summaryrefslogtreecommitdiff
path: root/src/tgp.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/tgp.cpp')
-rw-r--r--src/tgp.cpp829
1 files changed, 829 insertions, 0 deletions
diff --git a/src/tgp.cpp b/src/tgp.cpp
new file mode 100644
index 000000000..d7f9722f9
--- /dev/null
+++ b/src/tgp.cpp
@@ -0,0 +1,829 @@
+/* $Id$ */
+
+#include "stdafx.h"
+#include <math.h>
+#include "openttd.h"
+#include "clear_map.h"
+#include "functions.h"
+#include "map.h"
+#include "table/strings.h"
+#include "clear_map.h"
+#include "tile.h"
+#include "variables.h"
+#include "void_map.h"
+#include "tgp.h"
+#include "console.h"
+#include "genworld.h"
+
+/*
+ * OTTD Perlin Noise Landscape Generator, aka TerraGenesis Perlin
+ *
+ * Quickie guide to Perlin Noise
+ * Perlin noise is a predictable pseudo random number sequence. By generating
+ * it in 2 dimensions, it becomes a useful random map, that for a given seed
+ * and starting X & Y is entirely predictable. On the face of it, that may not
+ * be useful. However, it means that if you want to replay a map in a different
+ * terrain, or just vary the sea level, you just re-run the generator with the
+ * same seed. The seed is an int32, and is randomised on each run of New Game.
+ * The Scenario Generator does not randomise the value, so that you can
+ * experiment with one terrain until you are happy, or click "Random" for a new
+ * random seed.
+ *
+ * Perlin Noise is a series of "octaves" of random noise added together. By
+ * reducing the amplitude of the noise with each octave, the first octave of
+ * noise defines the main terrain sweep, the next the ripples on that, and the
+ * next the ripples on that. I use 6 octaves, with the amplitude controlled by
+ * a power ratio, usually known as a persistence or p value. This I vary by the
+ * smoothness selection, as can be seen in the table below. The closer to 1,
+ * the more of that octave is added. Each octave is however raised to the power
+ * of its position in the list, so the last entry in the "smooth" row, 0.35, is
+ * raised to the power of 6, so can only add 0.001838... of the amplitude to
+ * the running total.
+ *
+ * In other words; the first p value sets the general shape of the terrain, the
+ * second sets the major variations to that, ... until finally the smallest
+ * bumps are added.
+ *
+ * Usefully, this routine is totally scaleable; so when 32bpp comes along, the
+ * terrain can be as bumpy as you like! It is also infinitely expandable; a
+ * single random seed terrain continues in X & Y as far as you care to
+ * calculate. In theory, we could use just one seed value, but randomly select
+ * where in the Perlin XY space we use for the terrain. Personally I prefer
+ * using a simple (0, 0) to (X, Y), with a varying seed.
+ *
+ *
+ * Other things i have had to do: mountainous wasnt mountainous enough, and
+ * since we only have 0..15 heights available, I add a second generated map
+ * (with a modified seed), onto the original. This generally raises the
+ * terrain, which then needs scaling back down. Overall effect is a general
+ * uplift.
+ *
+ * However, the values on the top of mountains are then almost guaranteed to go
+ * too high, so large flat plateaus appeared at height 15. To counter this, I
+ * scale all heights above 12 to proportion up to 15. It still makes the
+ * mountains have flatish tops, rather than craggy peaks, but at least they
+ * arent smooth as glass.
+ *
+ *
+ * For a full discussion of Perlin Noise, please visit:
+ * http://freespace.virgin.net/hugo.elias/models/m_perlin.htm
+ *
+ *
+ * Evolution II
+ *
+ * The algorithm as described in the above link suggests to compute each tile height
+ * as composition of several noise waves. Some of them are computed directly by
+ * noise(x, y) function, some are calculated using linear approximation. Our
+ * first implementation of perlin_noise_2D() used 4 noise(x, y) calls plus
+ * 3 linear interpolations. It was called 6 times for each tile. This was a bit
+ * CPU expensive.
+ *
+ * The following implementation uses optimized algorithm that should produce
+ * the same quality result with much less computations, but more memory accesses.
+ * The overal speedup should be 300% to 800% depending on CPU and memory speed.
