/* $Id$ */ /** * A Road Pathfinder. * This road pathfinder tries to find a buildable / existing route for * road vehicles. You can changes the costs below using for example * roadpf.cost.turn = 30. Note that it's not allowed to change the cost * between consecutive calls to FindPath. You can change the cost before * the first call to FindPath and after FindPath has returned an actual * route. To use only existing roads, set cost.no_existing_road to * cost.max_cost. */ class Road { _aystar_class = import("graph.aystar", "", 4); _max_cost = null; ///< The maximum cost for a route. _cost_tile = null; ///< The cost for a single tile. _cost_no_existing_road = null; ///< The cost that is added to _cost_tile if no road exists yet. _cost_turn = null; ///< The cost that is added to _cost_tile if the direction changes. _cost_slope = null; ///< The extra cost if a road tile is sloped. _cost_bridge_per_tile = null; ///< The cost per tile of a new bridge, this is added to _cost_tile. _cost_tunnel_per_tile = null; ///< The cost per tile of a new tunnel, this is added to _cost_tile. _cost_coast = null; ///< The extra cost for a coast tile. _pathfinder = null; ///< A reference to the used AyStar object. _max_bridge_length = null; ///< The maximum length of a bridge that will be build. _max_tunnel_length = null; ///< The maximum length of a tunnel that will be build. cost = null; ///< Used to change the costs. _running = null; constructor() { this._max_cost = 10000000; this._cost_tile = 100; this._cost_no_existing_road = 40; this._cost_turn = 100; this._cost_slope = 200; this._cost_bridge_per_tile = 150; this._cost_tunnel_per_tile = 120; this._cost_coast = 20; this._max_bridge_length = 10; this._max_tunnel_length = 20; this._pathfinder = this._aystar_class(this._Cost, this._Estimate, this._Neighbours, this._CheckDirection, this, this, this, this); this.cost = this.Cost(this); this._running = false; } /** * Initialize a path search between sources and goals. * @param sources The source tiles. * @param goals The target tiles. * @see AyStar::InitializePath() */ function InitializePath(sources, goals) { local nsources = []; foreach (node in sources) { nsources.push([node, 0xFF]); } this._pathfinder.InitializePath(nsources, goals); } /** * Try to find the path as indicated with InitializePath with the lowest cost. * @param iterations After how many iterations it should abort for a moment. * This value should either be -1 for infinite, or > 0. Any other value * aborts immediatly and will never find a path. * @return A route if one was found, or false if the amount of iterations was * reached, or null if no path was found. * You can call this function over and over as long as it returns false, * which is an indication it is not yet done looking for a route. * @see AyStar::FindPath() */ function FindPath(iterations); }; class Road.Cost { _main = null; function _set(idx, val) { if (this._main._running) throw("You are not allowed to change parameters of a running pathfinder."); switch (idx) { case "max_cost": this._main._max_cost = val; break; case "tile": this._main._cost_tile = val; break; case "no_existing_road": this._main._cost_no_existing_road = val; break; case "turn": this._main._cost_turn = val; break; case "slope": this._main._cost_slope = val; break; case "bridge_per_tile": this._main._cost_bridge_per_tile = val; break; case "tunnel_per_tile": this._main._cost_tunnel_per_tile = val; break; case "coast": this._main._cost_coast = val; break; case "max_bridge_length": this._main._max_bridge_length = val; break; case "max_tunnel_length": this._main._max_tunnel_length = val; break; default: throw("the index '" + idx + "' does not exist"); } return