/* $Id$ */ #include "stdafx.h" #include "openttd.h" #include "bridge_map.h" #include "debug.h" #include "functions.h" #include "npf.h" #include "aystar.h" #include "macros.h" #include "pathfind.h" #include "station.h" #include "tile.h" #include "depot.h" #include "tunnel_map.h" static AyStar _npf_aystar; /* The cost of each trackdir. A diagonal piece is the full NPF_TILE_LENGTH, * the shorter piece is sqrt(2)/2*NPF_TILE_LENGTH =~ 0.7071 */ #define NPF_STRAIGHT_LENGTH (uint)(NPF_TILE_LENGTH * STRAIGHT_TRACK_LENGTH) static const uint _trackdir_length[TRACKDIR_END] = { NPF_TILE_LENGTH, NPF_TILE_LENGTH, NPF_STRAIGHT_LENGTH, NPF_STRAIGHT_LENGTH, NPF_STRAIGHT_LENGTH, NPF_STRAIGHT_LENGTH, 0, 0, NPF_TILE_LENGTH, NPF_TILE_LENGTH, NPF_STRAIGHT_LENGTH, NPF_STRAIGHT_LENGTH, NPF_STRAIGHT_LENGTH, NPF_STRAIGHT_LENGTH }; /** * Calculates the minimum distance traveled to get from t0 to t1 when only * using tracks (ie, only making 45 degree turns). Returns the distance in the * NPF scale, ie the number of full tiles multiplied by NPF_TILE_LENGTH to * prevent rounding. */ static uint NPFDistanceTrack(TileIndex t0, TileIndex t1) { const uint dx = abs(TileX(t0) - TileX(t1)); const uint dy = abs(TileY(t0) - TileY(t1)); const uint straightTracks = 2 * min(dx, dy); /* The number of straight (not full length) tracks */ /* OPTIMISATION: * Original: diagTracks = max(dx, dy) - min(dx,dy); * Proof: * (dx+dy) - straightTracks == (min + max) - straightTracks = min + max - 2 * min = max - min */ const uint diagTracks = dx + dy - straightTracks; /* The number of diagonal (full tile length) tracks. */ /* Don't factor out NPF_TILE_LENGTH below, this will round values and lose * precision */ return diagTracks * NPF_TILE_LENGTH + straightTracks * NPF_TILE_LENGTH * STRAIGHT_TRACK_LENGTH; } #if 0 static uint NTPHash(uint key1, uint key2) { /* This function uses the old hash, which is fixed on 10 bits (1024 buckets) */ return PATHFIND_HASH_TILE(key1); } #endif /** * Calculates a hash value for use in the NPF. * @param key1 The TileIndex of the tile to hash * @param key1 The Trackdir of the track on the tile. * * @todo Think of a better hash. */ static uint NPFHash(uint key1, uint key2) { /* TODO: think of a better hash? */ uint part1 = TileX(key1) & NPF_HASH_HALFMASK; uint part2 = TileY(key1) & NPF_HASH_HALFMASK; assert(IsValidTrackdir(key2)); assert(IsValidTile(key1)); return ((part1 << NPF_HASH_HALFBITS | part2) + (NPF_HASH_SIZE * key2 / TRACKDIR_END)) % NPF_HASH_SIZE; } static int32 NPFCalcZero(AyStar* as, AyStarNode* current, OpenListNode* parent) { return 0; } /* Calcs the tile of given station that is closest to a given tile * for this we assume the station is a rectangle, * as defined by its top tile (st->train_tile) and its width/height (st->trainst_w, st->trainst_h) */ static TileIndex CalcClosestStationTile(StationID station, TileIndex tile) { const Station* st = GetStation(station); uint minx = TileX(st->train_tile); // topmost corner of station uint miny = TileY(st->train_tile); uint maxx = minx + st->trainst_w - 1; // lowermost corner of station uint maxy = miny + st->trainst_h - 1; uint x; uint y; // we are going the aim for the x coordinate of the closest corner // but if we are between those coordinates, we will aim for our own x coordinate x = clamp(TileX(tile), minx, maxx); // same for y coordinate, see above comment y = clamp(TileY(tile), miny, maxy); // return the tile of our target coordinates return TileXY(x, y); } /* Calcs the heuristic to the target station or tile. For train stations, it * takes into account the direction of approach. */ static int32 NPFCalcStationOrTileHeuristic(AyStar* as, AyStarNode* current, OpenListNode* parent) { NPFFindStationOrTileData* fstd = (NPFFindStationOrTileData*)as->user_target; NPFFoundTargetData* ftd = (NPFFoundTargetData*)as->user_path; TileIndex from = current->tile; TileIndex to = fstd->dest_coords; uint dist; // for train-stations, we are going to aim for the closest station tile if (as->user_data[NPF_TYPE] == TRANSPORT_RAIL && fstd->station_index != INVALID_STATION) to = CalcClosestStationTile(fstd->station_index, from); if (as->user_data[NPF_TYPE] == TRANSPORT_ROAD) { /* Since roads only have diagonal pieces, we use manhattan distance here */ dist = DistanceManhattan(from, to) * NPF_TILE_LENGTH; } else { /* Ships and trains can also go diagonal, so the minimum distance is shorter */ dist = NPFDistanceTrack(from, to); } DEBUG(npf, 4)("Calculating H for: (%d, %d). Result: %d", TileX(current->tile), TileY(current->tile), dist); if (dist < ftd->best_bird_dist) { ftd->best_bird_dist = dist; ftd->best_trackdir = current->user_data[NPF_TRACKDIR_CHOICE]; } return dist; } /* Fills AyStarNode.user_data[NPF_TRACKDIRCHOICE] with the chosen direction to * get here, either getting it from the current choice or from the parent's * choice */ static void NPFFillTrackdirChoice(AyStarNode* current, OpenListNode* parent) { if (parent->path.parent == NULL) { Trackdir trackdir = (Trackdir)current->direction; /* This is a first order decision, so we'd better save the * direction we chose */ current->user_data[NPF_TRACKDIR_CHOICE] = trackdir; DEBUG(npf, 6)("Saving trackdir: %#x", trackdir); } else { /* We've already made the decision, so just save our parent's decision */ current->user_data[NPF_TRACKDIR_CHOICE] = parent->path.node.user_data[NPF_TRACKDIR_CHOICE]; } } /* Will return the cost of the tunnel. If it is an entry, it will return the * cost of that tile. If the tile is an exit, it will return the tunnel length * including the exit tile. Requires that this is a Tunnel tile */ static uint NPFTunnelCost(AyStarNode* current) { DiagDirection exitdir = TrackdirToExitdir((Trackdir)current->direction); TileIndex tile = current->tile; if (GetTunnelDirection(tile) == ReverseDiagDir(exitdir)) { /* We just popped out if this tunnel, since were * facing the tunnel exit */ FindLengthOfTunnelResult flotr; flotr = FindLengthOfTunnel(tile, ReverseDiagDir(exitdir)); return flotr.length * NPF_TILE_LENGTH; //TODO: Penalty for tunnels? } else { /* We are entering the tunnel, the enter tile is just a * straight track */ return NPF_TILE_LENGTH; } } static uint NPFSlopeCost(AyStarNode* current) { TileIndex next = current->tile + TileOffsByDir(TrackdirToExitdir(current->direction)); int x,y; int8 z1,z2; x = TileX(current->tile) * TILE_SIZE; y = TileY(current->tile) * TILE_SIZE; /* get the height of the center of the current tile */ z1 = GetSlopeZ(x+TILE_HEIGHT, y+TILE_HEIGHT); x = TileX(next) * TILE_SIZE; y = TileY(next) * TILE_SIZE; /* get the height of the center of the next tile */ z2 = GetSlopeZ(x+TILE_HEIGHT, y+TILE_HEIGHT); if (z2 - z1 > 1) { /* Slope up */ return _patches.npf_rail_slope_penalty; } return 0; /* Should we give a bonus for slope down? Probably not, we * could just substract that bonus from the penalty, because * there is only one level of steepness... */ } /* Mark tiles by mowing the grass when npf debug level >= 1 */ static void NPFMarkTile(TileIndex tile) { #ifdef NO_DEBUG_MESSAGES return; #else if (_debug_npf_level < 1) return; switch (GetTileType(tile)) { case MP_RAILWAY: /* DEBUG: mark visited tiles by mowing the grass under them ;-) */ if (!IsTileDepotType(tile, TRANSPORT_RAIL)) { SB(_m[tile].m2, 0, 4, 0); MarkTileDirtyByTile(tile); } break; case MP_STREET: if (!IsTileDepotType(tile, TRANSPORT_ROAD)) { SB(_m[tile].m4, 4, 3, 0); MarkTileDirtyByTile(tile); } break; default: break; } #endif } static int32 NPFWaterPathCost(AyStar* as, AyStarNode* current, OpenListNode* parent) { //TileIndex tile = current->tile; int32 cost = 0; Trackdir trackdir = (Trackdir)current->direction; cost = _trackdir_length[trackdir]; /* Should be different for diagonal tracks */ if (IsBuoyTile(current->tile) && IsDiagonalTrackdir(trackdir)) cost += _patches.npf_buoy_penalty; /* A small penalty for going over buoys */ if (current->direction != NextTrackdir((Trackdir)parent->path.node.direction)) cost += _patches.npf_water_curve_penalty; /* TODO More penalties? */ return cost; } /* Determine the cost of this node, for road tracks */ static int32 NPFRoadPathCost(AyStar* as, AyStarNode* current, OpenListNode* parent) { TileIndex tile = current->tile; int32 cost = 0; /* Determine base length */ switch (GetTileType(tile)) { case MP_TUNNELBRIDGE: if (IsTunnel(tile)) { cost = NPFTunnelCost(current); } else { cost = NPF_TILE_LENGTH; } break; case MP_STREET: cost = NPF_TILE_LENGTH; /* Increase the cost for level crossings */ if (IsLevelCrossing(tile)) cost += _patches.npf_crossing_penalty; break; default: break; } /* Determine extra costs */ /* Check for slope */ cost += NPFSlopeCost(current); /* Check for turns. Road vehicles only really drive diagonal, turns are * represented by non-diagonal tracks */ if (!IsDiagonalTrackdir(current->direction)) cost += _patches.npf_road_curve_penalty; NPFMarkTile(tile); DEBUG(npf, 4)("Calculating G for: (%d, %d). Result: %d", TileX(current->tile), TileY(current->tile), cost); return cost; } /* Determine the cost of this node, for railway tracks */ static int32 NPFRailPathCost(AyStar* as, AyStarNode* current, OpenListNode* parent) { TileIndex tile = current->tile; Trackdir trackdir = (Trackdir)current->direction; int32 cost = 0; /* HACK: We create a OpenListNode manually, so we can call EndNodeCheck */ OpenListNode new_node; /* Determine base length */ switch (GetTileType(tile)) { case MP_TUNNELBRIDGE: if (IsTunnel(tile)) { cost = NPFTunnelCost(current); break; } /* Fall through if above if is false, it is a bridge * then. We treat that as ordinary rail */ case MP_RAILWAY: cost = _trackdir_length[trackdir]; /* Should be different for diagonal tracks */ break; case MP_STREET: /* Railway crossing */ cost = NPF_TILE_LENGTH; break; case MP_STATION: /* We give a station tile a penalty. Logically we would only want to give * station tiles that are not our destination this penalty. This would * discourage trains to drive through busy stations. But, we can just * give any station tile a penalty, because every possible route will get * this penalty exactly once, on its end tile (if it's a station) and it * will therefore not make a difference. */ cost = NPF_TILE_LENGTH + _patches.npf_rail_station_penalty; break; default: break; } /* Determine extra costs */ /* Check for signals */ if (IsTileType(tile, MP_RAILWAY) && HasSignalOnTrackdir(tile, trackdir)) { /* Ordinary track with signals */ if (GetSignalState(tile, trackdir) == SIGNAL_STATE_RED) { /* Signal facing us is red */ if (!NPFGetFlag(current, NPF_FLAG_SEEN_SIGNAL)) { /* Penalize the first signal we * encounter, if it is red */ /* Is this a presignal exit or combo? */ SignalType sigtype = GetSignalType(tile, TrackdirToTrack(trackdir)); if (sigtype == SIGTYPE_EXIT || sigtype == SIGTYPE_COMBO) { /* Penalise exit and combo signals differently (heavier) */ cost += _patches.npf_rail_firstred_exit_penalty; } else { cost += _patches.npf_rail_firstred_penalty; } } /* Record the state of this signal */ NPFSetFlag(current, NPF_FLAG_LAST_SIGNAL_RED, true); } else { /* Record the state of this signal */ NPFSetFlag(current, NPF_FLAG_LAST_SIGNAL_RED, false); } NPFSetFlag(current, NPF_FLAG_SEEN_SIGNAL, true); } /* Penalise the tile if it is a target tile and the last signal was * red */ /* HACK: We create a new_node here so we can call EndNodeCheck. Ugly as hell * of course... */ new_node.path.node = *current; if (as->EndNodeCheck(as, &new_node) == AYSTAR_FOUND_END_NODE && NPFGetFlag(current, NPF_FLAG_LAST_SIGNAL_RED)) cost += _patches.npf_rail_lastred_penalty; /* Check for slope */ cost += NPFSlopeCost(current); /* Check for turns */ if (current->direction != NextTrackdir((Trackdir)parent->path.node.direction)) cost += _patches.npf_rail_curve_penalty; //TODO, with realistic acceleration, also the amount of straight track between // curves should be taken into account, as this affects the speed limit. /* Check for reverse in depot */ if (IsTileDepotType(tile, TRANSPORT_RAIL) && as->EndNodeCheck(as, &new_node) != AYSTAR_FOUND_END_NODE) { /* Penalise any depot tile that is not the last tile in the path. This * _should_ penalise every occurence of reversing in a depot (and only * that) */ cost += _patches.npf_rail_depot_reverse_penalty; } /* Check for occupied track */ //TODO NPFMarkTile(tile); DEBUG(npf, 4)("Calculating G for: (%d, %d). Result: %d", TileX(current->tile), TileY(current->tile), cost); return cost; } /* Will find any depot */ static int32 NPFFindDepot(AyStar* as, OpenListNode *current) { TileIndex tile = current->path.node.tile; /* It's not worth caching the result with NPF_FLAG_IS_TARGET here as below, * since checking the cache not that much faster than the actual check */ if (IsTileDepotType(tile, as->user_data[NPF_TYPE])) { return AYSTAR_FOUND_END_NODE; } else { return AYSTAR_DONE; } } /* Will find a station identified using the NPFFindStationOrTileData */ static int32 NPFFindStationOrTile(AyStar* as, OpenListNode *current) { NPFFindStationOrTileData* fstd = (NPFFindStationOrTileData*)as->user_target; AyStarNode *node = ¤t->path.node; TileIndex tile = node->tile; /* If GetNeighbours said we could get here, we assume the station type * is correct */ if ( (fstd->station_index == INVALID_STATION && tile == fstd->dest_coords) || /* We've found the tile, or */ (IsTileType(tile, MP_STATION) && _m[tile].m2 == fstd->station_index) /* the station */ ) { return AYSTAR_FOUND_END_NODE; } else { return AYSTAR_DONE; } } /* To be called when current contains the (shortest route to) the target node. * Will fill the contents of the NPFFoundTargetData using * AyStarNode[NPF_TRACKDIR_CHOICE]. */ static void NPFSaveTargetData(AyStar* as, OpenListNode* current) { NPFFoundTargetData* ftd = (NPFFoundTargetData*)as->user_path; ftd->best_trackdir = (Trackdir)current->path.node.user_data[NPF_TRACKDIR_CHOICE]; ftd->best_path_dist = current->g; ftd->best_bird_dist = 0; ftd->node = current->path.node; } /** * Finds out if a given player's vehicles are allowed to enter a given tile. * @param owner The owner of the vehicle. * @param tile The tile that is about to be entered. * @param enterdir The direction from which the vehicle wants to enter the tile. * @return true if the vehicle can enter the tile. * @todo This function should be used in other places than just NPF, * maybe moved to another file too. */ static bool VehicleMayEnterTile(Owner owner, TileIndex tile, DiagDirection enterdir) { if (IsTileType(tile, MP_RAILWAY) || /* Rail tile (also rail depot) */ IsTrainStationTile(tile) || /* Rail station tile */ IsTileDepotType(tile, TRANSPORT_ROAD) || /* Road depot tile */ IsRoadStationTile(tile) || /* Road station tile */ IsTileDepotType(tile, TRANSPORT_WATER)) { /* Water depot tile */ return IsTileOwner(tile, owner); /* You need to own these tiles entirely to use them */ } switch (GetTileType(tile)) { case MP_STREET: /* rail-road crossing : are we looking at the railway part? */ if (IsLevelCrossing(tile) && GetCrossingTransportType(tile, TrackdirToTrack(DiagdirToDiagTrackdir(enterdir))) == TRANSPORT_RAIL) return IsTileOwner(tile, owner); /* Railway needs owner check, while the street is public */ break; case MP_TUNNELBRIDGE: #if 0 /* OPTIMISATION: If we are on the middle of a bridge, we will not do the cpu * intensive owner check, instead we will just assume that if the vehicle * managed to get on the bridge, it is probably allowed to :-) */ if ((_m[tile].m5 & 0xC6) == 0xC0 && GB(_m[tile].m5, 0, 1) == (enterdir & 0x1)) { /* on the middle part of a railway bridge: find bridge ending */ while (IsTileType(tile, MP_TUNNELBRIDGE) && !