summaryrefslogtreecommitdiff
path: root/queue.c
diff options
context:
space:
mode:
authorrubidium <rubidium@openttd.org>2007-01-02 19:19:48 +0000
committerrubidium <rubidium@openttd.org>2007-01-02 19:19:48 +0000
commit66bbf336c6af7353ef0aeed58002c46543b30635 (patch)
treead4a63860df2626b22f77e7dac712e958bea54cb /queue.c
parentccc0a3f4dbf58c005b22341ac8874252924690cd (diff)
downloadopenttd-66bbf336c6af7353ef0aeed58002c46543b30635.tar.xz
(svn r7759) -Merge: makefile rewrite. This merge features:
- A proper ./configure, so everything needs to be configured only once, not for every make. - Usage of makedepend when available. This greatly reduces the time needed for generating the dependencies. - A generator for all project files. There is a single file with sources, which is used to generate Makefiles and the project files for MSVC. - Proper support for OSX universal binaries. - Object files for non-MSVC compiles are also placed in separate directories, making is faster to switch between debug and release compiles and it does not touch the directory with the source files. - Functionality to make a bundle of all needed files for for example a nightly or distribution of a binary with all needed GRFs and language files. Note: as this merge moves almost all files, it is recommended to make a backup of your working copy before updating your working copy.
Diffstat (limited to 'queue.c')
-rw-r--r--queue.c736
1 files changed, 0 insertions, 736 deletions
diff --git a/queue.c b/queue.c
deleted file mode 100644
index 9986442bf..000000000
--- a/queue.c
+++ /dev/null
@@ -1,736 +0,0 @@
-/* $Id$ */
-
-#include "stdafx.h"
-#include "openttd.h"
-#include "queue.h"
-
-static void Stack_Clear(Queue* q, bool free_values)
-{
- if (free_values) {
- uint i;
-
- for (i = 0; i < q->data.stack.size; i++) free(q->data.stack.elements[i]);
- }
- q->data.stack.size = 0;
-}
-
-static void Stack_Free(Queue* q, bool free_values)
-{
- q->clear(q, free_values);
- free(q->data.stack.elements);
- if (q->freeq) free(q);
-}
-
-static bool Stack_Push(Queue* q, void* item, int priority)
-{
- if (q->data.stack.size == q->data.stack.max_size) return false;
- q->data.stack.elements[q->data.stack.size++] = item;
- return true;
-}
-
-static void* Stack_Pop(Queue* q)
-{
- if (q->data.stack.size == 0) return NULL;
- return q->data.stack.elements[--q->data.stack.size];
-}
-
-static bool Stack_Delete(Queue* q, void* item, int priority)
-{
- return false;
-}
-
-static Queue* init_stack(Queue* q, uint max_size)
-{
- q->push = Stack_Push;
- q->pop = Stack_Pop;
- q->del = Stack_Delete;
- q->clear = Stack_Clear;
- q->free = Stack_Free;
- q->data.stack.max_size = max_size;
- q->data.stack.size = 0;
- q->data.stack.elements = malloc(max_size * sizeof(*q->data.stack.elements));
- q->freeq = false;
- return q;
-}
-
-Queue* new_Stack(uint max_size)
-{
- Queue* q = malloc(sizeof(*q));
-
- init_stack(q, max_size);
- q->freeq = true;
- return q;
-}
-
-/*
- * Fifo
- */
-
-static void Fifo_Clear(Queue* q, bool free_values)
-{
- if (free_values) {
- uint head = q->data.fifo.head;
- uint tail = q->data.fifo.tail; /* cache for speed */
-
- while (head != tail) {
- free(q->data.fifo.elements[tail]);
- tail = (tail + 1) % q->data.fifo.max_size;
- }
- }
- q->data.fifo.head = 0;
- q->data.fifo.tail = 0;
-}
-
-static void Fifo_Free(Queue* q, bool free_values)
-{
- q->clear(q, free_values);
- free(q->data.fifo.elements);
- if (q->freeq) free(q);
-}