val; } function _get(idx) { switch (idx) { case "max_cost": return this._main._max_cost; case "tile": return this._main._cost_tile; case "no_existing_road": return this._main._cost_no_existing_road; case "turn": return this._main._cost_turn; case "slope": return this._main._cost_slope; case "bridge_per_tile": return this._main._cost_bridge_per_tile; case "tunnel_per_tile": return this._main._cost_tunnel_per_tile; case "coast": return this._main._cost_coast; case "max_bridge_length": return this._main._max_bridge_length; case "max_tunnel_length": return this._main._max_tunnel_length; default: throw("the index '" + idx + "' does not exist"); } } constructor(main) { this._main = main; } }; function Road::FindPath(iterations) { local test_mode = AITestMode(); local ret = this._pathfinder.FindPath(iterations); this._running = (ret == false) ? true : false; return ret; } function Road::_GetBridgeNumSlopes(end_a, end_b) { local slopes = 0; local direction = (end_b - end_a) / AIMap.DistanceManhattan(end_a, end_b); local slope = AITile.GetSlope(end_a); if (!((slope == AITile.SLOPE_NE && direction == 1) || (slope == AITile.SLOPE_SE && direction == -AIMap.GetMapSizeX()) || (slope == AITile.SLOPE_SW && direction == -1) || (slope == AITile.SLOPE_NW && direction == AIMap.GetMapSizeX()) || slope == AITile.SLOPE_N || slope == AITile.SLOPE_E || slope == AITile.SLOPE_S || slope == AITile.SLOPE_W)) { slopes++; } local slope = AITile.GetSlope(end_b); direction = -direction; if (!((slope == AITile.SLOPE_NE && direction == 1) || (slope == AITile.SLOPE_SE && direction == -AIMap.GetMapSizeX()) || (slope == AITile.SLOPE_SW && direction == -1) || (slope == AITile.SLOPE_NW && direction == AIMap.GetMapSizeX()) || slope == AITile.SLOPE_N || slope == AITile.SLOPE_E || slope == AITile.SLOPE_S || slope == AITile.SLOPE_W)) { slopes++; } return slopes; } function Road::_Cost(path, new_tile, new_direction, self) { /* path == null means this is the first node of a path, so the cost is 0. */ if (path == null) return 0; local prev_tile = path.GetTile(); /* If the new tile is a bridge / tunnel tile, check whether we came from the other * end of the bridge / tunnel or if we just entered the bridge / tunnel. */ if (AIBridge.IsBridgeTile(new_tile)) { if (AIBridge.GetOtherBridgeEnd(new_tile) != prev_tile) return path.GetCost() + self._cost_tile; return path.GetCost() + AIMap.DistanceManhattan(new_tile, prev_tile) * self._cost_tile + self._GetBridgeNumSlopes(new_tile, prev_tile) * self._cost_slope; } if (AITunnel.IsTunnelTile(new_tile)) { if (AITunnel.GetOtherTunnelEnd(new_tile) != prev_tile) return path.GetCost() + self._cost_tile; return path.GetCost() + AIMap.DistanceManhattan(new_tile, prev_tile) * self._cost_tile; } /* If the two tiles are more then 1 tile apart, the pathfinder wants a bridge or tunnel * to be build. It isn't an existing bridge / tunnel, as that case is already handled. */ if (AIMap.DistanceManhattan(new_tile, prev_tile) > 1) { /* Check if we should build a bridge or a tunnel. */ if (AITunnel.GetOtherTunnelEnd(new_tile) == prev_tile) { return path.GetCost() + AIMap.DistanceManhattan(new_tile, prev_tile) * (self._cost_tile + self._cost_tunnel_per_tile); } else { return path.GetCost() + AIMap.DistanceManhattan(new_tile, prev_tile) * (self._cost_tile + self._cost_bridge_per_tile) + self._GetBridgeNumSlopes(new_tile, prev_tile) * self._cost_slope; } } /* Check for a turn. We do this by substracting the TileID of the current node from * the TileID of the previous node and comparing that to the difference between the * previous node and the node before that. */ local cost = self._cost_tile; if (path.GetParent() != null && (prev_tile - path.GetParent().GetTile()) != (new_tile - prev_tile) && AIMap.DistanceManhattan(path.GetParent().GetTile(), prev_tile) == 1) { cost += self._cost_turn; } /* Check if the new tile is a coast tile. */ if (AITile.IsCoastTile(new_tile)) { cost += self._cost_coast; } /* Check if the last tile was sloped. */ if (path.GetParent() != null && !AIBridge.IsBridgeTile(prev_tile) && !AITunnel.IsTunnelTile(prev_tile) && self._IsSlopedRoad(path.GetParent().GetTile(), prev_tile, new_tile)) { cost += self._cost_slope; } if (!AIRoad.AreRoadTilesConnected(prev_tile, new_tile)) { cost += self._cost_no_existing_road; } return path.GetCost() + cost; } function Road::_Estimate(cur_tile, cur_direction, goal_tiles, self) { local min_cost = self._max_cost; /* As estimate we multiply the lowest possible cost for a single tile with * with the minimum number of tiles we need to traverse. */ foreach (tile in goal_tiles) { min_cost = min(AIMap.DistanceManhattan(cur_tile, tile) * self._cost_tile, min_cost); } return min_cost; } function Road::_Neighbours(path, cur_node, self) { /* self._max_cost is the maximum path cost, if we go over it, the path isn't valid. */ if (path.GetCost() >= self._max_cost) return []; local tiles = []; /* Check if the current tile is part of a bridge or tunnel. */ if ((AIBridge.IsBridgeTile(cur_node) || AITunnel.IsTunnelTile(cur_node)) && AITile.HasTransportType(cur_node, AITile.TRANSPORT_ROAD)) { local other_end = AIBridge.IsBridgeTile(cur_node) ? AIBridge.GetOtherBridgeEnd(cur_node) : AITunnel.GetOtherTunnelEnd(cur_node); local next_tile = cur_node + (cur_node - other_end) / AIMap.DistanceManhattan(cur_node, other_end); if (AIRoad.AreRoadTilesConnected(cur_node, next_tile) || AITile.IsBuildable(next_tile) || AIRoad.IsRoadTile(next_tile)) { tiles.push([next_tile, self._GetDirection(cur_node, next_tile, false)]); } /* The other end of the bridge / tunnel is a neighbour. */ tiles.push([other_end, self._GetDirection(next_tile, cur_node, true) << 4]); } else if (path.GetParent() != null && AIMap.DistanceManhattan(cur_node, path.GetParent().GetTile()) > 1) { local other_end = path.GetParent().GetTile(); local next_tile = cur_node + (cur_node - other_end) / AIMap.DistanceManhattan(cur_node, other_end); if (AIRoad.AreRoadTilesConnected(cur_node, next_tile) || AIRoad.BuildRoad(cur_node, next_tile)) { tiles.push([next_tile, self._GetDirection(cur_node, next_tile, false)]); } } else { local offsets = [AIMap.GetTileIndex(0, 1), AIMap.GetTileIndex(0, -1), AIMap.GetTileIndex(1, 0), AIMap.GetTileIndex(-1, 0)]; /* Check all tiles adjacent to the current tile. */ foreach (offset in offsets) { local next_tile = cur_node + offset; /* We add them to the to the neighbours-list if one of the following applies: * 1) There already is a connections between the current tile and the next tile. * 2) We can build a road to the next tile. * 3) The next tile is the entrance of a tunnel / bridge in the correct direction. */ if (AIRoad.AreRoadTilesConnected(cur_node, next_tile)) { tiles.push([next_tile, self._GetDirection(cur_node, next_tile, false)]); } else if ((AITile.IsBuildable(next_tile) || AIRoad.IsRoadTile(next_tile)) && (path.GetParent() == null || AIRoad.CanBuildConnectedRoadPartsHere(cur_node, path.GetParent().GetTile(), next_tile)) && AIRoad.BuildRoad(cur_node, next_tile)) { tiles.push([next_tile, self._GetDirection(cur_node, next_tile, false)]); } else if (self._CheckTunnelBridge(cur_node, next_tile)) { tiles.push([next_tile, self._GetDirection(cur_node, next_tile, false)]); } } if (path.GetParent() != null) { local bridges = self._GetTunnelsBridges(path.GetParent().GetTile(), cur_node, self._GetDirection(path.GetParent().GetTile(), cur_node, true) << 4); foreach (tile in