+ *
+ * I will try to explain it on the example below:
+ *
+ * Have a map of 4 x 4 tiles, our simplifiead noise generator produces only two
+ * values -1 and +1, use 3 octaves with wave lenght 1, 2 and 4, with amplitudes
+ * 3, 2, 1. Original algorithm produces:
+ *
+ * h00 = lerp(lerp(-3, 3, 0/4), lerp(3, -3, 0/4), 0/4) + lerp(lerp(-2, 2, 0/2), lerp( 2, -2, 0/2), 0/2) + -1 = lerp(-3.0, 3.0, 0/4) + lerp(-2, 2, 0/2) + -1 = -3.0 + -2 + -1 = -6.0
+ * h01 = lerp(lerp(-3, 3, 1/4), lerp(3, -3, 1/4), 0/4) + lerp(lerp(-2, 2, 1/2), lerp( 2, -2, 1/2), 0/2) + 1 = lerp(-1.5, 1.5, 0/4) + lerp( 0, 0, 0/2) + 1 = -1.5 + 0 + 1 = -0.5
+ * h02 = lerp(lerp(-3, 3, 2/4), lerp(3, -3, 2/4), 0/4) + lerp(lerp( 2, -2, 0/2), lerp(-2, 2, 0/2), 0/2) + -1 = lerp( 0, 0, 0/4) + lerp( 2, -2, 0/2) + -1 = 0 + 2 + -1 = 1.0
+ * h03 = lerp(lerp(-3, 3, 3/4), lerp(3, -3, 3/4), 0/4) + lerp(lerp( 2, -2, 1/2), lerp(-2, 2, 1/2), 0/2) + 1 = lerp( 1.5, -1.5, 0/4) + lerp( 0, 0, 0/2) + 1 = 1.5 + 0 + 1 = 2.5
+ *
+ * h10 = lerp(lerp(-3, 3, 0/4), lerp(3, -3, 0/4), 1/4) + lerp(lerp(-2, 2, 0/2), lerp( 2, -2, 0/2), 1/2) + 1 = lerp(-3.0, 3.0, 1/4) + lerp(-2, 2, 1/2) + 1 = -1.5 + 0 + 1 = -0.5
+ * h11 = lerp(lerp(-3, 3, 1/4), lerp(3, -3, 1/4), 1/4) + lerp(lerp(-2, 2, 1/2), lerp( 2, -2, 1/2), 1/2) + -1 = lerp(-1.5, 1.5, 1/4) + lerp( 0, 0, 1/2) + -1 = -0.75 + 0 + -1 = -1.75
+ * h12 = lerp(lerp(-3, 3, 2/4), lerp(3, -3, 2/4), 1/4) + lerp(lerp( 2, -2, 0/2), lerp(-2, 2, 0/2), 1/2) + 1 = lerp( 0, 0, 1/4) + lerp( 2, -2, 1/2) + 1 = 0 + 0 + 1 = 1.0
+ * h13 = lerp(lerp(-3, 3, 3/4), lerp(3, -3, 3/4), 1/4) + lerp(lerp( 2, -2, 1/2), lerp(-2, 2, 1/2), 1/2) + -1 = lerp( 1.5, -1.5, 1/4) + lerp( 0, 0, 1/2) + -1 = 0.75 + 0 + -1 = -0.25
+ *
+ *
+ * Optimization 1:
+ *
+ * 1) we need to allocate a bit more tiles: (size_x + 1) * (size_y + 1) = (5 * 5):
+ *
+ * 2) setup corner values using amplitude 3
+ * { -3.0 X X X 3.0 }
+ * { X X X X X }
+ * { X X X X X }
+ * { X X X X X }
+ * { 3.0 X X X -3.0 }
+ *
+ * 3a) interpolate values in the middle
+ * { -3.0 X 0.0 X 3.0 }
+ * { X X X X X }
+ * { 0.0 X 0.0 X 0.0 }
+ * { X X X X X }
+ * { 3.0 X 0.0 X -3.0 }
+ *
+ * 3b) add patches with amplitude 2 to them
+ * { -5.0 X 2.0 X 1.0 }
+ * { X X X X X }
+ * { 2.0 X -2.0 X 2.0 }
+ * { X X X X X }
+ * { 1.0 X 2.0 X -5.0 }
+ *
+ * 4a) interpolate values in the middle
+ * { -5.0 -1.5 2.0 1.5 1.0 }
+ * { -1.5 -0.75 0.0 0.75 1.5 }
+ * { 2.0 0.0 -2.0 0.0 2.0 }
+ * { 1.5 0.75 0.0 -0.75 -1.5 }
+ * { 1.0 1.5 2.0 -1.5 -5.0 }
+ *
+ * 4b) add patches with amplitude 1 to them
+ * { -6.0 -0.5 1.0 2.5 0.0 }
+ * { -0.5 -1.75 1.0 -0.25 2.5 }
+ * { 1.0 1.0 -3.0 1.0 1.0 }
+ * { 2.5 -0.25 1.0 -1.75 -0.5 }
+ * { 0.0 2.5 1.0 -0.5 -6.0 }
+ *
+ *
+ *
+ * Optimization 2:
+ *
+ * As you can see above, each noise function was called just once. Therefore
+ * we don't need to use noise function that calculates the noise from x, y and
+ * some prime. The same quality result we can obtain using standard Random()
+ * function instead.