((_m[tile].m5 & 0xC6) == 0x80)) { tile += TileOffsByDir(GB(_m[tile].m5, 0, 1)); } } /* if we were on a railway middle part, we are now at a railway bridge ending */ #endif if ((IsTunnel(tile) && GetTunnelTransportType(tile) == TRANSPORT_RAIL) || (IsBridge(tile) && ( (IsBridgeRamp(tile) && GetBridgeTransportType(tile) == TRANSPORT_RAIL) || (IsBridgeMiddle(tile) && IsTransportUnderBridge(tile) && GetTransportTypeUnderBridge(tile) == TRANSPORT_RAIL) ))) { return IsTileOwner(tile, owner); } break; default: break; } return true; /* no need to check */ } /* Will just follow the results of GetTileTrackStatus concerning where we can * go and where not. Uses AyStar.user_data[NPF_TYPE] as the transport type and * an argument to GetTileTrackStatus. Will skip tunnels, meaning that the * entry and exit are neighbours. Will fill * AyStarNode.user_data[NPF_TRACKDIR_CHOICE] with an appropriate value, and * copy AyStarNode.user_data[NPF_NODE_FLAGS] from the parent */ static void NPFFollowTrack(AyStar* aystar, OpenListNode* current) { Trackdir src_trackdir = (Trackdir)current->path.node.direction; TileIndex src_tile = current->path.node.tile; DiagDirection src_exitdir = TrackdirToExitdir(src_trackdir); TileIndex dst_tile; int i; TrackdirBits trackdirbits, ts; TransportType type = aystar->user_data[NPF_TYPE]; /* Initialize to 0, so we can jump out (return) somewhere an have no neighbours */ aystar->num_neighbours = 0; DEBUG(npf, 4)("Expanding: (%d, %d, %d) [%d]", TileX(src_tile), TileY(src_tile), src_trackdir, src_tile); /* Find dest tile */ if (IsTunnelTile(src_tile) && GetTunnelDirection(src_tile) == src_exitdir) { /* This is a tunnel. We know this tunnel is our type, * otherwise we wouldn't have got here. It is also facing us, * so we should skip it's body */ dst_tile = GetOtherTunnelEnd(src_tile); } else { if (type != TRANSPORT_WATER && (IsRoadStationTile(src_tile) || IsTileDepotType(src_tile, type))){ /* This is a road station or a train or road depot. We can enter and exit * those from one side only. Trackdirs don't support that (yet), so we'll * do this here. */ DiagDirection exitdir; /* Find out the exit direction first */ if (IsRoadStationTile(src_tile)) { exitdir = GetRoadStationDir(src_tile); } else { /* Train or road depot. Direction is stored the same for both, in map5 */ exitdir = GetDepotDirection(src_tile, type); } /* Let's see if were headed the right way into the depot, and reverse * otherwise (only for trains, since only with trains you can * (sometimes) reach tiles after reversing that you couldn't reach * without reversing. */ if (src_trackdir == DiagdirToDiagTrackdir(ReverseDiagDir(exitdir)) && type == TRANSPORT_RAIL) { /* We are headed inwards. We can only reverse here, so we'll not * consider this direction, but jump ahead to the reverse direction. * It would be nicer to return one neighbour here (the reverse * trackdir of the one we are considering now) and then considering * that one to return the tracks outside of the depot. But, because * the code layout is cleaner this way, we will just pretend we are * reversed already */ src_trackdir = ReverseTrackdir(src_trackdir); } } /* This a normal tile, a bridge, a tunnel exit, etc. */ dst_tile = AddTileIndexDiffCWrap(src_tile, TileIndexDiffCByDir(TrackdirToExitdir(src_trackdir))); if (dst_tile == INVALID_TILE) { /* We reached the border of the map */ /* TODO Nicer control flow for this */ return; } } /* I can't enter a tunnel entry/exit tile from a tile above the tunnel. Note * that I can enter the tunnel from a tile below the tunnel entrance. This * solves the problem of vehicles wanting to drive off a tunnel entrance */ if (IsTunnelTile(dst_tile) && GetTileZ(dst_tile) < GetTileZ(src_tile)) { return; } /* check correct rail type (mono, maglev, etc) */ if (type == TRANSPORT_RAIL) { RailType dst_type = GetTileRailType(dst_tile, src_trackdir); if (!IsCompatibleRail(aystar->user_data[NPF_RAILTYPE], dst_type)) return; } /* Check the owner of the tile */ if (!VehicleMayEnterTile(aystar->user_data[NPF_OWNER], dst_tile, TrackdirToExitdir(src_trackdir))) { return; } /* Determine available tracks */ if (type != TRANSPORT_WATER && (IsRoadStationTile(dst_tile) || IsTileDepotType(dst_tile, type))){ /* Road stations and road and train depots return 0 on GTTS, so we have to do this by hand... */ DiagDirection exitdir; if (IsRoadStationTile(dst_tile)) { exitdir = GetRoadStationDir(dst_tile); } else { /* Road or train depot */ exitdir = GetDepotDirection(dst_tile, type); } /* Find the trackdirs that are available for a depot or station with this * orientation. They are only "inwards", since we are reaching this tile * from some other tile. This prevents vehicles driving into depots from * the back */ ts = TrackdirToTrackdirBits(DiagdirToDiagTrackdir(ReverseDiagDir(exitdir))); } else { ts = GetTileTrackStatus(dst_tile, type); } trackdirbits = ts & TRACKDIR_BIT_MASK; /* Filter out signal status and the unused bits */ DEBUG(npf, 4)("Next node: (%d, %d) [%d], possible trackdirs: %#x", TileX(dst_tile), TileY(dst_tile), dst_tile, trackdirbits); /* Select only trackdirs we can reach from our current trackdir */ trackdirbits &= TrackdirReachesTrackdirs(src_trackdir); if (_patches.forbid_90_deg && (type == TRANSPORT_RAIL || type == TRANSPORT_WATER)) /* Filter out trackdirs that would make 90 deg turns for trains */ trackdirbits &= ~TrackdirCrossesTrackdirs(src_trackdir); DEBUG(npf,6)("After filtering: (%d, %d), possible trackdirs: %#x", TileX(dst_tile), TileY(dst_tile), trackdirbits); i = 0; /* Enumerate possible track */ while (trackdirbits != 0) { Trackdir dst_trackdir; dst_trackdir = FindFirstBit2x64(trackdirbits); trackdirbits = KillFirstBit2x64(trackdirbits); DEBUG(npf, 5)("Expanded into trackdir: %d, remaining trackdirs: %#x", dst_trackdir, trackdirbits); /* Check for oneway signal against us */ if (IsTileType(dst_tile, MP_RAILWAY) && GetRailTileType(dst_tile) == RAIL_TYPE_SIGNALS) { if (HasSignalOnTrackdir(dst_tile, ReverseTrackdir(dst_trackdir)) && !HasSignalOnTrackdir(dst_tile, dst_trackdir)) // if one way signal not pointing towards us, stop going in this direction. break; } { /* We've found ourselves a neighbour :-) */ AyStarNode* neighbour = &aystar->neighbours[i]; neighbour->tile = dst_tile; neighbour->direction = dst_trackdir; /* Save user data */ neighbour->user_data[NPF_NODE_FLAGS] = current->path.node.user_data[NPF_NODE_FLAGS]; NPFFillTrackdirChoice(neighbour, current); } i++; } aystar->num_neighbours = i; } /* * Plan a route to the specified target (which is checked by target_proc), * from start1 and if not NULL, from start2 as well. The type of transport we * are checking is in type. reverse_penalty is applied to all routes that * originate from the second start node. * When we are looking for one specific target (optionally multiple tiles), we * should use a good heuristic to perform aystar search. When we search for * multiple targets that are spread around, we should perform a breadth first * search by specifiying CalcZero as our heuristic. */ static NPFFoundTargetData NPFRouteInternal(AyStarNode* start1, AyStarNode* start2, NPFFindStationOrTileData* target, AyStar_EndNodeCheck target_proc, AyStar_CalculateH heuristic_proc, TransportType type, Owner owner, RailType railtype, uint reverse_penalty) { int r; NPFFoundTargetData result; /* Initialize procs */ _npf_aystar.CalculateH = heuristic_proc; _npf_aystar.EndNodeCheck = target_proc; _npf_aystar.FoundEndNode = NPFSaveTargetData; _npf_aystar.GetNeighbours = NPFFollowTrack; if (type == TRANSPORT_RAIL) _npf_aystar.CalculateG = NPFRailPathCost; else if (type == TRANSPORT_ROAD) _npf_aystar.CalculateG = NPFRoadPathCost; else if (type == TRANSPORT_WATER) _npf_aystar.CalculateG = NPFWaterPathCost; else