LPICH+

A Parallel
One-dimensional Relativistic Electromagnetic
Particle-In-Cell Code
for Simulating

Laser—Plasma—Interaction

Roland Lichters, Robert E. W. Pfund, and Jiirgen Meyer-ter-Vehn

Max-Planck-Institut fiir Quantenoptik
Hans-Kopfermann-Strafie 1
D-85748 Garching, Germany
fax: +49-89-32905200
email: meyer-ter-vehn@mpq.mpg.de

pfund@mpq.mpg.de

CONTENTS I
Contents
1 Introduction 1
2 Receiving and Installing 3
2.1 Plain version
2.2 Parallel version
3 User’s Guide 5
3.1 Input for LPIC++ e 5)
3.1.1 Laser pulses (&pulse_front, &pulserear) 5
3.1.2 Simulation time (&propagate) 9
3.1.3 Simulation box, plasma shape and density (&box) 10
3.1.4 Particle species (&electrons, &ions) 10
3.1.5 Diagnostics (&output, &energy, &flux, ...) 11
3.1.6 Restarting LPIC++ (&restart) 12
3.1.7 Parallel LPIC++ version (¶llel) 12
3.2 Output e 13
3.3 Postprocessing 16
3.3.1 &traces, Fourier transforms 16
3.3.2 &spacetime 18
3.3.3 &phasespace 20
3.4 Running LPIC++ under PVM. 21
4 Examples 22
4.1 Diagnostics 22
4.2 Performance 22
4.3 Reflection from Overdense Plasma 22
4.4 Reflection from Underdense Plasma 23
4.5 Parallel version and Restart 27
4.6 More Examples 27
5 Algorithm 29
5.1 Maxwell Equations 29
5.1.1 Transverse Fields 30
5.1.2 Longitudinal Field 31
5.2 Equation of Motiono 31

II

CONTENTS

5.3 Charge and Current Deposition

6 LPIC++ Code

6.1 Data Structure
6.2 Classes, Dependencies and Files

6.3 Program Flow

A Moving frame for oblique incidence

B Units

1 Introduction

Particle-In-Cell (PIC) codes are well established tools for kinetic simulations in plasma
physics and astro physics. In recent years, the progress in producing intense (I >
10" Wem™2) ultra-short (< 100fs) laser pulses [1] demanded more and more for kinetic
descriptions of the interaction of such laser pulses with plasmas, since high intensities,
short time scales and large density gradients occuring lead to the failure of conven-
tional hydrodynamic approaches assuming nonrelativistic dynamics, local thermody-
namic equilibrium, etc. New insight has meanwhile been obtained with the guidance
of numerical kinetic treatments, mainly PIC simulations, in the field of absorption of
short laser pulses [2, 3, 4], the propagation of short pulses in underdense plasma, wake
field generation, fast electron production [5, 6, 13], magnetic field generation [6], har-
monic generation at overdense plasma surfaces [7, 8, 9, 10], and even in a new discipline
of inertial confinement fusion (ICF), the fast ignitor concept [11, 12, 13].

The code LPIC++ presented here, is based on a one-dimensional, electromagnetic, rela-
tivistic PIC code that has originally been developed by one of the authors [14] during a
PhD thesis at the Maz-Planck-Institut fir Quantenoptik for kinetic simulations of high
harmonic generation from overdense plasma surfaces [10]. The code uses essentially
the algorithm of Birdsall and Langdon [15] and Villasenor and Bunemann [16]. It is
written in C++ in order to be easily extendable and has been parallelized to be able
to grow in power linearly with the size of accessable hardware, e.g. massively parallel
machines like Cray T3E. The parallel LPIC++ version uses PVM for communication be-
tween processors. PVM is public domain software, can be downloaded from the world
wide web [17].

The power of LPIC++ is mainly based on its clear program and data structure, which
uses chained lists for the organization of grid cells and enables dynamic adjustment of
spatial domain sizes in a very convenient way, and therefore easy balancing of processor
loads. Also particles belonging to one cell are linked in a chained list and are immedi-
ately accessable from this cell. In addition to this convenient type of data organization
in a PIC code, the code shows excellent performance in both its single processor and

parallel version. It is planned to extend the code to three spatial dimensions.

2 1 INTRODUCTION

It is the central aim of this paper to make the code available to anybody who is
interested in the simulation of laser-plasma interaction. This manual is mainly intended

to explain
e how to receive and install (section 2)
e how to use (sections 3 and 4)

the code LPIC++. It does not give a complete introduction to plasma simulation using
particle-in-cell codes. Section 4 presents a collection of test cases, which help in getting
used to the code. Sections 5 and 6 finally deal with the algorithm on which the code

is based, the data and code structure.

2 Receiving and Installing

The source code distribution contains a README file in ASCII format and a com-
pressed tar-file 1pic-1.0.tar.gz (550 kByte). Since LPIC++ is written in C++, it is
supposed to run on any Unix platform like Linux, Solaris, SunOS, AIX, etc. It has

been tested and used extensively under AIX.

2.1 Plain version

How to install the single processor version of LPIC++:

1. Unpack the archive:
Copy 1lpic-1.0.tar.gz to the directory where you would like to install LPIC++,
change to this directory and type

gunzip lpic-1.0.tar.gz

tar -xvf lpic-1.0.tar

This will create a directory pic/ with subdirectories pic/data/, pic/doc/,
pic/lpic/ and pic/post/. lpic/ contains the LPIC++ source code src/*.C with
Makefile src/Makefile, include files src/include/*.h, input files input/*, an
empty object directory obj/ and an empty data directory data/. doc/ contains
the documentation 1pic.ps. post/ contains the source code for the postproces-

sor.
In addition you will find directories pic/id1l/ and pic/fresnel/. For explaina-

tions see sections 3 and 4, respectively.

2. Compile LPIC++:
Change to directory pic/ and type

make all

This produces the LPIC++ executable 1pic_plain in directory pic/lpic/ and

the postprocessor executable postprocessor in directory pic/post/.

Alternative:

4 2 RECEIVING AND INSTALLING

e Change to directory pic/lpic/src/. You may have to edit the Makefile
in order to choose your favourite compiler and the corresponding compiler
options. Default is the GNU C compiler ('CC=g++"). Alternatively, you
may insert the AIX C compiler ("CC=xIC’). Type

make plain

This produces the executable pic/lpic/lpic_plain.

e Compile the postprocessor:

Change to directory pic/post/src/, edit the Makefile and type
make post

This produces the executable pic/post/postprocessor.

3. Run an example:

Change to directory pic/lpic/ and type
lpic_plain input/input.performance

Output will be written by default to directory pic/data/.

2.2 Parallel version

The parallel version of LPIC++ uses the public domain software PVM [17] for commu-
nication between processors. Unless not already installed on your system(s), you can
download the software, its documentation and instructions for installing from the web
site http://www.netlib.org/pvm3. PVM is also available on Cray T3E.
After installing PVM you can also compile the parallel version of LPIC++:

Change to directory pic/lpic/src/ and type
make parallel

This produces the executable pic/lpic/lpic_parallel. You need not remove the

plain version and its object files before.

The programs, their input and output will be described in detail in the following

section.

3 User’s Guide

This section deals with in- and output to and from LPIC++ and its postprocessor.
LPIC++ (in both versions) reads input from an input file, e.g. in directory pic/lpic/-
input/, which has to be specified as an argument on the commandline when calling

LPIC++, e.g.
lpic_plain input/input.fresnel.O
If LPIC++ is called without arguments, the input file pic/lpic/input/input.list is

read by default. In the following section the input parameters are described in detail.

3.1 Input for LPIC++

The parameters are discussed following the example in file input/input.fresnel.O,
see Figs. 1 and 2.
Groups of parameters follow typical key words like &pulse_front’ or ’&electrons’. There

are six major groups of input parameters concerning
1. laser pulses (&pulse_front, &pulse_rear)
2. simulation time (&propagate)
3. simulation box, plasma shape and density (&box)
4. particle species (&electrons, &ions)
5. diagnostics (&output, &energy, &flux, ...)
6. technical stuff (&restart, ¶llel)

The key words starting with an '&’ and parameter names like >amplitude’ should
not be changed, since the code uses them to identify parameter values in the input file.
Only numbers should be touched unless you want to change the input routines (see

section 6).

3.1.1 Laser pulses (&pulse_front, &pulse_rear)

The plasma can be irradiated with laser pulses from two sides, from the left or front side
(&pulse_front) and the right or rear side (&pulse_rear). The pulses enter the simulation

box at the left and right hand boundary at time ¢ = 0.

3 USER’S GUIDE

spotiad u au1l dois
spotliad uil auil 1leis

¢s1oqd x [

s |22 ul Arepunoq 1B 11
S|182 ul Atepunog 1J9|
spoiiad ut au) dois
spotiad ul au1yl lieils
¢s1o1d A1isusp uo
S92 ul Atepunoq 1yb 1
S|]99 u1 Arepunog 1Ja|

spotiad ul au1] dois
spotiad ul aull 1ieils
¢s10|d A11suap uoiio9 |9

spoiJad ul deis au1y
spoliad ul au) dois
spotyad ul aull lieils
ésuoring 1iisip 1190 [9A UO |

spoiJad u1 dais au1y
spotiad ul au1} dojs
spotiad ul au 1l lieils
ésuo1Ing 1131s1p K110 [9A U0 1193 |2

spotiad ul dais au 1y
spoiiad ul au) dois
spotyad ul au 1l lieils

¢s1o |d aoedsaseyd

spotiad ul dais au 1y
spotiad ul au1l dojs
spotiad ul au1yl lieils

¢s1o |d aoedsaseyd

spotiad u1 dais au 1l
spotiad ul au1l dois
spoilad ul auiy jiels

¢sioysdeus

spoiliad u1 deis au1y
spotiad ul au1l dois
spotlad ul auiy jiels

ALY SEVNRLENNEY

spotiad u dajis au 1}
spoliad ul au) dois
spoilad ul auiy jiels

¢1oqd xnjy

spoiiad u1 dai 1
spotiad ul au1] dois
spollad ul auiy jiels

¢10|d ABusus

yred indino

HH HH H H H R FH FH FHHEFE R HHHEHHE H*

H A

0¢

oo

[
00T

deis”1
dois” 1
1els)
o _
K110 |9A"UO 19

dais”1
dois™
1eis)
¢} _
A1100 |9A™ |o7®

dais”1
dois™
1eis)
o
aoedsaseyd uo ry

dais_1
dois™1
1eis)
0 —
aoedsaseyd™ |ap

dais”y
dois”1
jrelsTy
0
joysdeusy

deis” 1
dois”1
jlels)
e}

X9 | o rp

dais™
dois”1
1lels)
e}

Xn | g

dais™
dois”3
1iels”)
[}

Kb 1ouey

D 40 siun ut K1190 [9A [auIay

000 =

ind inog

wiay 1A

1199 Jad $31911Jed0 0¥ JO Jaqunu xau
aw

a/b

pax1j<-T pax!} 1ou<-Q

D J0 siwun ul K1190 [9A [BUIBY]
1189 18d S3 |9 11ied0 108N JO JBQUNU “XEU
pax1y<-T ~ paxi} lou<-0

ou ‘T=sak ¢uo 11eunb | juod anes
uap [ed 11119 /A1 Isusp wnu Ixau

uo 1ba1 duels Jesui| 8yl ul s|@d
o=duei s |92 10} S| |92 pa 1dnado
1Jo | WNNoeA s | |90