+ *
+ */
+
+#ifndef M_PI_2
+#define M_PI_2 1.57079632679489661923
+#define M_PI 3.14159265358979323846
+#endif /* M_PI_2 */
+
+/** Fixed point type for heights */
+typedef int16 height_t;
+static const int height_decimal_bits = 4;
+static const height_t _invalid_height = -32768;
+
+/** Fixed point array for amplitudes (and percent values) */
+typedef int amplitude_t;
+static const int amplitude_decimal_bits = 10;
+
+/** Height map - allocated array of heights (MapSizeX() + 1) x (MapSizeY() + 1) */
+typedef struct HeightMap
+{
+ height_t *h; //! array of heights
+ uint dim_x; //! height map size_x MapSizeX() + 1
+ uint total_size; //! height map total size
+ uint size_x; //! MapSizeX()
+ uint size_y; //! MapSizeY()
+} HeightMap;
+
+/** Global height map instance */
+static HeightMap _height_map = {NULL, 0, 0, 0, 0};
+
+/** Height map accessors */
+#define HeightMapXY(x, y) _height_map.h[(x) + (y) * _height_map.dim_x]
+
+/** Conversion: int to height_t */
+#define I2H(i) ((i) << height_decimal_bits)
+/** Conversion: height_t to int */
+#define H2I(i) ((i) >> height_decimal_bits)
+
+/** Conversion: int to amplitude_t */
+#define I2A(i) ((i) << amplitude_decimal_bits)
+/** Conversion: amplitude_t to int */
+#define A2I(i) ((i) >> amplitude_decimal_bits)
+
+/** Conversion: amplitude_t to height_t */
+#define A2H(a) ((height_decimal_bits < amplitude_decimal_bits) \
+ ? ((a) >> (amplitude_decimal_bits - height_decimal_bits)) \
+ : ((a) << (height_decimal_bits - amplitude_decimal_bits)))
+
+/** Walk through all items of _height_map.h */
+#define FOR_ALL_TILES_IN_HEIGHT(h) for (h = _height_map.h; h < &_height_map.h[_height_map.total_size]; h++)
+
+/** Noise amplitudes (multiplied by 1024)
+ * - indexed by "smoothness setting" and log2(frequency) */
+static const amplitude_t _amplitudes_by_smoothness_and_frequency[4][12] = {
+ // Very smooth
+ {1000, 350, 123, 43, 15, 1, 1, 0, 0, 0, 0, 0},
+ // Smooth
+ {1000, 1000, 403, 200, 64, 8, 1, 0, 0, 0, 0, 0},
+ // Rough
+ {1000, 1200, 800, 500, 200, 16, 4, 0, 0, 0, 0, 0},
+ // Very Rough
+ {1500, 1000, 1200, 1000, 500, 32, 20, 0, 0, 0, 0, 0},
+};
+
+/** Desired water percentage (100% == 1024) - indexed by _opt.diff.quantity_sea_lakes */
+static const amplitude_t _water_percent[4] = {20, 80, 250, 400};
+
+/** Desired maximum height - indexed by _opt.diff.terrain_type */
+static const int8 _max_height[4] = {
+ 6, // Very flat
+ 9, // Flat
+ 12, // Hilly
+ 15 // Mountainous
+};
+
+/** Check if a X/Y set are within the map. */
+static inline bool IsValidXY(uint x, uint y)
+{
+ return ((int)x) >= 0 && x < _height_map.size_x && ((int)y) >= 0 && y < _height_map.size_y;
+}
+
+
+/** Allocate array of (MapSizeX()+1)*(MapSizeY()+1) heights and init the _height_map structure members */
+static inline bool AllocHeightMap(void)
+{
+ height_t *h;
+
+ _height_map.size_x = MapSizeX();
+ _height_map.size_y = MapSizeY();
+
+ /* Allocate memory block for height map row pointers */
+ _height_map.total_size = (_height_map.size_x + 1) * (_height_map.size_y + 1);
+ _height_map.dim_x = _height_map.size_x + 1;
+ _height_map.h = calloc(_height_map.total_size, sizeof(*_height_map.h));
+ if (_height_map.h == NULL) return false;
+
+ /* Iterate through height map initialize values */
+ FOR_ALL_TILES_IN_HEIGHT(h) *h = _invalid_height;
+
+ return true;
+}
+
+/** Free height map */
+static inline void FreeHeightMap(void)
+{
+ if (_height_map.h == NULL) return;
+ free(_height_map.h);
+ _height_map.h = NULL;
+}
+
+/** RandomHeight() generator */
+static inline height_t RandomHeight(amplitude_t rMax)
+{
+ amplitude_t ra = (Random() << 16) | (Random() & 0x0000FFFF);
+ height_t rh;
+ /* Scale the amplitude for better resolution */
+ rMax *= 16;
+ /* Spread height into range -rMax..+rMax */
+ rh = A2H(ra % (2 * rMax + 1) - rMax);
+ return rh;
+}
+
+/** One interpolation and noise round */
+static bool ApplyNoise(uint log_frequency, amplitude_t amplitude)
+{
+ uint size_min = min(_height_map.size_x, _height_map.size_y);
+ uint step = size_min >> log_frequency;
+ uint x, y;
+
+ assert(_height_map.h != NULL);
+
+ /* Are we finished? */
+ if (step == 0) return false;
+
+ if (log_frequency == 0) {
+ /* This is first round, we need to establish base heights with step = size_min */
+ for (y = 0; y <= _height_map.size_y; y += step) {
+ for (x = 0; x <= _height_map.size_x; x += step) {
+ height_t height = (amplitude > 0) ? RandomHeight(amplitude) : 0;
+ HeightMapXY(x, y) = height;
+ }
+ }
+ return true;
+ }
+
+ /* It is regular iteration round.