-
-static bool Fifo_Push(Queue* q, void* item, int priority)
-{
- uint next = (q->data.fifo.head + 1) % q->data.fifo.max_size;
-
- if (next == q->data.fifo.tail) return false;
- q->data.fifo.elements[q->data.fifo.head] = item;
-
- q->data.fifo.head = next;
- return true;
-}
-
-static void* Fifo_Pop(Queue* q)
-{
- void* result;
-
- if (q->data.fifo.head == q->data.fifo.tail) return NULL;
- result = q->data.fifo.elements[q->data.fifo.tail];
-
- q->data.fifo.tail = (q->data.fifo.tail + 1) % q->data.fifo.max_size;
- return result;
-}
-
-static bool Fifo_Delete(Queue* q, void* item, int priority)
-{
- return false;
-}
-
-static Queue* init_fifo(Queue* q, uint max_size)
-{
- q->push = Fifo_Push;
- q->pop = Fifo_Pop;
- q->del = Fifo_Delete;
- q->clear = Fifo_Clear;
- q->free = Fifo_Free;
- q->data.fifo.max_size = max_size;
- q->data.fifo.head = 0;
- q->data.fifo.tail = 0;
- q->data.fifo.elements = malloc(max_size * sizeof(*q->data.fifo.elements));
- q->freeq = false;
- return q;
-}
-
-Queue* new_Fifo(uint max_size)
-{
- Queue* q = malloc(sizeof(*q));
-
- init_fifo(q, max_size);
- q->freeq = true;
- return q;
-}
-
-
-/*
- * Insertion Sorter
- */
-
-static void InsSort_Clear(Queue* q, bool free_values)
-{
- InsSortNode* node = q->data.inssort.first;
- InsSortNode* prev;
-
- while (node != NULL) {
- if (free_values) free(node->item);
- prev = node;
- node = node->next;
- free(prev);
- }
- q->data.inssort.first = NULL;
-}
-
-static void InsSort_Free(Queue* q, bool free_values)
-{
- q->clear(q, free_values);
- if (q->freeq) free(q);
-}
-
-static bool InsSort_Push(Queue* q, void* item, int priority)
-{
- InsSortNode* newnode = malloc(sizeof(*newnode));
-
- if (newnode == NULL) return false;
- newnode->item = item;
- newnode->priority = priority;
- if (q->data.inssort.first == NULL ||
- q->data.inssort.first->priority >= priority) {
- newnode->next = q->data.inssort.first;
- q->data.inssort.first = newnode;
- } else {
- InsSortNode* node = q->data.inssort.first;
- while (node != NULL) {
- if (node->next == NULL || node->next->priority >= priority) {
- newnode->next = node->next;
- node->next = newnode;
- break;
- }
- node = node->next;
- }
- }
- return true;
-}
-
-static void* InsSort_Pop(Queue* q)
-{
- InsSortNode* node = q->data.inssort.first;
- void* result;
-
- if (node == NULL) return NULL;
- result = node->item;
- q->data.inssort.first = q->data.inssort.first->next;
- assert(q->data.inssort.first == NULL || q->data.inssort.first->priority >= node->priority);
- free(node);
- return result;
-}
-
-static bool InsSort_Delete(Queue* q, void* item, int priority)
-{
- return false;
-}
-
-void init_InsSort(Queue* q)
-{
- q->push = InsSort_Push;
- q->pop = InsSort_Pop;
- q->del = InsSort_Delete;
- q->clear = InsSort_Clear;
- q->free = InsSort_Free;
- q->data.inssort.first = NULL;
- q->freeq = false;
-}
-
-Queue* new_InsSort(void)
-{
- Queue* q = malloc(sizeof(*q));
-
- init_InsSort(q);
- q->freeq = true;
- return q;
-}
-
-
-/*
- * Binary Heap
- * For information, see: http://www.policyalmanac.org/games/binaryHeaps.htm
- */
-
-#define BINARY_HEAP_BLOCKSIZE (1 << BINARY_HEAP_BLOCKSIZE_BITS)
-#define BINARY_HEAP_BLOCKSIZE_MASK (BINARY_HEAP_BLOCKSIZE - 1)
-
-// To make our life easy, we make the next define
-// Because Binary Heaps works with array from 1 to n,
-// and C with array from 0 to n-1, and we don't like typing
-// q->data.binaryheap.elements[i - 1] every time, we use this define.