S|]99 JOo Jaqunu [e10}

auels) ge| ‘yibus jorem Jad s |90

spotiad ul au1y dois
spoiiad ul au) jiejls

spoiiad u1 dais au |}

0=ou ‘T=saf ¢adeys as |nd aAes
spoiJad u1 uo(einp as |nd
spotsad ul au1yl |ey/esies as|nd
€=zwU s ‘g=uls ‘T=lJeaul|

€=2 ‘g=d ‘I=s

99 1bap u |

aseyd s .o juauley plig

|ejuauepun) o1 19adsaJ yi1m aseyd s .2 luauiey pug
oluauitey pig ‘spniidue p a1} J9se| SSa |uo Isuau |
9 luau ey puz ‘spniijdue p a1} JaSe | SSa |uo Isuau Ip
due p|a1} Jase| ssa |uo Isuau
(0=0) 40 (1=D) NO Yo ms

o

w sy 1A

0z = odd

0= X1}

SuU0 1199 9%

anes” xoq

ou” J8A0_UO I U
due"s |90
ause |d_s | |92

1197|199
_ _s|I®d
m1ad7s | |9

X0

dois doud
1Je1s doud

2 1ebedo idy

da1s anes as |nd
anes as |nd

uo 11e.inp

as el

adeys

uo 11ez te jod

9 |bue

gaseyd

spotiad u1 dais au |}
‘1=saA ¢adeys as |nd anes
spotiad u| uoileunp as nd
spotsad ul au1y |ey/astel asnd
€=zl is ‘z=uls I

£=0 ‘1=s

99 1bap u |

o=ou

[ea16ap] aseyd s .o uauey pig

e juauepun} o} 10adsal ylm aseyd s ,0luauley pug
9 luau Jey pug |jdue p (a1} Jase | ssa |uO Isuau Ip
9 luau ey pugz due p|a1} Jase| ssa |uo Isuau Ip
due po 1} lase| SSd |uo Isuau
(0=0) 440 (1=D) NO yos1ms

[ea 16ap]

coco

o

Jea s as |ndy

da s enes as |nd
anes as |nd

uo | yeunp

as el

adeys

uo 11ez (e jod

9 |bue

gaseyd
zaseyd

juo 1) as |ndy

R NN NN NN
11
o1d| Joy ndut g/
11
11

PEVILLEELEE Db r i rr i i n i i rn i b rr i rr i r b r b rn b r iy

t.fresnel.O, part I

t/inpu

input file pic/lpic/inpu

mpu

: The

Fig. 1

INPUT FOR LPIC++

3.1

PEVIETELEEE LR r i rr i rr b r i i b rrr i rr i r i e

M Juad s |9o/1dg = (U U8AOTUO I U , UOI Z)1ubs = I=:

(epque | /xp 1dz) * (ebauo /d"ebauo) , (xp/p epque|) = /Y1 A :3S00yd
0TTS 1-oT
000T Z-92% ¥
818 z-oy
09¥ Z-9¢
v0z z-9z
15 z-o1

z'8 €-oy
115 °0 €-91
8210 ¥ -89
910 0 ¥ -og
S00 ‘0 ¥ -aT

11 €= (2ZvZh + ZUAN + ZuXA) IN [ne] ABisus [auiay) "SA /A A1100 [aA |aulayl

PECLELTLEL TR n i n b n b r e r i r b r e r b r i r e r b r e i r i n e r i r e riry

S ,09J usam1aq So |2AD Jase | # T = o0alellap
ésuo 11ez uebioas o 1potiad # T = 0910
sassad0.id |9 ||eted jo laqunu # T = sulauop N

19 | e sedy

9|1} anes # 11e1S91 = anes a|l}

(A1 edipotiad sebels aje paulalu | aAres # 1= anes O
Al 1iels # 1ielsal = ally

¢cobeis alepautaiu WOl 1uelsal # 0= le)
1le1sa 1

PHCTEEEEEL LT b n b r i r i r b r e r i i r i n b r i r e r i rrr e e r g

869T=v1 '009T=€1 '0S8=¢
:X suollisod pax 1) je Sadeil JO #

spotiad ul au1y dois
spollad ul au) 1iels
¢sooell

s |99 ul Asepunoq b
S|182 ul Arepunoq 19|
spotiad ul au1y dojs
spoliad u| au1l 1Jels

¢s1o1d Kyisuap ABiaua paty

s 189 u| Asepunoq b 1|
S |22 u1 Arepunoq 143 |
spotiad ul au1} dois
spoiiad ul aull liels
¢siod zq

s |12 ul Arepunog B 11
S |19 u1 Atepunog 19|
spoiiad utl auil dois
spotad ul au 1l 1Jels
¢siod Aq

S |89 ul Asepunog b 11
S||22 u1 Atepunoq 1j)a|
spotiad ul au1y dois
spoliad ul au1l jiels

¢s100d xq

s |92 ul Atepunoq b
S |12 u1 Atepunog 1|
spotiad ul au1y dois
spoiriad ul aull jueils
¢s1oqd ze

s |99 ul Asepunoq b1
1182 u1 Arepunoq 1} |
spotiad ul au1y dois
spoliad ul au1l 1Jels
¢s1o0d Aa
S |89 ul Atepunoq b 11
S |22 u1 Arepunoq 1Ja |
spotiad ul au1y dois
spoiriad ul aull liels
¢s1oqd xa
s |29 ul Arepunog B 11
S |19 u1 Atepunog 19|
spoiiad utl au1l dois
spotiad ul au 1l 1Jeis
¢swod zf

s 189 ul Asepunoq b
S |]eo u1 Arepunog 1Ja|
spotiad ul au1] dois
spoliad ul au1l jiels
¢s1wod AT

s |92 ul Atepunoqg b
1182 u1l Arepunoq 1jo|

HHEFRH HHHE R HHEH R HEHE R HHE R HE A HHHE R HHEH R H R

H*

‘00T=T1 ‘2
S
00T

saoel)
dois™1
1lels)

e}

Saoe.lrg

dois™x
1le1s”x
do1s™ 1
1reis)
o]
suspay

dois”x
1le1s x
dois”1
1reis)
]

a8

do1s™x
1le1s”x
dois™ 1
1reis)
[¢]

Ao

dois”x
11e1s X
dois”)
jleys)

o]

xqe

dois”x
11e1s X
dois”1
1ie)s)

[¢]

za9

dois™x
1le)s”x
do1s™ 1
1reis)
[¢]

Ko

dois”x
1le1s x
dois”1
lleils j

]

X

do1s™x
1le1s”x
dois™ 1
1reis)
[¢]

zf3

do1s”x
11e1s X
dois”1
1reis]
o]

Aty

dois”x
11e1s X

t.fresnel.O, part II.

inpu

The input file pic/lpic/input/i

Fig. 2

8 3 USER’S GUIDE

Fig. 3: Angle of incidence with respect to the normal.

The first pulse parameter Q is used to switch the laser on (Q=1) or off (Q=0).

The field amplitude a is given in dimensionless units

€E0

?
MeWC

ag —

(1)

where Ej ist the amplitude of the electric laser field, e, m., ¢ are electron charge,
mass and velocity of light in vacuum, respectively, and w denotes the laser frequency.

Intensity is expressed in these units as
TN = a2 x 1.37 - 108¥W pum? /em?. (2)

Amplitude ay &~ 1 means, that a single electron in such a laser field will be relativistic,
move with velocity close to the velocity of light and kinetic energy close to its rest energy
mec?. The incident laser pulses can be chosen to contain a mixture of frequencies: The
fields specified by amplitude2 and amplitude3 are given in the same units as the
fundamental field (amplitude) and denote contributions oscillating at 2w and 3w,
respectively. The parameters phase2 and phase3 are the phases of the 2w and 3w
frequency components with respect to the fundamental component w and have to be
given in degrees.

Notice, that the angles of incidence (in degrees), see Fig. 3, cannot be chosen indepen-
dently because of the one-dimensional structure of the code . In case they are different

and both pulses are switched on, &pulse_front has priority and the rear pulse’s angle

LOblique incidence is incorporated in the 1d code using Bourdier’s method [18]. A Lorentz trans-
formation is performed to a frame of reference M which moves in the plane of incidence parallel to the
plasma surface such that the pulse is normally incident in frame M. This is achieved with a frame ve-
locity v = ¢sin « in y-direction, where « is the angle of incidence. Laser wavelength and frequency are
Doppler-shifted in M, A = A\g/ cosa, w = wy cos a, where index 0 denotes the laboratory frame values.

Lorentz contraction occurs only in y-direction, not in z- or z-direction. In M, we impose transverse

3.1 INPUT FOR LPIC++ 9

will be adjusted to be equal to the front pulse’s angle. The remaining pulse parameters
are independent.

The polarization can be chosen as ’s’ (electric field perpendicular to the plane of
incidence, polarization=1), 'p’ (electric field parallel to the plane of incidence, po-
larization=2), and ’circular’ (polarization=3). The pulse duration is expected in
laser cycles. The temporal shape of the pulse amplitude’s envelope is characterized
by linear (shape=1), sinusoidal (shape=2), or sin?-shaped (shape=3) edges. Their
duration raise is again given in laser cycles, respectively, so that the remaining pulse
time with constant maximum amplitude is simply duration—2xraise, as shown in
Fig. 4.

Finally, one can decide to save the temporal profile of the pulse by setting the switch
pulse_save= 1. Then the time step (in laser cycles) for saving is specified by pulse_-

save_step (see section 3.2, output file pulse#£*).

3.1.2 Simulation time (&propagate)

The simulation time in laser cycles has to be entered following the key word &propagate.
The simulation usually starts at time prop_start=0 and stops at time prop_stop,

which may be larger or smaller than the pulse duration.

translational symmetry in y and z direction, and all quantities (densities, fields, ...) depend on only
one spatial coordinate, x. In the laboratory frame L this symmetry means that all quantities have the

same phase velocity component parallel to the surface in y-direction. For details see appendix.