+ * Interpolate height values at odd x, even y tiles */
+ for (y = 0; y <= _height_map.size_y; y += 2 * step) {
+ for (x = 0; x < _height_map.size_x; x += 2 * step) {
+ height_t h00 = HeightMapXY(x + 0 * step, y);
+ height_t h02 = HeightMapXY(x + 2 * step, y);
+ height_t h01 = (h00 + h02) / 2;
+ HeightMapXY(x + 1 * step, y) = h01;
+ }
+ }
+
+ /* Interpolate height values at odd y tiles */
+ for (y = 0; y < _height_map.size_y; y += 2 * step) {
+ for (x = 0; x <= _height_map.size_x; x += step) {
+ height_t h00 = HeightMapXY(x, y + 0 * step);
+ height_t h20 = HeightMapXY(x, y + 2 * step);
+ height_t h10 = (h00 + h20) / 2;
+ HeightMapXY(x, y + 1 * step) = h10;
+ }
+ }
+
+ for (y = 0; y <= _height_map.size_y; y += step) {
+ for (x = 0; x <= _height_map.size_x; x += step) {
+ HeightMapXY(x, y) += RandomHeight(amplitude);
+ }
+ }
+ return (step > 1);
+}
+
+/** Base Perlin noise generator - fills height map with raw Perlin noise */
+static void HeightMapGenerate(void)
+{
+ uint size_min = min(_height_map.size_x, _height_map.size_y);
+ uint iteration_round = 0;
+ amplitude_t amplitude;
+ bool continue_iteration;
+ uint log_size_min, log_frequency_min;
+ int log_frequency;
+
+ /* Find first power of two that fits */
+ for (log_size_min = 6; (1U << log_size_min) < size_min; log_size_min++) { }
+ log_frequency_min = log_size_min - 6;
+
+ do {
+ log_frequency = iteration_round - log_frequency_min;
+ if (log_frequency >= 0) {
+ amplitude = _amplitudes_by_smoothness_and_frequency[_patches.tgen_smoothness][log_frequency];
+ } else {
+ amplitude = 0;
+ }
+ continue_iteration = ApplyNoise(iteration_round, amplitude);
+ iteration_round++;
+ } while(continue_iteration);
+}
+
+/** Returns min, max and average height from height map */
+static void HeightMapGetMinMaxAvg(height_t *min_ptr, height_t *max_ptr, height_t *avg_ptr)
+{
+ height_t h_min, h_max, h_avg, *h;
+ int64 h_accu = 0;
+ h_min = h_max = HeightMapXY(0, 0);
+
+ /* Get h_min, h_max and accumulate heights into h_accu */
+ FOR_ALL_TILES_IN_HEIGHT(h) {
+ if (*h < h_min) h_min = *h;
+ if (*h > h_max) h_max = *h;
+ h_accu += *h;
+ }
+
+ /* Get average height */
+ h_avg = (height_t)(h_accu / (_height_map.size_x * _height_map.size_y));
+
+ /* Return required results */
+ if (min_ptr != NULL) *min_ptr = h_min;
+ if (max_ptr != NULL) *max_ptr = h_max;
+ if (avg_ptr != NULL) *avg_ptr = h_avg;
+}
+
+/** Dill histogram and return pointer to its base point - to the count of zero heights */
+static int *HeightMapMakeHistogram(height_t h_min, height_t h_max, int *hist_buf)
+{
+ int *hist = hist_buf - h_min;
+ height_t *h;
+
+ /* Fill histogram */
+ FOR_ALL_TILES_IN_HEIGHT(h) {
+ assert(*h >= h_min);
+ assert(*h <= h_max);
+ hist[*h]++;
+ }
+ return hist;
+}
+
+/** Applies sine wave redistribution onto height map */
+static void HeightMapSineTransform(height_t h_min, height_t h_max)
+{
+ height_t *h;
+
+ FOR_ALL_TILES_IN_HEIGHT(h) {
+ double fheight;
+
+ if (*h < h_min) continue;
+
+ /* Transform height into 0..1 space */
+ fheight = (double)(*h - h_min) / (double)(h_max - h_min);
+ /* Apply sine transform depending on landscape type */
+ switch(_opt.landscape) {
+ case LT_CANDY:
+ case LT_NORMAL:
+ /* Move and scale 0..1 into -1..+1 */
+ fheight = 2 * fheight - 1;
+ /* Sine transform */
+ fheight = sin(fheight * M_PI_2);
+ /* Transform it back from -1..1 into 0..1 space */
+ fheight = 0.5 * (fheight + 1);
+ break;
+
+ case LT_HILLY:
+ {
+ /* Arctic terrain needs special height distribution.