assert(0); /* Initialize Start Node(s) */ start1->user_data[NPF_TRACKDIR_CHOICE] = INVALID_TRACKDIR; start1->user_data[NPF_NODE_FLAGS] = 0; _npf_aystar.addstart(&_npf_aystar, start1, 0); if (start2) { start2->user_data[NPF_TRACKDIR_CHOICE] = INVALID_TRACKDIR; start2->user_data[NPF_NODE_FLAGS] = 0; NPFSetFlag(start2, NPF_FLAG_REVERSE, true); _npf_aystar.addstart(&_npf_aystar, start2, reverse_penalty); } /* Initialize result */ result.best_bird_dist = (uint)-1; result.best_path_dist = (uint)-1; result.best_trackdir = INVALID_TRACKDIR; _npf_aystar.user_path = &result; /* Initialize target */ _npf_aystar.user_target = target; /* Initialize user_data */ _npf_aystar.user_data[NPF_TYPE] = type; _npf_aystar.user_data[NPF_OWNER] = owner; _npf_aystar.user_data[NPF_RAILTYPE] = railtype; /* GO! */ r = AyStarMain_Main(&_npf_aystar); assert(r != AYSTAR_STILL_BUSY); if (result.best_bird_dist != 0) { if (target != NULL) { DEBUG(npf, 1) ("Could not find route to tile 0x%x from 0x%x.", target->dest_coords, start1->tile); } else { /* Assumption: target == NULL, so we are looking for a depot */ DEBUG(npf, 1) ("Could not find route to a depot from tile 0x%x.", start1->tile); } } return result; } NPFFoundTargetData NPFRouteToStationOrTileTwoWay(TileIndex tile1, Trackdir trackdir1, TileIndex tile2, Trackdir trackdir2, NPFFindStationOrTileData* target, TransportType type, Owner owner, RailType railtype) { AyStarNode start1; AyStarNode start2; start1.tile = tile1; start2.tile = tile2; /* We set this in case the target is also the start tile, we will just * return a not found then */ start1.user_data[NPF_TRACKDIR_CHOICE] = INVALID_TRACKDIR; start1.direction = trackdir1; start2.direction = trackdir2; start2.user_data[NPF_TRACKDIR_CHOICE] = INVALID_TRACKDIR; return NPFRouteInternal(&start1, (IsValidTile(tile2) ? &start2 : NULL), target, NPFFindStationOrTile, NPFCalcStationOrTileHeuristic, type, owner, railtype, 0); } NPFFoundTargetData NPFRouteToStationOrTile(TileIndex tile, Trackdir trackdir, NPFFindStationOrTileData* target, TransportType type, Owner owner, RailType railtype) { return NPFRouteToStationOrTileTwoWay(tile, trackdir, INVALID_TILE, 0, target, type, owner, railtype); } NPFFoundTargetData NPFRouteToDepotBreadthFirstTwoWay(TileIndex tile1, Trackdir trackdir1, TileIndex tile2, Trackdir trackdir2, TransportType type, Owner owner, RailType railtype, uint reverse_penalty) { AyStarNode start1; AyStarNode start2; start1.tile = tile1; start2.tile = tile2; /* We set this in case the target is also the start tile, we will just * return a not found then */ start1.user_data[NPF_TRACKDIR_CHOICE] = INVALID_TRACKDIR; start1.direction = trackdir1; start2.direction = trackdir2; start2.user_data[NPF_TRACKDIR_CHOICE] = INVALID_TRACKDIR; /* perform a breadth first search. Target is NULL, * since we are just looking for any depot...*/ return NPFRouteInternal(&start1, (IsValidTile(tile2) ? &start2 : NULL), NULL, NPFFindDepot, NPFCalcZero, type, owner, railtype, reverse_penalty); } NPFFoundTargetData NPFRouteToDepotBreadthFirst(TileIndex tile, Trackdir trackdir, TransportType type, Owner owner, RailType railtype) { return NPFRouteToDepotBreadthFirstTwoWay(tile, trackdir, INVALID_TILE, 0, type, owner, railtype, 0); } NPFFoundTargetData NPFRouteToDepotTrialError(TileIndex tile, Trackdir trackdir, TransportType type, Owner owner, RailType railtype) { /* Okay, what we're gonna do. First, we look at all depots, calculate * the manhatten distance to get to each depot. We then sort them by * distance. We start by trying to plan a route to the closest, then * the next closest, etc. We stop when the best route we have found so * far, is shorter than the manhattan distance. This will obviously * always find the closest depot. It will probably be most efficient * for ships, since the heuristic will not be to far off then. I hope. */ Queue depots; int