/

duration

time

Fig. 4: Pulse shapes

10 3 USER’S GUIDE

3.1.3 Simulation box, plasma shape and density (&box)

The parameters following the key word &box are used to design the simulation box,
target size and shape, and plasma density, as shown in Fig. 5. The simulation box is dis-
cretized in cells of equal length Ax with numbers 1, 2, ... cells, where cells is the total
number of cells in the simulation box. Parameter cells_per_wl specifies the number
of grid cells in z-direction per laser wavelength Ay in the laboratory frame, cells_left
is the number of initially empty cells left or in front of the plasma, cells_plasma the
total number of grid cells initially occupied by plasma, and cells_ramp the number of
cells in a linear ramp region at the front side of the plasma.

The maximum ion density in the plasma profile is specified by the parameter n_ion_-

over_nc which is the number density of ions in units of the critical density

2 MmeEo

: (3)

Ne = W
o2

see appendix B. Electron density is given by n_ion_over_nc x z, where z is the ion’s

charge state (see below). One can decide to save the plasma profile setting the switch

box_save= 1 (see section 3.2, output file domain-*).

3.1.4 Particle species (&electrons, &ions)

Electrons are characterized by three parameters. The first technical parameter fix
will inhibit moving the electrons in x-direction if set equal to one. This is of course
unphysical, but can be useful for tests.

ppc is the number of macro particles per cell at maximum initial plasma density, see
Fig. 5. Macro particles are groups of electrons containing an extensive number of

real electrons. The number of electrons represented by one macro particle is constant

plasmadensity profile

/— cells

/ cells_plasma

cells left

left boundary right boundary

Fig. 5: Simulation box and plasma density profile

3.1 INPUT FOR LPIC++ 11

throughout the simulation box, and density is varied (e.g. linear ramp) by varying the
number of macro particles per cell. Increasing ppc leads to higher accuracy and lower
noise levels, but also to longer simulation times.

vtherm specifies the inital electron thermal velocity in units of the velocity of light.
For the ions one has to specify two additional parameters, the charge state z of the
ions and their mass m in units of the electron mass.

Concerning the initial thermal electron velocity, one has to be careful for numerical
reasons. In order to prevent numerical heating [15], one should choose vtherm such

that the Debye length is on the order of the spatial grid size Az. This imposes the

Utherm ~ e 21 ‘ (4)
c n. cells_per_wl

A table that relates the thermal velocity to energy in electron Volt is given on the

condition

bottom of any example input file in directory pic/lpic/input/. Notice that for tem-
perature 7" = 0 the heating rate can be so small that the heating may be negligible

during the simulation time of several tens of laser cycles.

3.1.5 Diagnostics (&output, &energy, &flux, ...)

The following sets of parameters specify the output path for LPIC++ data and all
implemented diagnostics. Notice that it is impossible to store all accessable data during
a simulation run, since this would need more disk space than ususally available. One
has to focus on parts of information. Therefore five major groups of diagnostics have
been introduced:

First, diagnostics related to energy balances, absorption and reflectivity (&energy,
&flux, &reflex). They can be switched on and off seperately (Q). Start and stop
time (t_start and t_stop) for the diagnostic and the time step t_step between write
operations to disk have to be specified in laser cycles. If t_step=0 is chosen, data will
be written in every time step (see section 3.2, output files energy-*, ...). &energy
is used to write longitudinal and transverse field energies, total field energy, the total
kinetic energy of all particles, and the total energy in the domain, minus initial energies,
respectively. &flux writes field energy fluxes at domain boundaries, and &reflex leads
to reflectivity calculations at the boundaries. For the reflectivity, floating averages are
taken over one laser cycle, respectively.

Second, spatial &snapshots at fized times can be taken concerning grid quantities like

electron and ion densities, current and field components. The switch and time para-

12 3 USER’S GUIDE

meters have the same meaning as above (see section 3.2, output files snap-*).

Third, phasespace (x, v) snapshots and velocity distributions for electrons and ions,
respectively (&el_phasespace, &ion_phasespace, &el velocity, &ion_velocity), can be
produced at fized times. Phasespace plots take into account all particles of a species.
The corresponding velocity distribution sums the phasespace information over x, but
can be taken independently (see section 3.2, output files phase*, velocity-*, and
section 3.3).

Fourth, &spacetime information can be stored. These are snapshots of grid quantities
taken at every time step between specified times t_start and t_stop (in laser cycles).
The end points x_start and x_stop of the spatial region have to be given in cells.
These diagnostics give a detailed overview over the evolution of plasma and fields in
space and time, but can be quite expensive in disk space. One has to care about
the spacetime window and especially number of spacetime diagnostics one selects (see
section 3.2, output files spacetime-*, and section 3.3).

Finally, grid quantities can be stored at selected positions in space for all time steps
between t_start and t_stop using the diagnostic &traces. Here one has to specify the
number of traces and their z-positions t0, t1, ... (in cells) in addition to switch Q
and time window. (see section 3.2, output files trace-*, and section 3.3).

The diagnostics are far from complete, and the user may change the code and add

further diagnostics (see section 6).

3.1.6 Restarting LPIC++ (&restart)

The &restart parameters are related to the case of a system crash. Setting the switch
Q_save=1 here leads to writing intermediate restart files periodically from which the
simulation could be restarted. The save file name is specified using file_save. After a
crash occured, you set the switch Q=1, set the read file name file equal to the name of
the save file file_save and start the simulation again, as usual. Since LPIC++ saves once
per laser cycle, you will have lost cpu time corresponding to less than one laser cycle.
Except for the above mentioned parameter Q, the input file should remain unchanged
when restarting since the input data is read and used again. However, modifying the
simulation time prop_stop or even the laser pulses could make sense in certain cases.

Restarting LPIC++ also works in the parallel version.

3.1.7 Parallel LPIC++ version (¶llel)

If only the plain LPIC++ version is used, set N_domains=1 and skip this subsection.

3.2 OutPUuT 13

The simulation box can be split in several spatial domains, specified by parameter
N_domains. Starting 1pic_parallel under PVM will then generate N_domains PVM-
tasks, each of them processing a seperate part of the simulation box. Communication
between tasks involves the exchange of particles, fields and currents, as usual. Since
the particles cross boundaries of cells as well as domains, the particle load of the tasks
will generally vary in time (simulation time is spent mainly for moving particles). To
prevent performance losses, it is therefore important to reorganize the box splitting
from time to time setting the switch Q_reo=1. This may lead to exchange of groups
of cells between adjacent domains (tasks), i.e. the boundaries are allowed to move, see
the example in section 4.5. Immediately after reorganizing, all domains will contain
approximately same numbers of particles. The time delta_reo between reorganizations
has to be given in integer multiples of a laser cycle. Indeed, reorganization is already
used to achieve equal particle loads at time ¢ = 0. Therefore it is recommended to have
Q_reo=1 by default.

Of course, the parallel version works also with parameter N_domains=1. Then it does

not need the PVM-daemons running.

3.2 Output

The default output path is pic/data. All tasks write to this directory and produce
similar files whose name endings *-1%, *=2% ...correspond to the domain number, in
some cases followed by time in laser periods. The number of files can be quite large,
especially in case of parallel processing. Some of these files are in ASCII-format and

can be checked or plotted immediately:
1. input.lpi: A copy of the input file you selected.

2. output.lpi: During the initializing procedures all LPIC++ parts (classes) echo
their input (obtained from the input file and from the command line) to this file.

This file is written only by the first domain.

3. error—*x: Comments and error messages.
These files contain output of LPIC++’s error handler. Here you will find useful
debugging information. Whenever LPIC++ crashes, check these files first to find

out where the error occured. This is very unlikely unless you change the code!

4. times-*: Cpu time used for particle pusher, field solver and diagnostics, total

cpu and system time.

3 USER’S GUIDE

5. pulse#1, pulse#2: Selected laser pulses (front pulse, rear pulse).

These files are written in case of pulse_save=1. Columns:

(a) time in laser cycles

(b) dimensionless amplitude

6. domain-*: Initial plasma density profile in this domain. Columns:

(a) cell number (including buffer cells, e.g. -1, 0, see Fig. 22)
(b) z-coordinate of the cell

(c) electron density, maximum normalized to 1

(d) ion density, maximum normalized to 1

(e) number of macro electrons in this cell

(f) number of macro ions in this cell

7. energy—*: Energy balance in the moving frame M, for units see appendix.

Columns:

(a) time in laser cycles

(b) time-integrated energy gain of this domain via electromagnetic field flux

across domain boundaries
(c) total energy in this domain (minus initial)
(d) total field energy (minus initial)
(e) transverse field energy (minus initial)
(f) longitudinal field energy (minus initial)
)

(g) total kinetic energy, all species (minus initial)

8. flux-*: Electromagnetic field flux o« E X B across domain boundaries in frame

M, for units see appendix. Columns:

a) time in laser cycles

(
(b) incoming flux left

(d
(e

)
)

(c) outgoing flux left
) incoming flux right
)

outgoing flux right

3.2 OutPUuT 15

9. reflex—*: Cycle-averaged reflected intensity at domain boundaries, divided by
cycle-averaged incident intensity. Columns:
(a) time in laser cycles
(b) ’reflectivity’ left boundary
(c) 'reflectivity’ right boundary
10. snap-*: Snapshots of grid quantities in frame M.

The ending denotes the domain number and time in laser cycles (e.g. snap-1-5.000:

domain 1, time 5 cycles). For units see appendix. Columuns:

(a) x-coordinate

(b

=

<

(c
(d

=

(&

(
(

y

W W

f

z

h) ion density

(
(
(i
(i

(k

Jx
Jy
J=

)
)
)
)
)
)
g) electron density
)
)
)
)
(1) number of macro electrons
)

(m) number of macro ions

11. velocity—-*: Velocity distributions in the laboratory frame, endings denote do-
main number, particle species (sp0=electrons, spl=ions), time in laser cycles (e.g.

velocity-1-sp0-5.000: domain 1, electrons, time 5 cycles). Columns:

(a) v = velocity / (velocity of light)

(b) number of particles with v, = v (within velocity range Av)

(c) number of particles with v, = v (within velocity range Av)
)

(d) number of particles with v, = v (within velocity range Av)

16 3 USER’S GUIDE

(e) number of particles with ,/v2 + vZ + 02 = v (within velocity range Av)

12. reo—*: Box splitting, domain boundaries, particle numbers per domain. Ending
denotes domain number. These files are only written in the parallel version with

reorganization. Columns:

a) time

b
(c

(d) total number of particles in this domain

(
(b) number of cell at left boundary

)
)
) number of cell at right boundary

)

The remaining files are binary files and have to be postprocessed. These are phasex,

spacetime-* and trace-x*.