+ * Redistribute heights to have more tiles at highest (75%..100%) range */
+ double sine_upper_limit = 0.75;
+ double linear_compression = 2;
+ if (fheight >= sine_upper_limit) {
+ /* Over the limit we do linear compression up */
+ fheight = 1.0 - (1.0 - fheight) / linear_compression;
+ } else {
+ double m = 1.0 - (1.0 - sine_upper_limit) / linear_compression;
+ /* Get 0..sine_upper_limit into -1..1 */
+ fheight = 2.0 * fheight / sine_upper_limit - 1.0;
+ /* Sine wave transform */
+ fheight = sin(fheight * M_PI_2);
+ /* Get -1..1 back to 0..(1 - (1 - sine_upper_limit) / linear_compression) == 0.0..m */
+ fheight = 0.5 * (fheight + 1.0) * m;
+ }
+ }
+ break;
+
+ case LT_DESERT:
+ {
+ /* Desert terrain needs special height distribution.
+ * Half of tiles should be at lowest (0..25%) heights */
+ double sine_lower_limit = 0.5;
+ double linear_compression = 2;
+ if (fheight <= sine_lower_limit) {
+ /* Under the limit we do linear compression down */
+ fheight = fheight / linear_compression;
+ } else {
+ double m = sine_lower_limit / linear_compression;
+ /* Get sine_lower_limit..1 into -1..1 */
+ fheight = 2.0 * ((fheight - sine_lower_limit) / (1.0 - sine_lower_limit)) - 1.0;
+ /* Sine wave transform */
+ fheight = sin(fheight * M_PI_2);
+ /* Get -1..1 back to (sine_lower_limit / linear_compression)..1.0 */
+ fheight = 0.5 * ((1.0 - m) * fheight + (1.0 + m));
+ }
+ }
+ break;
+
+ default:
+ NOT_REACHED();
+ break;
+ }
+ /* Transform it back into h_min..h_max space */
+ *h = fheight * (h_max - h_min) + h_min;
+ if (*h < 0) *h = I2H(0);
+ if (*h >= h_max) *h = h_max - 1;
+ }
+}
+
+/** Adjusts heights in height map to contain required amount of water tiles */
+static void HeightMapAdjustWaterLevel(amplitude_t water_percent, height_t h_max_new)
+{
+ height_t h_min, h_max, h_avg, h_water_level;
+ int water_tiles, desired_water_tiles;
+ height_t *h;
+ int *hist_buf, *hist;
+
+ HeightMapGetMinMaxAvg(&h_min, &h_max, &h_avg);
+
+ /* Allocate histogram buffer and clear its cells */
+ hist_buf = calloc(h_max - h_min + 1, sizeof(*hist_buf));
+ /* Fill histogram */
+ hist = HeightMapMakeHistogram(h_min, h_max, hist_buf);
+
+ /* How many water tiles do we want? */
+ desired_water_tiles = (int)(((int64)water_percent) * (int64)(_height_map.size_x * _height_map.size_y)) >> amplitude_decimal_bits;
+
+ /* Raise water_level and accumulate values from histogram until we reach required number of water tiles */
+ for (h_water_level = h_min, water_tiles = 0; h_water_level < h_max; h_water_level++) {
+ water_tiles += hist[h_water_level];
+ if (water_tiles >= desired_water_tiles) break;
+ }
+
+ /* We now have the proper water level value.
+ * Transform the height map into new (normalized) height map:
+ * values from range: h_min..h_water_level will become negative so it will be clamped to 0
+ * values from range: h_water_level..h_max are transformed into 0..h_max_new
+ * , where h_max_new is 4, 8, 12 or 16 depending on terrain type (very flat, flat, hilly, mountains)
+ */
+ FOR_ALL_TILES_IN_HEIGHT(h) {
+ /* Transform height from range h_water_level..h_max into 0..h_max_new range */
+ *h = (height_t)(((int)h_max_new) * (*h - h_water_level) / (h_max - h_water_level)) + I2H(1);
+ /* Make sure all values are in the proper range (0..h_max_new) */
+ if (*h < 0) *h = I2H(0);
+ if (*h >= h_max_new) *h = h_max_new - 1;
+ }
+
+ free(hist_buf);
+}
+
+static double perlin_coast_noise_2D(const double x, const double y, const double p, const int prime);
+
+/**
+ * This routine sculpts in from the edge a random amount, again a Perlin
+ * sequence, to avoid the rigid flat-edge slopes that were present before. The
+ * Perlin noise map doesnt know where we are going to slice across, and so we
+ * often cut straight through high terrain. the smoothing routine makes it
+ * legal, gradually increasing up from the edge to the original terrain height.
