Age | Commit message (Collapse) | Author |
|
|
|
threads. (JGR)
|
|
|
|
"unsafe" functions to prevent them from being used, and thus having to care about certain aspects of their return values
|
|
ThreadMutex::WaitForSignal always asserted.
|
|
|
|
|
|
|
|
Eagle_rainbow)
|
|
|
|
|
|
|
|
pthread code
|
|
|
|
asynchronious. Profiling with gprof etc. hasn't shown us that DrawSurfaceToScreen takes a significant amount of CPU; only using TIC/TOC it became apparant that it was a heavy CPU-cycle user or that it was waiting for something.
The benefit of making this function asynchronious ranges from 2%-25% (real time) during fast forward on dual core/hyperthreading-enabled CPUs; 8bpp improvements are, in my test cases, significantly smaller than 32bpp improvements.
On single core non-hyperthreading-enabled CPUs the extra locking/scheduling costs up to 1% extra realtime in fast forward. You can use -v sdl:no_threads to disable threading and undo this loss.
During normal non-fast-forwarded games the benefit/costs are negligable except when the gameloop takes more than about 90% of the time of a tick.
Note that allegro's performance does not improve with this system, likely due to their way of getting data to the video card. It is not implemented for the OS X/Windows video backends, unless (ofcourse) SDL is used there.
Funny is that the performance of the 32bpp(-anim) blitter is, at least in some test cases, significantly faster (more than 10%) than the 8bpp(-optimized) blitter when looking at real time in fast forward on a dual core CPU; it was slower.
The idea comes from a paper/report by Idar Borlaug and Knut Imar Hagen.
|
|
(like done for video, music, sound, etc)
|