3.3 Postprocessing

Directory pic/post/ contains the executable postprocessor, the shell script 1pic.post
and the input file input.post. The source code is contained in directory src/, the ob-
ject directory is obj/. The input file is organized similar to the LPIC++ input files, see
Fig. 6 for an example. There are key words (&traces, &spacetime and &phasespace)
followed by corresponding parameters. Again, only values should be changed, not key
words or parameter names. After editing the input file the postprocessor is invoked

using the shell script by typing
lpic.post

This script creates a subdirectory Post/ in the data directory pic/data/, and the
postprocessor’s output will then be written to pic/data/Post/.

In the following the input parameters in input.post and resulting output are discussed.

3.3.1 &traces, Fourier transforms

Traces are grid quantities (fields, densitites, currents) written at selected positions
(cells) but for each time step in a given time interval. The original binary files
trace-* are postprocessed here. Specify the time window to process (period_start
and period_stop in laser cycles). In the following list of switches (ex, ey, ...) one
can select which quantities to analyze by setting their corresponding switch equal to
one.

Meaning of switches (for units see appendix):

3.3 POSTPROCESSING

17

NN NN
Il
/Il input paraneters for the | pic-postprocessor
11
11

NN NN NNy

&t races

period_start =1

period_stop =20

period_screen = 1

ex = 0, ey =0, ez =0, by = 0, bz =0
fp=1 fm=1 gp=1 gm=1,
P =0, Pr =0, Sr =0, Si =0,
de = 0, di =0, jx =0, jy =0, jz =0
&spacetime

t_start =0

t_stop =9

X_start =0

X_stop =6

i magesi ze = 400

smoot h =1

Q de =0, C_de =6

Q di =0, Cdi =0

Qjx =0, Cjx =0

Qjy =0, Cly =0

Qjz =0, Cjz =0

Q ex =0, C_ex =0

Qey =0, C ey =0

Qez =0, Cez =0

Q by =0, C by =0

Q bz =0, C bz =0

Q edens = 1, C edens = 0.0004

Q kt =0, C kt = le-3

Q kw =0, C_kw = le-3

K_cut =10, Wcut = 10,

x_of f set =0

contour _1 = 100

contour_2 = 200

cont our _3 = 300

&phasespace

period_start = 0.0
period_stop = 20.0
=20

period_step

Qvx =0

Qvy =0

Qvz =0

xmax =5
xof f set =1

Fig. 6: The postprocessor input file pic/post/input/input.fresnel.O.

e ex, ey, ez, by, bz: field components

e fp: right going part of p-polarized light (contributes to ey, bz),
Ft:=1 (E, + cB,), see section 5, Eqs. (11-13)

e fm: left going part of p-polarized light (contributes to ey, bz),

F~ =31 (E,—cB.)

e gp: left going part of s-polarized light (contributes to ez, by),
Gt :=1 (E.+cBy)

e gm: right going part of s-polarized light (contributes to ez, by),
G =1 (E,—-cB,))

2

e Pi: sum of power spectra of right going ey and bz

18 3 USER’S GUIDE

e Pr: sum of power spectra of left going ey and bz

e Si: sum of power spectra of right going ez and by
e Sr: sum of power spectra of left going ez and by

e de, di: electron and ion density

® jX, Jy, jz: current components

in frame M, respectively.
For example, setting ex=1 will generate two ASCII files, ft-ex-trace, ft-ex in di-

rectory pic/data/Post,

1. ft-ex-trace: ’ex’ as a function of time
Column 1: time in laser cycles
Column 2: ’ex’ at first trace position (cell)

Coulmn 3: ’ex’ at second position, etc.

2. ft-ex: power spectrum of ’ex’, square of the absolut value of the fourier trans-
form with respect to time
Column 1: frequency scales to laser frequency
Column 2: power spectrum of ’ex’ taken at first trace position (cell)

Coulmn 3: power spectrum at second position, etc.

and similar for the remaining quantities. Parameter periods_screen is used for taking
the power spectra. It denotes the number of laser periods at the beginning and the
end of the signal, respectively, which are used to cut the signal smoothly off to zero.

One cycle is sufficient here.

3.3.2 &spacetime

Here, the &spacetime files (spacetime-*in directory pic/data/) are postprocessed.
First select the time window in laser cycles, (period start, period_stop) and spa-
tial window in wavelangths \q (x_start, x_stop). The postprocessor will map this
space-time-window to a matrix of size imagesize x imagesize, thereby averageing in

z-direction over smooth cells. The switches Q_de, ...are used to select the quantity

3.3 POSTPROCESSING 19

(in frame M) to process, and the corresponding parameters C_de, ...specify verti-
cal cutoffs, i.e. maximum values to be plotted (for units see appendix). In case of
Q_de=1, for example, electron densities from zero to C_de (for units see appendix)
are then mapped linearly to the range 0 to 255, respectively, and written to the bi-
nary file pic/data/Post/spacetime-de. The file structure is as follows, see Fig. 7:

The first imagesize bytes contain the data corresponding to ¢t = period_start and

t=period_start l l t=period_stop
1 (A i i 1 1
byte | byte byte byte byte | byte
x=period_start x=period_stop 1 1 x=period_start x=period_stop
bytes = imagesize # bytes = imagesize

bytes = imagesize X imagesize
Fig. 7: Data structure of pic/data/Post/spacetime-de.

x_start < r < x_stop, and so on, and the last imagesize bytes correspond to time
t = period_stop. This file can then be plotted, for example using IDL.

In addition to plotting data versus coordinate and time, one can choose Fourier trans-
formations of the same data window with respect to coordinate only (switch Q_kt,
vertical cutoff C_kt), and with respect to both coordinate and time (switch Q_kw,
vertical cutoff C_kw). The results are power spectra (absolut values of Fourier trans-
forms squared), k-space versus time and k-space versus w-space, respectively. In
these cases, additional k-space and w-space cutoffs (switches K_cut, W_cut) can
be set. Here K_cut=1 means that the k-space is plotted from 0 to +ky, and from
—ko to +kg, respectively, where ky is the laser wave number in laboratory frame.
W _cut=1 means that w-space is plotted from 0 to wy. For example, the data is written
to files pic/data/Post/spacetime-kt-de and pic/data/Post/spacetime-kw-de, re-
spectively. The files are organized as follows. Q_kt: The first imagesize bytes contain
the data corresponding to ¢ = period_start and 0 < k/ky < K_cut, and so on, and
the last imagesize bytes correspond to time ¢t = period_stop. Q_kw: The first ima-
gesize bytes contain the data corresponding tow = 0 and —K_cut < k/ky < +K_cut,
and so on, and the last imagesize bytes correspond to frequency w/wy = W_cut.

If you have access to IDL, then the following parameters x_offset, contour_1, con-

20 3 USER’S GUIDE

tour_2, contour_3can be used to define a plotting offset in x-direction and to make
IDL draw contour lines.
IDL scripts are also generated by the postprocessor and written to directory pic/-

data/Post/.

3.3.3 &phasespace

Here, the phasespace files are postprocessed, essentially the output of several domains
is linked to files phasex-*, phasey-*, phasez-* in directory pic/data/Post, where
the ending denotes the point of time in laser cycles. One has to select the time window
(period_start, period_stop), the time step period_step in cycles between phas-
espace output (see corresponding files in pic/data), and switch the velocity compo-
nents (in the laboratory frame) on or off (Q_vx, Q_vy, Q_vz). The resulting binary
files contain phasespace images of size 400 x 400 pixels (bytes). The velocity range is
[—¢, c], and the spatial range corresponds to the width of the simulation box. Each
byte contains the number of macro particles in the corresponding phasespace interval

Az x Av. The file structure is as follows, see Fig. 8: The first 400 bytes contain the

v=-C l | V=+C
1 (A [(I 1 1
byte | byte byte byte byte | byte
x=0 X = box Iength: 1 x=0 x = box length
400 bytes 400 bytes
400 x 400 bytes

Fig. 8: Data structure of phasex—*, phasey—*, phasez-* in directory pic/data/Post.

data corresponding to velocity v = —c and the whole box length, and so on, and the
last 400 bytes correspond to v = ¢. This file can be plotted, for example using IDL.
The parameters xmax and xoffset are used for generating an IDL script that displays

a phasespace movie.

3.4 RUNNING LPIC++ UNDER PVM 21

3.4 Running LPIC++ under PVM

If PVM is available, start the PYM daemons in the background on your parallel (virtual)

machine, e.g. using a hostfile pvmhosts,
pvmnd pvmhosts &

Then the parallel LPIC++ version can be invoked with several domains, e.g.
lpic_parallel input/input.positron,

see section 4.5.

22 4 EXAMPLES

4 Examples

In directory pic/lpic/input/ a collection of example input files is prepared. In the
following we will briefly comment on these examples and show parts of the simulation
results. In order to get used to LPIC++, one should run these examples and compare

the results to those shown in the following.

4.1 Diagnostics

To start, run the input file input.diagnostics,
lpic_plain input/input.diagnostics &

This will only demonstrate all available types of output files in directory pic/data/ in
case of the plain version.
Try also input.pulse for two laser pulses propagating in opposite direction through

an empty box.

4.2 Performance

The input file input . performance is designed to test the performance of the computer,
where you are running LPIC++. QOutput is reduced to a minimum. The essential
parameters are: 100 cells plasma, 100 particles per cell, 100 time steps per laser cycle
and only one cycle of simulation time. This makes 100 x 100 x 100 = 10° particle
pushes in total. The output to screen shows the cpu time in seconds used for pushing
particles, propagating fields, output diagnostics, and the total cpu time of this run.
Particle pushes generally contribute the dominating part to the total simulation time.
Here, one obtains the time for a single particle push by dividing the particle time by

10%. Table 9 shows the time per particle push for several platforms we tried.

4.3 Reflection from Overdense Plasma

Next, consider reflection of a laser pulse from an overdense plasma slab with step-
like shape, input file input.reflection. Some results are given in Fig. 10. Light
is totally reflected from the plasma surface, but notice the precurser [20, 15] of E,
in Fig. 10 (a) running with vacuum velocity of light into the overdense plasma. At

later times, the amplitudes of E, and B, show the typical exponential decay inside

4.4 REFLECTION FROM UNDERDENSE PLASMA 23

Computer Compiler + Option Time per Particle Push [pus]
Pentium 100 MHz, Linux g++ -03 12.8
RS6000 P2SC@135 MHz x1C -03 -Q -qarch=pwr2 2.1

-qtune=pwr2 -qalign=power
RS6000 P2SC@120 MHz x1C -03 -Q -qarch=pwr2 2.6
-qtune=pwr2 -qalign=power
RS6000 Model 590 x1C -03 -Q -qarch=pwr2 4.3
-qtune=pwr2 -qalign=power
RS6000, PowerPC 604e x1C -03 -Q 4.8
43P-140 (AIX 4.1.5)
RS6000 Model 250 x1C -03 -Q 16.8
Cray T3E-600 LC512 CC -03 3.8
DEC Alpha eV5 (21164)

Fig. 9: LPIC++ performance on various platforms.

the plasma (skin effect), modified here due to the fact that the plasma slab is fi-
nite. Fig. 10 (b) shows the built-up of the standing wave in front of the surface.
[ts amplitude is eE,/(mewc) = 0.02. Fig. 10 (b) was created using IDL and the
idl-script pic/data/Post/idl-edens.pro. To postprocess the LPIC++ results you
can copy the template input file pic/post/input/input.post.reflection to file
pic/post/input.post.