+ * By cutting parts of this away, it gives a far more irregular edge to the
+ * map-edge. Sometimes it works beautifully with the existing sea & lakes, and
+ * creates a very realistic coastline. Other times the variation is less, and
+ * the map-edge shows its cliff-like roots.
+ *
+ * This routine may be extended to randomly sculpt the height of the terrain
+ * near the edge. This will have the coast edge at low level (1-3), rising in
+ * smoothed steps inland to about 15 tiles in. This should make it look as
+ * though the map has been built for the map size, rather than a slice through
+ * a larger map.
+ *
+ * Please note that all the small numbers; 53, 101, 167, etc. are small primes
+ * to help give the perlin noise a bit more of a random feel.
+ */
+static void HeightMapCoastLines(void)
+{
+ int smallest_size = min(_patches.map_x, _patches.map_y);
+ const int margin = 4;
+ uint y, x;
+ uint max_x;
+ uint max_y;
+
+ /* Lower to sea level */
+ for (y = 0; y <= _height_map.size_y; y++) {
+ /* Top right */
+ max_x = myabs((perlin_coast_noise_2D(_height_map.size_y - y, y, 0.9, 53) + 0.25) * 5 + (perlin_coast_noise_2D(y, y, 0.35, 179) + 1) * 12);
+ max_x = max((smallest_size * smallest_size / 16) + max_x, (smallest_size * smallest_size / 16) + margin - max_x);
+ if (smallest_size < 8 && max_x > 5) max_x /= 1.5;
+ for (x = 0; x < max_x; x++) {
+ HeightMapXY(x, y) = 0;
+ }
+
+ /* Bottom left */
+ max_x = myabs((perlin_coast_noise_2D(_height_map.size_y - y, y, 0.85, 101) + 0.3) * 6 + (perlin_coast_noise_2D(y, y, 0.45, 67) + 0.75) * 8);
+ max_x = max((smallest_size * smallest_size / 16) + max_x, (smallest_size * smallest_size / 16) + margin - max_x);
+ if (smallest_size < 8 && max_x > 5) max_x /= 1.5;
+ for (x = _height_map.size_x; x > (_height_map.size_x - 1 - max_x); x--) {
+ HeightMapXY(x, y) = 0;
+ }
+ }
+
+ /* Lower to sea level */
+ for (x = 0; x <= _height_map.size_x; x++) {
+ /* Top left */
+ max_y = myabs((perlin_coast_noise_2D(x, _height_map.size_y / 2, 0.9, 167) + 0.4) * 5 + (perlin_coast_noise_2D(x, _height_map.size_y / 3, 0.4, 211) + 0.7) * 9);
+ max_y = max((smallest_size * smallest_size / 16) + max_y, (smallest_size * smallest_size / 16) + margin - max_y);
+ if (smallest_size < 8 && max_y > 5) max_y /= 1.5;
+ for (y = 0; y < max_y; y++) {
+ HeightMapXY(x, y) = 0;
+ }
+
+
+ /* Bottom right */
+ max_y = myabs((perlin_coast_noise_2D(x, _height_map.size_y / 3, 0.85, 71) + 0.25) * 6 + (perlin_coast_noise_2D(x, _height_map.size_y / 3, 0.35, 193) + 0.75) * 12);
+ max_y = max((smallest_size * smallest_size / 16) + max_y, (smallest_size * smallest_size / 16) + margin - max_y);
+ if (smallest_size < 8 && max_y > 5) max_y /= 1.5;
+ for (y = _height_map.size_y; y > (_height_map.size_y - 1 - max_y); y--) {
+ HeightMapXY(x, y) = 0;
+ }
+ }
+}
+
+/** Start at given point, move in given direction, find and Smooth coast in that direction */
+static void HeightMapSmoothCoastInDirection(int org_x, int org_y, int dir_x, int dir_y)
+{
+ const int max_coast_dist_from_edge = 35;
+ const int max_coast_Smooth_depth = 35;
+
+ int x, y;
+ int ed; // coast distance from edge
+ int depth;
+
+ height_t h_prev = 16;
+ height_t h;
+
+ assert(IsValidXY(org_x, org_y));
+
+ /* Search for the coast (first non-water tile) */
+ for (x = org_x, y = org_y, ed = 0; IsValidXY(x, y) && ed < max_coast_dist_from_edge; x += dir_x, y += dir_y, ed++) {
+ /* Coast found? */
+ if (HeightMapXY(x, y) > 15) break;
+
+ /* Coast found in the neighborhood? */
+ if (IsValidXY(x + dir_y, y + dir_x) && HeightMapXY(x + dir_y, y + dir_x) > 0) break;
+
+ /* Coast found in the neighborhood on the other side */
+ if (IsValidXY(x - dir_y, y - dir_x) && HeightMapXY(x - dir_y, y - dir_x) > 0) break;
+ }
+
+ /* Coast found or max_coast_dist_from_edge has been reached.