-#define BIN_HEAP_ARR(i) q->data.binaryheap.elements[((i) - 1) >> BINARY_HEAP_BLOCKSIZE_BITS][((i) - 1) & BINARY_HEAP_BLOCKSIZE_MASK]
-
-static void BinaryHeap_Clear(Queue* q, bool free_values)
-{
- /* Free all items if needed and free all but the first blocks of memory */
- uint i;
- uint j;
-
- for (i = 0; i < q->data.binaryheap.blocks; i++) {
- if (q->data.binaryheap.elements[i] == NULL) {
- /* No more allocated blocks */
- break;
- }
- /* For every allocated block */
- if (free_values) {
- for (j = 0; j < (1 << BINARY_HEAP_BLOCKSIZE_BITS); j++) {
- /* For every element in the block */
- if ((q->data.binaryheap.size >> BINARY_HEAP_BLOCKSIZE_BITS) == i &&
- (q->data.binaryheap.size & BINARY_HEAP_BLOCKSIZE_MASK) == j) {
- break; /* We're past the last element */
- }
- free(q->data.binaryheap.elements[i][j].item);
- }
- }
- if (i != 0) {
- /* Leave the first block of memory alone */
- free(q->data.binaryheap.elements[i]);
- q->data.binaryheap.elements[i] = NULL;
- }
- }
- q->data.binaryheap.size = 0;
- q->data.binaryheap.blocks = 1;
-}
-
-static void BinaryHeap_Free(Queue* q, bool free_values)
-{
- uint i;
-
- q->clear(q, free_values);
- for (i = 0; i < q->data.binaryheap.blocks; i++) {
- if (q->data.binaryheap.elements[i] == NULL) break;
- free(q->data.binaryheap.elements[i]);
- }
- free(q->data.binaryheap.elements);
- if (q->freeq) free(q);
-}
-
-static bool BinaryHeap_Push(Queue* q, void* item, int priority)
-{
-#ifdef QUEUE_DEBUG
- printf("[BinaryHeap] Pushing an element. There are %d elements left\n", q->data.binaryheap.size);
-#endif
-
- if (q->data.binaryheap.size == q->data.binaryheap.max_size) return false;
- assert(q->data.binaryheap.size < q->data.binaryheap.max_size);
-
- if (q->data.binaryheap.elements[q->data.binaryheap.size >> BINARY_HEAP_BLOCKSIZE_BITS] == NULL) {
- /* The currently allocated blocks are full, allocate a new one */
- assert((q->data.binaryheap.size & BINARY_HEAP_BLOCKSIZE_MASK) == 0);
- q->data.binaryheap.elements[q->data.binaryheap.size >> BINARY_HEAP_BLOCKSIZE_BITS] = malloc(BINARY_HEAP_BLOCKSIZE * sizeof(*q->data.binaryheap.elements[0]));
- q->data.binaryheap.blocks++;
-#ifdef QUEUE_DEBUG
- printf("[BinaryHeap] Increasing size of elements to %d nodes\n", q->data.binaryheap.blocks * BINARY_HEAP_BLOCKSIZE);
-#endif
- }
-
- // Add the item at the end of the array
- BIN_HEAP_ARR(q->data.binaryheap.size + 1).priority = priority;
- BIN_HEAP_ARR(q->data.binaryheap.size + 1).item = item;
- q->data.binaryheap.size++;
-
- // Now we are going to check where it belongs. As long as the parent is
- // bigger, we switch with the parent
- {
- BinaryHeapNode temp;
- int i;
- int j;
-
- i = q->data.binaryheap.size;
- while (i > 1) {
- // Get the parent of this object (divide by 2)
- j = i / 2;
- // Is the parent bigger then the current, switch them
- if (BIN_HEAP_ARR(i).priority <= BIN_HEAP_ARR(j).priority) {
- temp = BIN_HEAP_ARR(j);
- BIN_HEAP_ARR(j) = BIN_HEAP_ARR(i);
- BIN_HEAP_ARR(i) = temp;
- i = j;
- } else {
- // It is not, we're done!