4.4 Reflection from Underdense Plasma

The following cases deal with reflection of low intensity light from underdense (n./n. =
0.64) steplike density profiles. The LPIC++ results in Figs. 11 — 13 show the reflected
intensity versus time. They are compared here with numerical solutions based on Fres-
nel’s formulas [21, 10]. The laser pulses have rectangular shapes, so that their spectra
contain broad frequency bands. Therefore the amplitude of the reflected intensity is
not constant in time but varies and converges slowly towards the Fresnel-reflectivity.
The numerical solutions are obtained using the program pic/fresnel/fresnel. The
reader can find all necessary information for compiling and using in pic/fresnel/-
README.

Now run the LPIC++ input file input.fresnel.O for normal laser incidence and com-

24 4 EXAMPLES
0.02 I E————————.
§ 4.0x10" %
0.01 | s ,
= 3.0x10" i
) -]
3, =]
£ 000 | H 2.0xwo’4§
001 | 1.0x10" %
0
Q02+ .1 OwWl . . v, [v, v,
5 4 5

(a)

Fig. 10: Reflection from overdense plasma.

X/

Parameters: Square pulse, ag = 0.01,

a =0, n./n.=5. The plasma slab is located between x =2 and v = 4. (a) E, versus

coordinate at times t =2 and t = 4. (b) Field energy density versus coordinate x and

time t. For units see appendix.

pare to Fig. 11. Additional files for various angles and both polarizations (s, p) are

also prepared (input.fresnel.25s, input.fresnel.25p, ...). The input files with

endings _fine use especially fine meshes for accurate results.

4.4 REFLECTION FROM UNDERDENSE PLASMA 25

PIC
x Fresnel
—————— Asymptotic

r2sp

a”a . 200 30.0
() (b) th

Fig. 11: (a) Fresnel reflectivity for ne/n. = 0.64. The Brewster angle is o, = 31.0° in
this case, the angle of total reflection is a. = 36.9°. (b) A linearly polarized low intensity
(a3 = 107*) laser pulse with rectangular shape is incident under o = 0. Reflected
intensity ((F~)*+(G™)?) is plotted versus time. LPIC++ results are plotted by means of
lines, the crosses denote the numerical solution based on Fresnel’s formulas. The dashed
line is the reflected intensity R?-a? for a infinite plane wave, where R = (1—N)/(1+N)
for a« =0 and N* =1 —n,/n..

(F)’ + G

PIC PIC
3e-05 ¢ x Fresnel 1 3e-05 ¢ x Fresnel
—————— Asymptotic | ~__ ------ Asymptotic
+
O
2e-05 =~
+
NA
””” o L
le-05 ¢ ~
0e+00

0.0 10.0 20.0 30.0
tht

Fig. 12: (a) a = 24.6°, s-polarization. (b) a = 24.6°, p-polarization.

26 4 EXAMPLES
6
PIC PIC
3e-05 ¢ x Fresnel 3e-05 ¢ x Fresnel
T BN 11— Asymptotic | o
S 2e-05 i i S 2e05 |
+ +
L 1e05 | L 1e05 |
0e+00 0e+00
0. 10.0 20.0 0 10.0 20.0 30.0
tht
(a) (b)
Fig. 13: (a) a = 30.45°, s-polarization. (b) o = 30.45°, p-polarization.
le-04 |- ;E:’géﬁél’ ””””””””””””” le-04 |
Asymptotic i y E:gsnel - ol
~ ¢fl ~ | Asymptotic
+g +g)eea
+ 5e05 | + 5e05 | i
n n
0e+00 0e+00 me
0. 10.0 20.0 0. 10.0 20.0 30.0
tht
(a) (b)

Fig. 14: (a) a = 37.47°, s-polarization. (b) o = 37.47°, p-polarization.

4.5 PARALLEL VERSION AND RESTART 27

4.5 Parallel version and Restart

Input file input.positron can be used to test the parallel LPIC++ version and the

effect of killing and restarting the process(es),
lpic_parallel input/input.positron &

In this example, we use a strong laser pulse from the left and ’ions’ with electron mass,
so that the whole plasma is pushed by the laser to the right within a short time period
(20 cycles). The simulation box is split into three domains, and the box is reorganized
once per period, starting at ¢ = 0. Fig. 15 (a) and (b) show the electron and ’ion’
density, respectively, versus coordinate and time. This result is also obtained with
killing and restarting LPIC++ at some intermediate stage of the simulation, and also
when using the plain LPIC++ version. Fig. 16 (a) shows the box decomposition versus
time, where the lines are the cell numbers at domain boundaries. Fig. 16 (b) shows

the total number of particles in each domain.

t/r

(a) (b)

Fig. 15: A laser pulse with amplitude ag = 0.5 is normally incident on a plasma slab
with ne/n. = 6 and equal electron and ’ion’ masses and charges. (a) Electron density

versus coordinate and time. (b) ’Ion’ density versus coordinate and time.

4.6 More Examples

Moreover, directory pic/lpic/input contains prepared input files for simulating the

generation of laser harmonics by interaction of an ultrashort laser pulse with a step

28 4 EXAMPLES

6000
500 domain 1
4 domain 2

— 400 r § //i,’ 3 - domain 3
é § 4000 vy W]

300 [B Vo e T e
g 20 s e é 2000 |

100 | ;2

0 : : : 0 ‘ : ‘
t/'l: t/'l:

(a) (b)

Fig. 16: Reorganization: (a) domain interfaces, (b) number of particles.

5 10
incident
4 oty reflected
N_ $
3 Wi 5
c e 10
o
w107
N
1
10°
0
10 - | [
0.0 5.0 0.0 15.0 20.0
w/w,

Fig. 17: Generation of laser harmonics. Parameters: dimensinal amplitude ag = 0.5,
electron density in units of the critical density ne/n. = 4. The plasma slab is located
between x/Xg = 3 and x/Ng = 4. (a) n./n. versus coordinate and time. (b) Power

spectrum of incident and reflected light.

boundary of a plane overdense plasma layer (input.harmonics.*), see Fig. 17, and
input files input.2omegap.* are for simulating the generation of radiation at 2w, from

inverse two-plasmon decay in overcritical plasma [10].

29

5 Algorithm

LPIC++ solves Maxwell equations for the fields and the equations of motion for macro
particles simultaneously.
The relativistic equations of motion for a collisionless plasma,

pZQS(E+v XB), b =m0, (5)

P =w, v =1/1+ (p/msc)’
are solved for each particle once per time step At. The macro particles contribute
to charge and current densities p and 7 on a spatial grid with spacing Az. Maxwell
equations

VxE=-0B, VxB=

|
5+ gatE,

1 (6)
V-B =0, V-E=—p
are then solved on this grid. This procedure is iterated leading to the selfconsistent
evolution of plasma and fields. The PIC-cycle is shown in Fig. 18, and our grid structure

is shown in Fig. 19.

5.1 Maxwell Equations

In one spatial dimension, the integration of Maxwell equations is divided into two parts,
integration of transverse fields E, , and B, ., and integration of the longitudinal field
E,.

Integration of Maxwell equations on the grid

p(x), j(0) —= E(X), B(X) |

charge and current deposition Interpolation
X,V —e px) ,jX) E(X), B(x) - F(X)

Integration of equations of motion
Fx) —e v,X

Fig. 18: PIC code cycle.

30 5 ALGORITHM

B! B!

+1
B 0B,
jn_.l/Q n jn_'i{Q
,ZI 7 T,
1 w7 |
Tiq T; Ti41

Fig. 19: Grid structure: The macro particle belongs to cell i if its center x lies in x; <
x < mjy1. Charge and transverse currents are located in cell centers, electromagnetic

fields and longitudinal currents are located at cell boundaries.

5.1.1 Transverse Fields

In one spatial dimension, Maxwell equations for the transverse fields can be rewritten

in the following way [15]:

(0r — c0y) (Ey —cB,) = _S_ijv (7)
1.
(Oy+¢0Oy) (B +cB,) = —g—jy, (8)
0
1.
(0y —c0Oy) (B, +cBy) = ——Je 9)
0
1
(0y+¢0y) (B, —cBy) = _;jz’ (10)
0
which can be combined to
(0, £¢c0,) F*f = —ijy, Fra— 2 (E, £¢B,), (11)
250 2
(O Fed) GF = ——j., G =1 (B.+cB). (12)
250 2

The fields are obtained from F'* and G* by

E,=Ft4+F~, ¢B,=Ff—F~,

13
E,=G*+G~, ¢B,=G*—G". (13)

The quantities F'* and G* are integrated along vacuum characteristics. F'* is the right
going contribution to E, and B,, F~ the left going contribution. Similarly, G* is the
left going contribution to E, and By, and G~ the right going part.

The discretized version for F'™ in Eq. (11) reads

At N 260

Ft(z+ Az, t+ At) — F'(x,t) 1 . Ax At
(2 5+),

5.2 EQUATION OF MOTION 31

which is centered in space and time. The grid step Az is connected to the time step
At by
Ax = cAt,

so that the vacuum dispersion is exactly fulfilled. In summary we have

Fran+1) = B - 350, (14
Frn+) = Faun) - o5t (15
Giln+1) = Gh(n) - 3= ot (16
Ganln +1) = Gy(m)— 357201 (17

Here, index i stands for the cell coordinate x; = iAx (see Fig. 19) and n for the
time ¢, = nAt. Light waves are coupled into the simulation box simply by imposing
boundary conditions on these quantities F* and G*.

For units used in LPIC++, see appendix.

5.1.2 Longitudinal Field

According to Villasenor and Buneman [16], we use only currents to integrate the lon-
gitudinal equation of motion. In one spatial dimension, one finds from Ampere’s law
(Vx B), =0,B,— 9,B, =0 = j,/e0¢* + OE,/c* the following local procedure,

OB (z,1) = —6—10jw(x,t). (18)

Its discretized time and space centered version reads

At
Bt = B - — g, (19)
gy
which is equivalent to solving Poisson’s equation using the charge density, which is a
global procedure in space.

For units used in LPIC++, see appendix.

5.2 Equation of Motion

A time-centered 'Leap-Frog’ scheme according to Birdsall and Langdon [15] is used for
integrating the equation of motion, i.e. particle position x(t) and velocity v(t + At/2)

are staggered in time.