+ * Soften the coast slope */
+ for (depth = 0; IsValidXY(x, y) && depth <= max_coast_Smooth_depth; depth++, x += dir_x, y += dir_y) {
+ h = HeightMapXY(x, y);
+ h = min(h, h_prev + (4 + depth)); // coast softening formula
+ HeightMapXY(x, y) = h;
+ h_prev = h;
+ }
+}
+
+/** Smooth coasts by modulating height of tiles close to map edges with cosine of distance from edge */
+static void HeightMapSmoothCoasts(void)
+{
+ uint x, y;
+ /* First Smooth NW and SE coasts (y close to 0 and y close to size_y) */
+ for (x = 0; x < _height_map.size_x; x++) {
+ HeightMapSmoothCoastInDirection(x, 0, 0, 1);
+ HeightMapSmoothCoastInDirection(x, _height_map.size_y - 1, 0, -1);
+ }
+ /* First Smooth NE and SW coasts (x close to 0 and x close to size_x) */
+ for (y = 0; y < _height_map.size_y; y++) {
+ HeightMapSmoothCoastInDirection(0, y, 1, 0);
+ HeightMapSmoothCoastInDirection(_height_map.size_x - 1, y, -1, 0);
+ }
+}
+
+/**
+ * This routine provides the essential cleanup necessary before OTTD can
+ * display the terrain. When generated, the terrain heights can jump more than
+ * one level between tiles. This routine smooths out those differences so that
+ * the most it can change is one level. When OTTD can support cliffs, this
+ * routine may not be necessary.
+ */
+static void HeightMapSmoothSlopes(height_t dh_max)
+{
+ int x, y;
+ for (y = 1; y <= (int)_height_map.size_y; y++) {
+ for (x = 1; x <= (int)_height_map.size_x; x++) {
+ height_t h_max = min(HeightMapXY(x - 1, y), HeightMapXY(x, y - 1)) + dh_max;
+ if (HeightMapXY(x, y) > h_max) HeightMapXY(x, y) = h_max;
+ }
+ }
+ for (y = _height_map.size_y - 1; y >= 0; y--) {
+ for (x = _height_map.size_x - 1; x >= 0; x--) {
+ height_t h_max = min(HeightMapXY(x + 1, y), HeightMapXY(x, y + 1)) + dh_max;
+ if (HeightMapXY(x, y) > h_max) HeightMapXY(x, y) = h_max;
+ }
+ }
+}
+
+/** Height map terraform post processing:
+ * - water level adjusting
+ * - coast Smoothing
+ * - slope Smoothing
+ * - height histogram redistribution by sine wave transform */
+static void HeightMapNormalize(void)
+{
+ const amplitude_t water_percent = _water_percent[_opt.diff.quantity_sea_lakes];
+ const height_t h_max_new = I2H(_max_height[_opt.diff.terrain_type]);
+ const height_t roughness = 7 + 3 * _patches.tgen_smoothness;
+
+ HeightMapAdjustWaterLevel(water_percent, h_max_new);
+
+ HeightMapCoastLines();
+ HeightMapSmoothSlopes(roughness);
+
+ HeightMapSmoothCoasts();
+ HeightMapSmoothSlopes(roughness);
+
+ HeightMapSineTransform(12, h_max_new);
+ HeightMapSmoothSlopes(16);
+}
+
+static inline int perlin_landXY(uint x, uint y)
+{
+ return HeightMapXY(x, y);
+}
+
+
+/* The following decimals are the octave power modifiers for the Perlin noise */
+static const double _perlin_p_values[][7] = { // perlin frequency per power
+ { 0.35, 0.35, 0.35, 0.35, 0.35, 0.25, 0.539 }, // Very smooth
+ { 0.45, 0.55, 0.45, 0.45, 0.35, 0.25, 0.89 }, // Smooth
+ { 0.85, 0.80, 0.70, 0.45, 0.45, 0.35, 1.825 }, // Rough 1.825
+ { 0.95, 0.85, 0.80, 0.55, 0.55, 0.45, 2.245 } // Very Rough 2.25
+};
+
+/**
+ * The Perlin Noise calculation using large primes
+ * The initial number is adjusted by two values; the generation_seed, and the
+ * passed parameter; prime.
+ * prime is used to allow the perlin noise generator to create useful random
+ * numbers from slightly different series.