bridges) { tiles.push(tile); } } } return tiles; } function Road::_CheckDirection(tile, existing_direction, new_direction, self) { return false; } function Road::_GetDirection(from, to, is_bridge) { if (!is_bridge && AITile.GetSlope(to) == AITile.SLOPE_FLAT) return 0xFF; if (from - to == 1) return 1; if (from - to == -1) return 2; if (from - to == AIMap.GetMapSizeX()) return 4; if (from - to == -AIMap.GetMapSizeX()) return 8; } /** * Get a list of all bridges and tunnels that can be build from the * current tile. Bridges will only be build starting on non-flat tiles * for performance reasons. Tunnels will only be build if no terraforming * is needed on both ends. */ function Road::_GetTunnelsBridges(last_node, cur_node, bridge_dir) { local slope = AITile.GetSlope(cur_node); if (slope == AITile.SLOPE_FLAT) return []; local tiles = []; for (local i = 2; i < this._max_bridge_length; i++) { local bridge_list = AIBridgeList_Length(i + 1); local target = cur_node + i * (cur_node - last_node); if (!bridge_list.IsEmpty() && AIBridge.BuildBridge(AIVehicle.VEHICLE_ROAD, bridge_list.Begin(), cur_node, target)) { tiles.push([target, bridge_dir]); } } if (slope != AITile.SLOPE_SW && slope != AITile.SLOPE_NW && slope != AITile.SLOPE_SE && slope != AITile.SLOPE_NE) return tiles; local other_tunnel_end = AITunnel.GetOtherTunnelEnd(cur_node); if (!AIMap.IsValidTile(other_tunnel_end)) return tiles; local tunnel_length = AIMap.DistanceManhattan(cur_node, other_tunnel_end); local prev_tile = cur_node + (cur_node - other_tunnel_end) / tunnel_length; if (AITunnel.GetOtherTunnelEnd(other_tunnel_end) == cur_node && tunnel_length >= 2 && prev_tile == last_node && tunnel_length < _max_tunnel_length && AITunnel.BuildTunnel(AIVehicle.VEHICLE_ROAD, cur_node)) { tiles.push([other_tunnel_end, bridge_dir]); } return tiles; } function Road::_IsSlopedRoad(start, middle, end) { local NW = 0; //Set to true if we want to build a road to / from the north-west local NE = 0; //Set to true if we want to build a road to / from the north-east local SW = 0; //Set to true if we want to build a road to / from the south-west local SE = 0; //Set to true if we want to build a road to / from the south-east if (middle - AIMap.GetMapSizeX() == start || middle - AIMap.GetMapSizeX() == end) NW = 1; if (middle - 1 == start || middle - 1 == end) NE = 1; if (middle + AIMap.GetMapSizeX() == start || middle + AIMap.GetMapSizeX() == end) SE = 1; if (middle + 1 == start || middle + 1 == end) SW = 1; /* If there is a turn in the current tile, it can't be sloped. */ if ((NW || SE) && (NE || SW)) return false; local slope = AITile.GetSlope(middle); /* A road on a steep slope is always sloped. */ if (AITile.IsSteepSlope(slope)) return true; /* If only one corner is raised, the road is sloped. */ if (slope == AITile.SLOPE_N || slope == AITile.SLOPE_W) return true; if (slope == AITile.SLOPE_S || slope == AITile.SLOPE_E) return true; if (NW && (slope == AITile.SLOPE_NW || slope == AITile.SLOPE_SE)) return true; if (NE && (slope == AITile.SLOPE_NE || slope == AITile.SLOPE_SW)) return true; return false; } function Road::_CheckTunnelBridge(current_tile, new_tile) { if (!AIBridge.IsBridgeTile(new_tile) && !AITunnel.IsTunnelTile(new_tile)) return false; local dir = new_tile - current_tile; local other_end = AIBridge.IsBridgeTile(new_tile) ? AIBridge.GetOtherBridgeEnd(new_tile) : AITunnel.GetOtherTunnelEnd(new_tile); local dir2 = other_end - new_tile; if ((dir < 0 && dir2 > 0) || (dir > 0 && dir2 < 0)) return false; dir = abs(dir); dir2 = abs(dir2); if ((dir >= AIMap.GetMapSizeX() && dir2 < AIMap.GetMapSizeX()) || (dir < AIMap.GetMapSizeX() && dir2 >= AIMap.GetMapSizeX())) return false; return true; }