32 5 ALGORITHM

Since arbitrary polarization can be chosen for the laser light, three velocity components

are taken into account. The relativistic equation of motion
1
mou=q|E+—uxB|, u = YU
g

is integrated using the method of Boris [19] cited in Birdsall and Langdon [15]. Fields
given at time t = nAt are interpolated linearly to the particle position from neighbour-

ing grid points. The discretized and time centered version of the equation of motion

then reads
un+1/2 _ ,uITlfl/2 q n 1 +1
_q L 12 n—1/2 n
o = E+2fyn(u +u") x B"). (20)
Substituting
W —w — LEAL wt? = ut LB AL (21)
m 2m
leads to N
u"t —u q + — n
- x B 22
At 2m~ym (u o) ’ (22)

which describes a rotation of vector u~ to u™, since multiplying Eq. (22) by (u™+u™)
one obtains (u™)? — (u™)? =0 and 4" = \/1 + (ut/c)? = \/1 + (u=/c).

This corresponds to a three-step acceleration, first, ’half acceleration’, second, ’rota-

tion’, third, "half acceleration’.

We combine Birdsall’s and Langdon’s [15], two-step rotation

u = u +u xt,

ut = u +u xs,

where t = B qAt/(2m~") and s = 2t/(1 + t%), into

1 — 5,1, — syty S, — 8y
ut = -5, 1—s,t, sty u~ (23)
Sy Syt 1 — syt

with an error in angle between u™ and w™ on the order of O(¢?).

Velocity is finally integrated to give the new particle position

un+1/2

P = T AL (TP = 1 @) (24)

For units used in LPIC++, see appendix.

5.3 CHARGE AND CURRENT DEPOSITION 33

5.3 Charge and Current Deposition

The following scheme is taken from [16] and has been reduced to one spatial dimension.
We consider a particle with position 2" at t" = nAt in x; < 2" < x;11/2, as shown in

Fig. 19. Its charge contribution to cells : and ¢ — 1 at time ¢" is

1 —x; 1 —x;
v =7 e/Te \ & - y nﬁ =7 e/Te |\ 5 — -) 2
pi = Zne/n <2+ Az) piiy = Zme/n (2 Az > (25)

dimensionless units are used, see appendix. A particle can only be shifted by less than
than Ax = ¢ At. Three cases have to be distinguished concerning the particle’s final

position (z"*!) which lead to different charge and current depositions:

Loa; <a™ <mipipp N micip < o™ <

Charge contributions only to cells 7 und i — 1 at time ¢"*!
1 n+1l _ .. 1 n+1l _ ..
p?+1:Zne/nc<§+u>, pz_wllzzne/n(:(i_u)_
x

From the equation of motion

== (-)

one obtains immediately the longitudinal current contribution at the boundary
between cell i — 1 and 1,
xn—l—l — "

Ax

Jei =0 pi = Zne/n.

The time centered transverse current contributions in cell 7 and 7 — 1 are

R et A AN (B S ek ik . i
Yy 2 c e\ 2 2 Ax 2 Az c
and
/2 _ P+ R U;L+1/2 = Zne/n 1 2"+ o U;L+1/2
Y-l 2 c ere 2 Az 2 Az c

respectively, and similarly for j,.

2. <a" <xiprp N 2T <aiip

Charge and transverse current contributions to three cells and longitudinal cur-
rent contributions at two cell boundaries. The time step At has to be split in
two parts, € and (1 — €), where

n
T —Ti-1/2

€= xn — pntl :

34 5 ALGORITHM
During time €At there is longitudinal current across the boundary between cells ¢
and i — 1, charge contributions to cell i and i — 1. During time (1 —€)At cells i —1,
© — 2 and their interface are involved. The following contributions are weighted
time averages (over At). Current density contributions at time t"*! are

+1
/2 (1 l"n—l"i> /2 l_x" —x;
]m,z ne/nc 92 + Ar)]m,zfl ne/nc 9 Ax)
n+1/2 n+1/2 n+1/2
n+1/2 v n+1/2 v n+1/2 v
];:r /? = (pi) yT, J;,;r_{ = (pi-1) .)];,;r_é = (pi-2) . c
where
ne/1l z"—ux
N o — gzt [z
pi) n62<2+ Az >’
n (e /3 2"—u 1—e€ (3 "' —a
(pi-1) = Z— —<—_ > 5)
ne | 2 \2 Az 2 2 Ax
nl—e (1 z"'—zx_,
i = Z— - |.
{pi2) Ne 2 (2 Ax
Similar results are obtained for j,.
3. w <a™ <xiyip A 2" > i

Longitudinal current across two interfaces. The same procedure as above leads

to
T = Tip1)2

€= xn_xn+1’

density contributions in cells 7 and 7 + 1

n 1 2™ — " 1™ — iy
pi+1:Zne/nC <§_T y pi:ﬁl:Zne/nc §+T y

and current contributions

nt1/2 1 a"—u ni1/2 1" =y
]I:i —Zne/nc (5_ Az Z>7]x,i+1 _Zne/nc <§+TZ)
+1/2 vyt +1/2 vt/ +1/2 vp /2
Jyi-1 = (pi-1) . c Jy.i = (pi) . PR Jyi+l = (Pit1) . c
where
ne /1l z"—ux
) = Z—< (=- ,
{pin) Ne 2 <2 Ax)
n (e /3 2"—u 1—¢ (3 a"! —ax,
i) = Z— 95| 3 —— ,
i) nc{2<2+)T (2 Az
nl—e (1 a"'—2.,
i = Z— L
pisn) Ne 2 (2 + Az

Similar results are obtained for j,.

5.3 CHARGE AND CURRENT DEPOSITION 35

Three analogous cases have to be distinguished for initial particle position in z;;/; <

" < Tiy1-

36 6 LPIC++ CODE

6 LPIC++ Code

6.1 Data Structure

A macro particle is represented by a C data structure defined in /pic/lpic/src/-

include/particle.h and shown in Fig. 20.

#i f ndef PARTICLE_H
#defi ne PARTICLE_H

#i ncl ude <cell. h>

struct particle {

i nt nunber ; /1 number of this particle
i nt speci es; /1 particle species, 0O=electron, 1=ion
struct cell *cel | ; /1 pointer to the cell this particle belongs to
struct particle *prev; /1 pointer to the previous particle in this cel
struct particle *next; /1 pointer to the next particle in this cel
i nt fix; /1 fixed species? 0->no, 1->yes
doubl e z; /1l charge of the micro particle in units of e
double m /1 mass of the micro particle in units of me
doubl e zm /'l specific charge, z/m
doubl e x, dx; /1 position and shift within one tinmestep
doubl e i gammm; /1 1nverse ganmma factor
doubl e ux, uy, uz; /1 gamma * velocity
doubl e n; /] particle density in units of n_c
doubl e zn; /1 contribution of the particle to the charge density
/1 inunits of n_c (=z * n)
b
#endi f

Fig. 20: C data structure particle.

In addition to physical parameters z . . . zn, you find the unique particle number number,
its species number species, a switch fix for fixing the macro particle, and three
pointers.

Particles that belong to one cell, are linked in a chained list of particle structures,
where each particle points to the preceeding (*prev) and following (*next) particle in
the list. If there is none, *prev and *next are NULL-pointers, respectively. Moreover,
each particle points to the cell it belongs to (*cell).

The cell itself is represented by a C data structure defined in /pic/lpic/src/include/
cell.h and shown in Fig. 21. It contains physical parameters like the position x of
the left cell boundary, total charge, currents jx, jy, jz, fields ex, ..., gm and
particle densities dens[2]. For book keeping, a unique cell number and the number
of macro particles within this cell (np[2], npart) have been added. From each cell
the list of these particles can be accessed using the pointers first, last, insert.
If there are no particles in a given cell, these pointers are NULL-pointers. The cells

in turn are also linked in a chained list, see Fig. 22, so that they contain pointers to

6.1 DATA STRUCTURE 37

#i fndef CELL_H
#define CELL_H

#i ncl ude <particle.h>

struct cell {

int nunber ; /1 nunber of this cel
int donai n; /1 domain nunber it belongs to
struct cell *prev; /'l pointer to the previous (left) cel
struct cell *next; I/ pointer to the next (right) cel
doubl e x; /] position of the left cell boundary in wavel engths
doubl e charge; /'l charge density in units e*n_c
double jx, jy, jz; /1 current density in units e*n_c*c
doubl e ex, ey, ez; Il electric fields in units nronega*c/e
doubl e bx, by, bz; /1 magnetic fields in units nfonegale
double fp, fm gp, gm 11
doubl e dens[2]; I/ densities for each species in units n_c
int np[2] ; Il # of electrons [0] and ions [1]
int npart; Il # particles
struct particle *first; /] pointer to the first particle
struct particle *last; /] pointer to the last particle
struct particle *insert; /] pointer to particle, in front of which new particles
/'l have to be iInserted
b
#endi f

Fig. 21: C data structure cell.

adjacent cell structures. Here, adjacent cell structures correspond to adjacent cells in
the one-dimensional coordinate space.

In the parallel version of LPIC++, the whole grid (simulation box) is split into several
domains each containing a fraction of the grid represented by chained lists of cells. The
domain number domain then denotes the number of the domain a given cell belongs
to. At domain boundaries, two buffer cells are added, respectively, which are necessary

for exchanging particles, fields and currents between adjacent domains.

L buf I buf ! domain ! rbuf Rbuf
1 N 0 TN 1 R ") o
- n [n n
\ A N %, A
cell number

Fig. 22: Chained lists of cells and particles.

38 6 LPIC++ CODE

6.2 Classes, Dependencies and Files

All LPIC++ routines are member functions of C+- classes. These classes and their

dependencies are described in the following, see Fig. 23.

Fig. 23: Classes and their dependencies.

Parameter reads the command line parameters when calling LPIC++, i.e. domain
number and input file name. Moreover, it reads laser pulse parameters (e.g. angle of
incidence) from the input file and provides a few commonly used parameters. For details
see parameter.C and parameter.h. For reading, parameter uses class readfile, see
Fig. 24.

readfile

Fig. 24: Classes parameter and box.

Box organizes the communication between tasks and the periodic reorganization of
domains in the parallel LPIC++ version. It contains the classes domain and network,
see Fig. 24. Network contains all routines for starting tasks, exchanging particles,
fields, currents and cells between adjacent domains. Domain mainly initializes the
grid (chained list of cells) and particles in these cells for the given domain. Moreover,
box contains an input class which is called here input_box and is responsible for

reading necessary parameters from the input file. Input_box in turn uses readfile.

6.2 CLASSES, DEPENDENCIES AND FILES 39

This type of reading input data is used in nearly all LPIC++ classes. The classes are
contained in *.C and *.h files with corresponding file names.

Pulse contains all variables and functions necessary to specify a laser pulse. This class

is used for both laser pulses in LPIC++, for the front and for the rear pulse, respectively.