+ */
+static double int_noise(const long x, const long y, const int prime)
+{
+ long n = x + y * prime + _patches.generation_seed;
+
+ n = (n << 13) ^ n;
+
+ /* Pseudo-random number generator, using several large primes */
+ return 1.0 - (double)((n * (n * n * 15731 + 789221) + 1376312589) & 0x7fffffff) / 1073741824.0;
+}
+
+
+/**
+ * Hj. Malthaner's routine included 2 different noise smoothing methods.
+ * We now use the "raw" int_noise one.
+ * However, it may be useful to move to the other routine in future.
+ * So it is included too.
+ */
+static double smoothed_noise(const int x, const int y, const int prime)
+{
+#if 0
+ /* A hilly world (four corner smooth) */
+ const double sides = int_noise(x - 1, y) + int_noise(x + 1, y) + int_noise(x, y - 1) + int_noise(x, y + 1);
+ const double center = int_noise(x, y);
+ return (sides + sides + center * 4) / 8.0;
+#endif
+
+ /* This gives very hilly world */
+ return int_noise(x, y, prime);
+}
+
+
+/**
+ * This routine determines the interpolated value between a and b
+ */
+static inline double linear_interpolate(const double a, const double b, const double x)
+{
+ return a + x * (b - a);
+}
+
+
+/**
+ * This routine returns the smoothed interpolated noise for an x and y, using
+ * the values from the surrounding positions.
+ */
+static double interpolated_noise(const double x, const double y, const int prime)
+{
+ const int integer_X = (int)x;
+ const int integer_Y = (int)y;
+
+ const double fractional_X = x - (double)integer_X;
+ const double fractional_Y = y - (double)integer_Y;
+
+ const double v1 = smoothed_noise(integer_X, integer_Y, prime);
+ const double v2 = smoothed_noise(integer_X + 1, integer_Y, prime);
+ const double v3 = smoothed_noise(integer_X, integer_Y + 1, prime);
+ const double v4 = smoothed_noise(integer_X + 1, integer_Y + 1, prime);
+
+ const double i1 = linear_interpolate(v1, v2, fractional_X);
+ const double i2 = linear_interpolate(v3, v4, fractional_X);
+
+ return linear_interpolate(i1, i2, fractional_Y);
+}
+
+
+/**
+ * This is a similar function to the main perlin noise calculation, but uses
+ * the value p passed as a parameter rather than selected from the predefined
+ * sequences. as you can guess by its title, i use this to create the indented
+ * coastline, which is just another perlin sequence.
+ */
+static double perlin_coast_noise_2D(const double x, const double y, const double p, const int prime)
+{
+ double total = 0.0;
+ int i;
+
+ for (i = 0; i < 6; i++) {
+ const double frequency = (double)(1 << i);
+ const double amplitude = pow(p, (double)i);
+
+ total += interpolated_noise((x * frequency) / 64.0, (y * frequency) / 64.0, prime) * amplitude;
+ }
+
+ return total;
+}
+
+
+/** A small helper function */
+static void TgenSetTileHeight(TileIndex tile, int height)
+{
+ SetTileHeight(tile, height);
+ MakeClear(tile, CLEAR_GRASS, 3);
+}
+
+/**
+ * The main new land generator using Perlin noise. Desert landscape is handled
+ * different to all others to give a desert valley between two high mountains.
+ * Clearly if a low height terrain (flat/very flat) is chosen, then the tropic
+ * areas wont be high enough, and there will be very little tropic on the map.
+ * Thus Tropic works best on Hilly or Mountainous.
+ */
+void GenerateTerrainPerlin(void)
+{
+ uint x, y;
+
+ if (!AllocHeightMap()) return;
+ GenerateWorldSetAbortCallback(FreeHeightMap);
+
+ HeightMapGenerate();
+
+ IncreaseGeneratingWorldProgress(GWP_LANDSCAPE);
+
+ HeightMapNormalize();
+
+ IncreaseGeneratingWorldProgress(GWP_LANDSCAPE);
+
+ /* Transfer height map into OTTD map */
+ for (y = 2; y < _height_map.size_y - 2; y++) {
+ for (x = 2; x < _height_map.size_x - 2; x++) {
+ int height = H2I(HeightMapXY(x, y));
+ if (height < 0) height = 0;
+ if (height > 15) height = 15;
+ TgenSetTileHeight(TileXY(x, y), height);
+ }
+ }
+
+ IncreaseGeneratingWorldProgress(GWP_LANDSCAPE);
+
+ /* Recreate void tiles at the border in case they have been affected by generation */
+ for (y = 0; y < _height_map.size_y - 1; y++) MakeVoid(_height_map.size_x * y + _height_map.size_x - 1);
+ for (x = 0; x < _height_map.size_x; x++) MakeVoid(_height_map.size_x * y + x);
+
+ FreeHeightMap();
+ GenerateWorldSetAbortCallback(NULL);
+}