r; NPFFoundTargetData best_result; NPFFoundTargetData result; NPFFindStationOrTileData target; AyStarNode start; Depot* current; Depot *depot; init_InsSort(&depots); /* Okay, let's find all depots that we can use first */ FOR_ALL_DEPOTS(depot) { /* Check if this is really a valid depot, it is of the needed type and * owner */ if (IsValidDepot(depot) && IsTileDepotType(depot->xy, type) && IsTileOwner(depot->xy, owner)) /* If so, let's add it to the queue, sorted by distance */ depots.push(&depots, depot, DistanceManhattan(tile, depot->xy)); } /* Now, let's initialise the aystar */ /* Initialize procs */ _npf_aystar.CalculateH = NPFCalcStationOrTileHeuristic; _npf_aystar.EndNodeCheck = NPFFindStationOrTile; _npf_aystar.FoundEndNode = NPFSaveTargetData; _npf_aystar.GetNeighbours = NPFFollowTrack; if (type == TRANSPORT_RAIL) _npf_aystar.CalculateG = NPFRailPathCost; else if (type == TRANSPORT_ROAD) _npf_aystar.CalculateG = NPFRoadPathCost; else if (type == TRANSPORT_WATER) _npf_aystar.CalculateG = NPFWaterPathCost; else assert(0); /* Initialize target */ target.station_index = INVALID_STATION; /* We will initialize dest_coords inside the loop below */ _npf_aystar.user_target = ⌖ /* Initialize user_data */ _npf_aystar.user_data[NPF_TYPE] = type; _npf_aystar.user_data[NPF_OWNER] = owner; /* Initialize Start Node */ start.tile = tile; start.direction = trackdir; /* We will initialize user_data inside the loop below */ /* Initialize Result */ _npf_aystar.user_path = &result; best_result.best_path_dist = (uint)-1; best_result.best_bird_dist = (uint)-1; /* Just iterate the depots in order of increasing distance */ while ((current = depots.pop(&depots))) { /* Check to see if we already have a path shorter than this * depot's manhattan distance. HACK: We call DistanceManhattan * again, we should probably modify the queue to give us that * value... */ if ( DistanceManhattan(tile, current->xy * NPF_TILE_LENGTH) > best_result.best_path_dist) break; /* Initialize Start Node */ /* We set this in case the target is also the start tile, we will just * return a not found then */ start.user_data[NPF_TRACKDIR_CHOICE] = INVALID_TRACKDIR; start.user_data[NPF_NODE_FLAGS] = 0; _npf_aystar.addstart(&_npf_aystar, &start, 0); /* Initialize result */ result.best_bird_dist = (uint)-1; result.best_path_dist = (uint)-1; result.best_trackdir = INVALID_TRACKDIR; /* Initialize target */ target.dest_coords = current->xy; /* GO! */ r = AyStarMain_Main(&_npf_aystar); assert(r != AYSTAR_STILL_BUSY); /* This depot is closer */ if (result.best_path_dist < best_result.best_path_dist) best_result = result; } if (result.best_bird_dist != 0) { DEBUG(npf, 1) ("Could not find route to any depot from tile 0x%x.", tile); } return best_result; } void InitializeNPF(void) { init_AyStar(&_npf_aystar, NPFHash, NPF_HASH_SIZE); _npf_aystar.loops_per_tick = 0; _npf_aystar.max_path_cost = 0; //_npf_aystar.max_search_nodes = 0; /* We will limit the number of nodes for now, until we have a better * solution to really fix performance */ _npf_aystar.max_search_nodes = _patches.npf_max_search_nodes; } void NPFFillWithOrderData(NPFFindStationOrTileData* fstd, Vehicle* v) { /* Ships don't really reach their stations, but the tile in front. So don't * save the station id for ships. For roadvehs we don't store it either, * because multistop depends on vehicles actually reaching the exact * dest_tile, not just any stop of that station. * So only for train orders to stations we fill fstd->station_index, for all * others only dest_coords */ if (v->current_order.type == OT_GOTO_STATION && v->type == VEH_Train) { fstd->station_index = v->current_order.station; /* Let's take the closest tile of the station as our target for trains */ fstd->dest_coords = CalcClosestStationTile(v->current_order.station, v->tile); } else { fstd->dest_coords = v->dest_tile; fstd->station_index = INVALID_STATION; } }