Fig. 25: Classes pulse and propagate.

Propagate contains the main loop of LPIC++, i.e. the particle push and field propa-
gation. The corresponding function definitions and declarations are distributed in this
case over four files, propagate.C, propagate_fields.C, propagate_particles.C and
propagate.h. For initializing itself, it uses the classes input_propagate and readfile,
see Fig. 25. Class stack is used for moving particles across cell boundaries, i.e. ex-
tracting particles from and inserting particles into chained particle lists of adjacent

cells.

s

Fig. 26: Class diagnostic.

Diagnostic coordinates all diagnostic routines, which are distributed over the diagnos-

tic classes, see Fig. 26. For further information see diagnostic.C and diagnostic.h.

40 6 LPIC++ CODE

diagnostic_stepper

readfile

Fig. 2T Classes used for all diagnostic classes except for readfile and

input_diagnostic.

All diagnostic classes except for readfile and input_diagnostic use input_* and
readfile for initialization and diagnostic_stepper to store space and time related
information, see Fig. 27. Moreover, spacetime uses diagnostic_stepper for each
quantity, electron density, ..., energy density.

The names of the diagnostic classes are self-explaining, cf. section 3.1.5, and the corre-
sponding routines can be found in diagnostic_*.C and diagnostic_*.h. El_velocity
and ion_velocity are derived from class velocity. See diagnostic_velocity.C and
diagnostic_velocity.h for more information. El_phasespace and ion_phasespace
are both derived from class phasespace, for further details see diagnostic_phase-
space.C and diagnostic_phasespace.h.

Poisson is not used so far. It solves Poisson’s equation for the electrostatic po-
tential and the longitudinal electric field. If the initial total charge distribution is
not zero, poisson has to be used to initialize the longitudinal field. For details see
diagnostic_poisson.C and diagnostic_poisson.h.

Class error_handler is contained in files error.C and error.h. It contains functions
for writing error messages and comments to a specified error file, here error-* for each
domain. Class error_handler is a member of nearly all LPIC++ classes and is ususally
initialized in their constructors.

Class uhr in files uhr.C and uhr.h is used for measuring cpu and system time. Vari-
ables of type uhr are defined and initialized in function propagate: :loop() in order
to measure cpu time for particle pushes, field propagation, diagnostics and total simu-

lation time.

6.3 PROGRAM FLOW 41

6.3 Program Flow

The rough program flow can be seen in function main which is shown in Fig. 28.
#i ncl ude <main. h>

I NN NN NNy
int main(int argc, char **argv)

Il initialize classes [[//I/IIIIIIITIEEITTETTETEEEEE L inrrnrl

paraneter p(argc,argv); /'l read paraneters
char errnane[fil ename_si ze] ;
sprintf(errnane, "%/ error-%", p.path, p.domain_nunber);
static error_handl er bob("nain",errnane); /1 error handler for nain.C
box sim(p); /1] init donein, cells, particles
/1 spawn task for the follow ng domain
pul se laser_front(p,"&ulse_front"); /1 init laser pulses
pul se | aser_rear(p,"&ul se_rear");
di agnostic diag(p, & simgrid)); /1 init diagnostics
propagate prop(p,simgrid); /1 init propagator

1 wain Loop [/ /11T iy
prop. | oop(p,simlaser_front,|aser_rear,diag);
PEoexit LILTPTPEPEEE iy

return nmain_exit(p,sin; /1 stop parallel task

}
FOLLLEEEEEE i b r i r i r i i r i i r i i rr
/1 ECF

Fig. 28: Function main.

Variables of type parameter, error_handler, box, pulse, diagnostic and prop-
agate are initialized sequentially, before the main LPIC++ loop is entered. In the
following, a detailed description of the program flow is given, for even more details

check the LPIC++ code.

class parameter:
e read parameters from command line and input file
e adjust angle such that number of steps per period in M is an integer

e save (adjusted) parameters to output.lpi

class error_handler:

e initialize class error_handler in main

42 6 LPIC++ CODE

class box:
e initialize class network (communication between tasks)
e initialize class domain (grid, cells, particles)

— determines boundaries of domain from domain number

— create chained list of cells, set cell numbers, domain pointers to left

and right cells, set fields equal to zero, set normalized densities
— allocate and link particles to cells, initialize particles
— check particel numbers, positions and total charge in domain
— write cell information to file domain-*: cell number, x-position,
densities and # of particles in cell
e spawn task for the following domain

e initialize the counter for reorganization

e introduce global particle numbers (communicate with neighbour do-

mains)

e get the total particle numbers in the simulation box (communicate with

neighbour domains)

e adjust the size of the domain: reorganize for the first time in order to

have a balanced load on all processors to start with

class pulse (for both pulses: laser_front and laser_rear):
e initialize classes pulse

e save pulse shape in file pulse#* (*=1 for front and *=2 for rear pulse), but

only in the first domain

6.3 PROGRAM FLOW

class diagnostic:

e initialize the following classes: poisson, snapshot, el velocity,
ion_velocity, flux, reflex, spacetime, energy, trace, el_phasespace,

ion_phasespace: initialize specific diagnostic parameters

e use class diagnostic_stepper in each of them: initialize general diagnostic

parameters

e initialize class diagnostic

class propagate:
e initialize class stack: create stack for particle transfer between cells

e initialize class propagate

main loop of LPIC++: prop.loop(p,sim,laser_front,laser_rear,diag)

e uses parameter, box (including domain and network), pulses and di-

agnostics
e initialize classes uhr
e start clock

e the main loop starts at time=start_time and continues until time=stop_time

clear_grid: set cell charge, dens[] and jx, jy, jz to zero for all cells

in domain

44

6 LPIC++ CODE

particles:
e the following is performed for all particles in this domain:

— deposit_charge: update of charge and dens|| in each cell
of this domain, not necessary for the local algorithm

(charge distribution of the preceeding half time step)

— accelerate: acceleration according to Boris (in Birdsall,
Langdon): interpolate fields to particle position, then

half acceleration, rotation and second half acceleration

— move: move the particle: calculate part—dx and

part—x

— has_to_change_cell: determine whether the particle has
to leave its cell; in case it has to, put a marker for it on
the stack

— deposit_current: calculate the particle’s current contri-
butions; the currents are calculated from the continuity
equation, assuming rectangular particle shape and area
weighting (J.Villasenor and O.Buneman, Comp. Phys.
Comm. 69 (1992) 306-316)

e do_change_cell: the markers for the particles which have to
leave their cells are now removed from the stack and the cor-
responding particles are linked to their new cells; cells Lbuf

and Rbuf remain empty, but particles may have moved to Ibuf
and rbuf

e mask_current: makes currents invisible near the box bound-
aries: this routine sets the currents smoothly equal to zero
in a region of size 2xMASK at the left and right boundary
of the simulation box; this inhibits artificial radiation at the

boundaries

6.3

PROGRAM FLOW 45

sim.talk.particles:

send /receive particles to/from neighbour domains:

e particles can move into the two buffer cells lbuf and rbuf
within one time step, therefore particles are only sent from

these two buffers and received into right and left

e domain particle numbers are updated

sim.talk.current:
send/receive current contributions and copies to/from neighbour

domains:

e current contributions are sent from all four buffer cells (Lbuf,
Ibuf, rbuf and Rbuf) and received into right, right—prev, left
and left—next, they are added to the actual currents in these

cells

e for the field propagation a copy of jy and jz is needed in Ibuf:
a copy of currents jy and jz is needed only at the left boundary
(in Ibuf) in order to propagate the fields F* and G~ in cell
"left”. For the propagation of F~ and G* at the right bound-
ary "right”, the currents in cell "right” are sufficient. See

MPQ-Report 219 p. 22 or propagate::fields in propagate.C

46

6 LPIC++ CODE

sim.talk.density:
send /receive density contributions to/from neighbour domains: cell

charge and densities dens[| are sent from Ibuf and rbuf and received

into right and left, they are added to the actual values in these cells

fields:
propagate fields in this domain; the incident laser pulses enter as
time dependent boundary conditions for the transverse fields at the

boundaries in the first and last domain

sim.talk.field:
send /receive field copies to/from neighbour domains: field copies

are sent from left and right and received into rbuf and Ibuf

diag.out:

diagnostic output depending on various switches and counters

6.3 PROGRAM FLOW

47

sim.reorganize:

depending on the reorganization counter:

e counts particles in domain: n_el, n_ion, n_part and checks

whether they are still correct

e processor load is mainly determined by the number of par-
ticles handled, aim: almost the same number of particles on

each processor

e writes to error—*: deviation of particle number from ideal

particle number in percent

e reorganizes simulation box in order to have a balanced load

on all processors

e reorganize in forward direction, from the left end of the box
to the right end

e attention: do not use reorganize_f while information is stored
in buffer cells (e.g. fields, charge, ...), do use it when the
buffer cells are empty, e.g. in the main loop after a whole

cycle.
e receive request from previous domain:

— it has enough cells and nothing happens

— it wants to get rid of some cells/particles and send them

to this domain:

1. get the number of cells and particles which will be
received from prev

2. allocate memory for cells and particles and link cells
to domain, link all the particles to the first cell (left)
and update n_left, n_cells, n_part

3. receive and unpack the cells and particles from prev,
and determine number of electrons/ions received

and update n_e and n_ion

48

6 LPIC++ CODE

— it has not enough cells and requests a certain number of

cells:
1. determine number of cells and particles actually to
be sent to previous domain
2. inform previous domain of these numbers

3. pack cells and particles linked to them (start with

cell left) and send them to the previous domain

4. delete memory which is still allocated by already
sent cells and particles and update n_left, n_cells,
n_el, n_ion, n_part, lbuf and Lbuf, lbuf—next and

the pointer cell—prev of the first occupied cell

e determine request of this domain:

— it has enough cells and nothing happens

— it has too many cells/particles, they are sent to the next

domain:

1. determine number of cells and particles to be sent

to next domain

2. inform next domain of these numbers

3. pack cells and particles linked to them (start with
cell right) and send them to the next domain

4. delete memory which is still allocated by already
sent cells and particles and update n_right, n_cells,

n_el, n_ion, n_part, rbuf and Rbuf, rbuf—prev and

the pointer cell—next of the last occupied cell
— it needs more particles:
1. get the number of cells and particles which actually
will be received from next

2. allocate memory for cells and particles and link cells
to domain, link all the particles to the last cell

(right) and update n_right, n_cells, n_part

3. receive and unpack the cells and particles from next

and determine number of electrons/ions received

6.3 PROGRAM FLOW 49

diag.count:

increase diagnostic counters for: poisson, snapshot, velocity, flux,

reflex, spacetime, energy, trace, el_phasespace:

‘sim.count_reorganize: increase reorganize counter ‘

‘ zeit.add: update clock ‘

e after the main loop has finished, the clock is stopped

main_exit:
e stop this PVM task

e exit program

50 A MOVING FRAME FOR OBLIQUE INCIDENCE

A Moving frame for oblique incidence

Oblique incidence is treated using Bourdier’s method [18]. As shown in Fig. 29, a
Lorentz transformation is performed from the laboratory frame L to a frame M which
moves in the plane of incidence parallel to the plasma surface such that the laser pulse
is normally incident in M.

