */ bits = allbits & DiagdirReachesTracks(direction); /* The tile has no reachable tracks => End of rail segment * or Intersection => End of rail segment. We check this agains all the * bits, not just reachable ones, to prevent infinite loops. */ if (bits == 0 || TracksOverlap(allbits)) break; if (!HASBIT(tpf->railtypes, GetRailType(tile))) { bits = 0; break; } /* If we reach here, the tile has exactly one track, and this track is reachable => Rail segment continues */ track = _new_track[FIND_FIRST_BIT(bits)][direction]; assert(track != 0xff); si.cur_length += _length_of_track[track]; // Check if this rail is an upwards slope. If it is, then add a penalty. // Small optimization here.. if (track&7)>1 then it can't be a slope so we avoid calling GetTileSlope if ((track & 7) <= 1 && (_is_upwards_slope[GetTileSlope(tile, NULL)] & (1 << track)) ) { // upwards slope. add some penalty. si.cur_length += 4*DIAG_FACTOR; } // railway tile with signals..? if (HasSignals(tile)) { byte m3; m3 = _m[tile].m3; if (!(m3 & SignalAlongTrackdir(track))) { // if one way signal not pointing towards us, stop going in this direction => End of rail segment. if (m3 & SignalAgainstTrackdir(track)) { bits = 0; break; } } else if (_m[tile].m2 & SignalAlongTrackdir(track)) { // green signal in our direction. either one way or two way. si.state |= 3; } else { // reached a red signal. if (m3 & SignalAgainstTrackdir(track)) { // two way red signal. unless we passed another green signal on the way, // stop going in this direction => End of rail segment. // this is to prevent us from going into a full platform. if (!(si.state&1)) { bits = 0; break; } } if (!(si.state & 2)) { // Is this the first signal we see? And it's red... add penalty si.cur_length += 10*DIAG_FACTOR; si.state += 2; // remember that we added penalty. // Because we added a penalty, we can't just continue as usual. // Need to get out and let A* do it's job with // possibly finding an even shorter path. break; } } if (tpf->enum_proc(tile, tpf->userdata, si.first_track, si.cur_length)) return; /* Don't process this tile any further */ } // continue with the next track direction = _tpf_new_direction[track]; // safety check if we're running around chasing our tail... (infinite loop) if (tile == tile_org) { bits = 0; break; } } // There are no tracks to choose between. // Stop searching in this direction if (bits == 0) continue; //////////////// // We got multiple tracks to choose between (intersection). // Branch the search space into several branches. //////////////// // Check if we've already visited this intersection. // If we've already visited it with a better length, then // there's no point in visiting it again. if (!NtpVisit(tpf, tile, direction, si.cur_length)) continue; // Push all possible alternatives that we can reach from here // onto the priority heap. // 'bits' contains the tracks that we can choose between. // First compute the estimated distance to the target. // This is used to implement A* estimation = 0; if (tpf->dest != 0) estimation = DistanceMoo(tile, tpf->dest); si.depth++; if (si.depth == 0) continue; /* We overflowed our depth. No more searching in this direction. */ si.tile = tile; do { si.track = _new_track[FIND_FIRST_BIT(bits)][direction]; assert(si.track != 0xFF); si.priority = si.cur_length + estimation; // out of stack items, bail out? if (tpf->nstack >= lengthof(tpf->stack)) { DEBUG(ntp, 1) ("[NTP] out of stack"); break; } tpf->stack[tpf->nstack] = si; HeapifyUp(tpf); } while ((bits = KILL_FIRST_BIT(bits)) != 0); // If this is the first intersection, we need to fill the first_track member. // so the code outside knows which path is better. // also randomize the order in which we search through them. if (si.depth == 1) { assert(tpf->nstack == 1 || tpf->nstack == 2 || tpf->nstack == 3); if (tpf->nstack != 1) { uint32 r = Random(); if (r&1) swap_byte(&tpf->stack[0].track, &tpf->stack[1].track); if (tpf->nstack != 2) { byte t = tpf->stack[2].track; if (r&2) swap_byte(&tpf->stack[0].track, &t); if (r&4) swap_byte(&tpf->stack[1].track, &t); tpf->stack[2].first_track = tpf->stack[2].track = t; } tpf->stack[0].first_track = tpf->stack[0].track; tpf->stack[1].first_track = tpf->stack[1].track; } } // Continue with the next from the queue... } } // new pathfinder for trains. better and faster. void NewTrainPathfind(TileIndex tile, TileIndex dest, RailTypeMask railtypes, DiagDirection direction, NTPEnumProc* enum_proc, void* data) { NewTrackPathFinder tpf; tpf.dest = dest; tpf.userdata = data; tpf.enum_proc = enum_proc; tpf.tracktype = TRANSPORT_RAIL; tpf.railtypes = railtypes; tpf.maxlength = min(_patches.pf_maxlength * 3, 10000); tpf.nstack = 0; tpf.new_link = tpf.links; tpf.num_links_left = lengthof(tpf.links); memset(tpf.hash_head, 0, sizeof(tpf.hash_head)); NTPEnum(&tpf, tile, direction); }