- break;
- }
- }
- }
-
- return true;
-}
-
-static bool BinaryHeap_Delete(Queue* q, void* item, int priority)
-{
- uint i = 0;
-
-#ifdef QUEUE_DEBUG
- printf("[BinaryHeap] Deleting an element. There are %d elements left\n", q->data.binaryheap.size);
-#endif
-
- // First, we try to find the item..
- do {
- if (BIN_HEAP_ARR(i + 1).item == item) break;
- i++;
- } while (i < q->data.binaryheap.size);
- // We did not find the item, so we return false
- if (i == q->data.binaryheap.size) return false;
-
- // Now we put the last item over the current item while decreasing the size of the elements
- q->data.binaryheap.size--;
- BIN_HEAP_ARR(i + 1) = BIN_HEAP_ARR(q->data.binaryheap.size + 1);
-
- // Now the only thing we have to do, is resort it..
- // On place i there is the item to be sorted.. let's start there
- {
- uint j;
- BinaryHeapNode temp;
- /* Because of the fact that Binary Heap uses array from 1 to n, we need to
- * increase i by 1
- */
- i++;
-
- for (;;) {
- j = i;
- // Check if we have 2 childs
- if (2 * j + 1 <= q->data.binaryheap.size) {
- // Is this child smaller than the parent?
- if (BIN_HEAP_ARR(j).priority >= BIN_HEAP_ARR(2 * j).priority) i = 2 * j;
- // Yes, we _need_ to use i here, not j, because we want to have the smallest child
- // This way we get that straight away!
- if (BIN_HEAP_ARR(i).priority >= BIN_HEAP_ARR(2 * j + 1).priority) i = 2 * j + 1;
- // Do we have one child?
- } else if (2 * j <= q->data.binaryheap.size) {
- if (BIN_HEAP_ARR(j).priority >= BIN_HEAP_ARR(2 * j).priority) i = 2 * j;
- }
-
- // One of our childs is smaller than we are, switch
- if (i != j) {
- temp = BIN_HEAP_ARR(j);
- BIN_HEAP_ARR(j) = BIN_HEAP_ARR(i);
- BIN_HEAP_ARR(i) = temp;
- } else {
- // None of our childs is smaller, so we stay here.. stop :)
- break;
- }
- }
- }
-
- return true;
-}
-
-static void* BinaryHeap_Pop(Queue* q)
-{
- void* result;
-
-#ifdef QUEUE_DEBUG
- printf("[BinaryHeap] Popping an element. There are %d elements left\n", q->data.binaryheap.size);
-#endif
-
- if (q->data.binaryheap.size == 0) return NULL;
-
- // The best item is always on top, so give that as result
- result = BIN_HEAP_ARR(1).item;
- // And now we should get rid of this item...
- BinaryHeap_Delete(q, BIN_HEAP_ARR(1).item, BIN_HEAP_ARR(1).priority);
-
- return result;
-}
-
-void init_BinaryHeap(Queue* q, uint max_size)
-{
- assert(q != NULL);
- q->push = BinaryHeap_Push;
- q->pop = BinaryHeap_Pop;
- q->del = BinaryHeap_Delete;
- q->clear = BinaryHeap_Clear;
- q->free = BinaryHeap_Free;
- q->data.binaryheap.max_size = max_size;
- q->data.binaryheap.size = 0;
- // We malloc memory in block of BINARY_HEAP_BLOCKSIZE
- // It autosizes when it runs out of memory
- q->data.binaryheap.elements = calloc((max_size - 1) / BINARY_HEAP_BLOCKSIZE + 1, sizeof(*q->data.binaryheap.elements));
- q->data.binaryheap.elements[0] = malloc(BINARY_HEAP_BLOCKSIZE * sizeof(*q->data.binaryheap.elements[0]));
- q->data.binaryheap.blocks = 1;
- q->freeq = false;
-#ifdef QUEUE_DEBUG
- printf("[BinaryHeap] Initial size of elements is %d nodes\n", BINARY_HEAP_BLOCKSIZE);
-#endif
-}
-
-Queue* new_BinaryHeap(uint max_size)
-{
- Queue* q = malloc(sizeof(*q));
-
- init_BinaryHeap(q, max_size);
- q->freeq = true;
- return q;
-}
-
-// Because we don't want anyone else to bother with our defines
-#undef BIN_HEAP_ARR
-
-/*
- * Hash
- */
-
-void init_Hash(Hash* h, Hash_HashProc* hash, uint num_buckets)