Frame M moves with velocity vy = §csina in y-direction of frame L. Therefore the
transformation parameters are

1 1

V1—p32 " cosa’

A four-vector x# = (z¢, T1, T9, x3)T transforms as z#(M) = La#(L), where the matrix

0 =sina, I'=

(26)

L is given by

r 0 —GT 0
|l o 1 0 o
-6 0 I' 0
0 0 0 1
The results are:
1. Frequency and wavevector, k* = (w/c, k)T
wl = wy wM = wy cosa
ko cos « ko cos «
. ’ ¥ ! (27)
k" = ko sin v k" = 0
0 0
| L) | (M)
w = wy W = Wocosw streaming
ky = kocosa [plasma at rest ky, = kocosa plasma
k, = kysina k, = 0
Y _ ° iniy _;»X ! > H »X
y laser \h
v/ec=sina
laser

Fig. 29: Laboratory frame L with oblique incidence and moving frame M with normal
incidence. In M, the plasma streams parallel to the surface. Frequency and k-vector of

the incident light are shown for both frames.

ol

Laser light is Doppler-shifted.

both frames.

. Velocities, u* = (yc¢, yv)"

Of course, the vacuum dispersion w = ¢k holds in

oM , vk /T
M e L_

vl T v, — fc

oM vE/T

. Densities, j* = (C,O,j)T

cpM T(cp” =635 /c)
i Js

jM L(=pBep”+34))
i J:

For jl(x) = 0 we find that densities of each species transform as

p=-=tzen,

(28)

which follows from Lorentz contraction in y-direction. Since the critical density

transforms as

M

ne

the scaled densities n/n. transform as

(u)M)Qsom@/e2 = F_an,

M L
() =) 29)
Ne Ne
. Fields
Ei,” = F(Ef—i—ﬂchL), cBéV" = F(cBé—ﬁEzL),
Eé” EyL, Bé” ByL, (30)
EM = T(EL-pc¢BLl), ¢BM = T(¢cBEF+BEL).
P-Polarization
—FEy sin« 0
EL = EO CcOS (v , EM = EO COS (v ,
0 0
31
.) (31)
cBt = 0o |, ¢cBY = 0
E, Ey cosa

52

MOVING FRAME FOR OBLIQUE INCIDENCE

S-Polarization

EL

c B"

0
0
Ey

Ey sin o

—Fy cosa

0

c BM

)

0
0)
Ey cosa
0
—Fy cos o
0

In summary, field amplitudes are reduced by a factor cos . Since frequency is

reduced by the same amount, the scaled amplitudes

do not change.

e|E|

)
MeWC

¢|B|

MeC

53

B Units

As long as atomic physics is not included in LPIC++, the laser frequency has not to be
specified. All quantities can be given in appropriate units scaling with laser frequency

or wavelength:

1. Coordinates are scaled to the laser wavelength)y in the laboratory frame, since
lengths in z-direction do not change when performing a Lorentz transformation
in y-direction,

x/XNg =: 2.

Nevertheless, the laser wavelength in the moving frame is Doppler-shifted, A =
[N, w=w/T, T =1/cosa.

2. Time is scaled to the laser period 7 in the moving frame, t/7 =: t', where 7 = -7

and 1y = 27 /wp.
3. Velocities are scaled to the velocity of light in vacuum,
v/ec=:7,
and the dimensionless momentum is introduced,
p/(mec) =yv/c =: u.

4. Micro particle masses are given in units of the electron mass m,, and micro

particle charges are given in units of e,

so that the specific charge q/m is scaled as

q/m z
= — =:zm.
e/me m!
5. Fields are scaled as follows,
eE _. g eB _. g
mewe Mmew

where w is the laser frequency in the moving frame M.

6. Vector potential and electrostatic potential are scaled as

cA A ed

&
> = P,
MeC MeC

04 B UNITS

7. Densities are given in units of the critical density n. = w?sym./e? in the moving
frame M,

n/ne.=:n',

and charge densities in units of e - n.,

P
en,

=:7n,

for each species seperately.
8. Current densities are given in units of en.c for each species,

J g /
=17 =zn-v.
en.c

9. Energies are given in units of (m.c® n. A Az),

W
—_— =W
mec?n, A Ax ’

where A is an arbitrary cross section (one spatial dimension) and Az is the grid

spacing. Then the total energy, sum of field and kinetic energies can be written

as
1
o =5 2BV +(B))+ 3 mlen'-(y=1),
cells particles

In these units, the equations of motion read

a ! 1 ! !

—u = 2rzm |E'+—-ux B |, u=vyv

ot ¥

ix' = I'v, ['=1/cosa,

ot’ v

i.e. since v}, < 1, the maximum distance a particle can move during one period in M is
less than I - \y = A, the laser wavelength in M.
The propagation of E, (Eq. 18) reads in these units

Oy E. = —2mj.. (33)
The propagation of transverse fields (Eq. 11) reads in these units
(00 £T00) (F)* = —mj,, (F)* =5 (B, +B) (34)

(O FT) (G)F = —rjl, (G = (EL£B). (35)

55

Notice Az'/T" = At'. The dimensionless time step At is the inverse number of time
steps per period spp (At = 1/spp), and the dimensionless grid step Az’ is the in-
verse number of cells per laboratory—wavelength Ay (Az’ = Az = 1/cells_per_wl).

Therefore the number of time steps per period transforms as
spp = I - cells_per_wl.

This means, two simulations with equal parameters but different angles of incidence
will take different amounts of cpu time, since the number of time steps per laser cycle

is different.

56 REFERENCES
References
[1] D. Strickland and G. Mourou, Compression of amplified chirped optical pulses,

[5]

(6]

7]

9]

[10]

Opt. Comm. 56, 219 (1985); M.D. Perry and G. Mourou, Terawatt to Petawatt
Subpicosecond Lasers, Science 264, 917 (1994).

F. Brunel, Not-So-Resonant, Resonant Absorption, Phys. Rev. Lett. 59 (1), 52
(1987).

P. Gibbon and A. Bell, Collisionless Absorption in Sharp-FEdged Plasmas, Phys.
Rev. Lett. 68 (10), 1535 (1992).

H. Ruhl and P. Mulser, Relativistic Viasov simulation of intense fs laser pulse—
matter interaction, Phys. Lett. A 205, 388 (1995);

H. Ruhl, Electron jets produced by ultrashort laser pulses, J. Opt. Soc. Am. B 13,
388 (1996).

P. Gibbon, Efficient Production of Fast Electrons from Femtosecond Laser Inter-
action with Solid Targets, Phys. Rev. Lett. 73 (5), 664 (1994).

A. Pukhov and J. Meyer-ter-Vehn, Relativistic Magnetic Self-Channeling of
Light in Near-Critical Plasma: Three-Dimensional Particle-in-Cell Simulation,
Phys. Rev. Lett. 76 (21), 3975 (1996).

S. Wilks, W. Kruer, and W. Mori, Odd Harmonic Generation of Ultra-Intense
Laser Pulses Reflected from an Owverdense Plasma, IEEE Trans. Plasma Sci. 21
(1), 120 (1993).

S. Bulanov, N. Naumova, and F. Pegoraro, Interaction of an ultrashort, relativisti-

cally strong laser pulse with an overdense plasma, Phys. Plasmas 1 (3), 745 (1994).

P. Gibbon, Harmonic Generation by Femtosecond Laser—Solid Interaction: A Co-
herent 'Water—Window’ Light Source?, Phys. Rev. Lett. 76 (1), 50 (1996).

R. Lichters, J. Meyer-ter-Vehn, and A. Pukhov, Short-pulse laser harmonics from
oscillating plasma surfaces driven at relativistic intensity Phys. Plasmas 3 (9),
3425 (1996);

R. Lichters and J. Meyer-ter-Vehn, High laser harmonics from plasma surfaces: in-

tensity and angular dependence, cutoffs and resonance layers at density ramps, in

REFERENCES 57

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Multiphoton Processes 1996 (Institute of Physics Publishing, Bristol and Philadel-
phia, 1997), pp. 221-230;
R. Lichters et al., Radiation at 2w, from inverse two-plasmon decay in overdense

plasma driven by ultra-short laser pulses, submitted to Phys. Rev. Lett. (1997).

M. Tabak, J. Hammer, M. Glinsky, W. Kruer, S. Wilks, J. Woodworth, E. Camp-
bell, M. Perry, and R. Mason, Ignition and high gain with ultrapowerful lasers,
Phys. Plasmas 1, 1626 (1994).

A. Pukhov and J. Meyer-ter-Vehn, Fast Ignitor Concept. Numerical Simulation.,
Gesellschaft fiir Schwerionenforschung, Report GSI-95-06, ISSN 0171-4546 (1995).

A. Pukhov and J. Meyer-ter-Vehn, Laser Hole Boring into QOuerdense Plasma
and Relativistic Electron Currents for Fast Ignition of ICF Targets, submitted to
Phys. Rev. Lett. (1997).

R. Lichters, Relativistische Wechselwirkung intensiver kurzer Laserpulse mit
uberdichten Plasmen: FErzeugung hoher Harmonischer, PhD thesis, Technische
Universitdt Miinchen (1997) and MPQ Report 219, Max-Planck-Institut fiir
Quantenoptik, D-85748 Garching (1997).

C.K. Birdsall and A.B. Langdon, Plasma physics via computer simulation (Adam
Hilger, New York, 1991).

J. Villasenor and O. Buneman, Rigorous charge conservation for local electromag-

netic field solvers, Computer Physics Communications 69, 306 (1992).

A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam,
PVM: Parallel Virtual Machine System (MIT Press, Cambridge, USA, 1994),
http://www.netlib.org/pvm3.

A. Bourdier, Oblique incidence of a strong electromagnetic wave on a cold inho-
mogeneous electron plasma. Relativistic effects, Phys. Fluids 26 (7), 1804 (1983).

J. Boris, in Proc. Fourth Conf. Num. Sim. Plasmas (Naval Res. Lab., Washington,
D.C., 1970), S. 3.

A. Sommerfeld, Optik. Vorlesungen tber theoretische Physik, Band 4, 3. Aufl.
(Thun: Deutsch, 1989).

58 REFERENCES

[21] M. Born and E. Wolf, Principles of Optics, Electromagnetic Theory of Propaga-
tion, Interference and Diffraction of Light (Pergamon Press, Ltd., Oxford, 1965).