-{
- /* Allocate space for the Hash, the buckets and the bucket flags */
- uint i;
-
- assert(h != NULL);
-#ifdef HASH_DEBUG
- debug("Allocated hash: %p", h);
-#endif
- h->hash = hash;
- h->size = 0;
- h->num_buckets = num_buckets;
- h->buckets = malloc(num_buckets * (sizeof(*h->buckets) + sizeof(*h->buckets_in_use)));
-#ifdef HASH_DEBUG
- debug("Buckets = %p", h->buckets);
-#endif
- h->buckets_in_use = (bool*)(h->buckets + num_buckets);
- h->freeh = false;
- for (i = 0; i < num_buckets; i++) h->buckets_in_use[i] = false;
-}
-
-Hash* new_Hash(Hash_HashProc* hash, int num_buckets)
-{
- Hash* h = malloc(sizeof(*h));
-
- init_Hash(h, hash, num_buckets);
- h->freeh = true;
- return h;
-}
-
-void delete_Hash(Hash* h, bool free_values)
-{
- uint i;
-
- /* Iterate all buckets */
- for (i = 0; i < h->num_buckets; i++) {
- if (h->buckets_in_use[i]) {
- HashNode* node;
-
- /* Free the first value */
- if (free_values) free(h->buckets[i].value);
- node = h->buckets[i].next;
- while (node != NULL) {
- HashNode* prev = node;
-
- node = node->next;
- /* Free the value */
- if (free_values) free(prev->value);
- /* Free the node */
- free(prev);
- }
- }
- }
- free(h->buckets);
- /* No need to free buckets_in_use, it is always allocated in one
- * malloc with buckets */
-#ifdef HASH_DEBUG
- debug("Freeing Hash: %p", h);
-#endif
- if (h->freeh) free(h);
-}
-
-#ifdef HASH_STATS
-static void stat_Hash(const Hash* h)
-{
- uint used_buckets = 0;
- uint max_collision = 0;
- uint max_usage = 0;
- uint usage[200];
- uint i;
-
- for (i = 0; i < lengthof(usage); i++) usage[i] = 0;
- for (i = 0; i < h->num_buckets; i++) {
- uint collision = 0;
- if (h->buckets_in_use[i]) {
- const HashNode* node;
-
- used_buckets++;
- for (node = &h->buckets[i]; node != NULL; node = node->next) collision++;
- if (collision > max_collision) max_collision = collision;
- }
- if (collision >= lengthof(usage)) collision = lengthof(usage) - 1;
- usage[collision]++;
- if (collision > 0 && usage[collision] >= max_usage) {
- max_usage = usage[collision];
- }
- }
- printf(
- "---\n"
- "Hash size: %d\n"
- "Nodes used: %d\n"
- "Non empty buckets: %d\n"
- "Max collision: %d\n",
- h->num_buckets, h->size, used_buckets, max_collision
- );
- printf("{ ");
- for (i = 0; i <= max_collision; i++) {
- if (usage[i] > 0) {
- printf("%d:%d ", i, usage[i]);
-#if 0
- if (i > 0) {
- uint j;
-
- for (j = 0; j < usage[i] * 160 / 800; j++) putchar('#');
- }
- printf("\n");
-#endif
- }
- }
- printf ("}\n");
-}
-#endif
-
-void clear_Hash(Hash* h, bool free_values)
-{
- uint i;
-
-#ifdef HASH_STATS
- if (h->size > 2000) stat_Hash(h);
-#endif
-
- /* Iterate all buckets */
- for (i = 0; i < h->num_buckets; i++) {
- if (h->buckets_in_use[i]) {
- HashNode* node;
-
- h->buckets_in_use[i] = false;
- /* Free the first value */
- if (free_values) free(h->buckets[i].value);
- node = h->buckets[i].next;
- while (node != NULL) {
- HashNode* prev = node;
-
- node = node->next;
- if (free_values) free(prev->value);
- free(prev);
- }
- }
- }
- h->size = 0;
-}
-
-/* Finds the node that that saves this key pair. If it is not
- * found, returns NULL. If it is found, *prev is set to the
- * node before the one found, or if the node found was the first in the bucket
- * to NULL. If it is not found, *prev is set to the last HashNode in the
- * bucket, or NULL if it is empty. prev can also be NULL, in which case it is
- * not used for output.
- */
-static HashNode* Hash_FindNode(const Hash* h, uint key1, uint key2, HashNode** prev_out)
-{
- uint hash = h->hash(key1, key2);
- HashNode* result = NULL;
-
-#ifdef HASH_DEBUG
- debug("Looking for %u, %u", key1, key2);
-#endif
- /* Check if the bucket is empty */
- if (!h->buckets_in_use[hash]) {
- if (prev_out != NULL) *prev_out = NULL;
- result = NULL;
- /* Check the first node specially */
- } else if (h->buckets[hash].key1 == key1 && h->buckets[hash].key2 == key2) {
- /* Save the value */
- result = h->buckets + hash;
- if (prev_out != NULL) *prev_out = NULL;
-#ifdef HASH_DEBUG
- debug("Found in first node: %p", result);
-#endif
- /* Check all other nodes */
- } else {
- HashNode* prev = h->buckets + hash;
- HashNode* node;
-
- for (node = prev->next; node != NULL; node = node->next) {
- if (node->key1 == key1 && node->key2 == key2) {
- /* Found it */
- result = node;
-#ifdef HASH_DEBUG
- debug("Found in other node: %p", result);
-#endif
- break;
- }
- prev = node;
- }
- if (prev_out != NULL) *prev_out = prev;
- }
-#ifdef HASH_DEBUG
- if (result == NULL) debug("Not found");
-#endif
- return result;
-}
-
-void* Hash_Delete(Hash* h, uint key1, uint key2)
-{
- void* result;
- HashNode* prev; /* Used as output var for below function call */
- HashNode* node = Hash_FindNode(h, key1, key2, &prev);
-
- if (node == NULL) {
- /* not found */
- result = NULL;
- } else if (prev == NULL) {
- /* It is in the first node, we can't free that one, so we free
- * the next one instead (if there is any)*/
- /* Save the value */
- result = node->value;
- if (node->next != NULL) {
- HashNode* next = node->next;
- /* Copy the second to the first */
- *node = *next;
- /* Free the second */
-#ifndef NOFREE
- free(next);
-#endif
- } else {
- /* This was the last in this bucket */
- /* Mark it as empty */
- uint hash = h->hash(key1, key2);
- h->buckets_in_use[hash] = false;
- }
- } else {
- /* It is in another node */
- /* Save the value */
- result = node->value;
- /* Link previous and next nodes */
- prev->next = node->next;
- /* Free the node */
-#ifndef NOFREE
- free(node);
-#endif
- }
- if (result != NULL) h->size--;
- return result;
-}
-
-
-void* Hash_Set(Hash* h, uint key1, uint key2, void* value)
-{
- HashNode* prev;
- HashNode* node = Hash_FindNode(h, key1, key2, &prev);
-
- if (node != NULL) {
- /* Found it */
- void* result = node->value;
-
- node->value = value;
- return result;
- }
- /* It is not yet present, let's add it */
- if (prev == NULL) {
- /* The bucket is still empty */
- uint hash = h->hash(key1, key2);
- h->buckets_in_use[hash] = true;
- node = h->buckets + hash;
- } else {
- /* Add it after prev */
- node = malloc(sizeof(*node));
- prev->next = node;
- }
- node->next = NULL;
- node->key1 = key1;
- node->key2 = key2;
- node->value = value;
- h->size++;
- return NULL;
-}
-
-void* Hash_Get(const Hash* h, uint key1, uint key2)
-{
- HashNode* node = Hash_FindNode(h, key1, key2, NULL);
-
-#ifdef HASH_DEBUG
- debug("Found node: %p", node);
-#endif
- return (node != NULL) ? node->value : NULL;
-}
-
-uint Hash_Size(const Hash* h)
-{
- return h->size;
-}