1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
|
/*
* sterilize.c - by Colin Plumb.
*
* Do a secure overwrite of given files or devices, so that not even
* very expensive hardware probing can recover the data.
*
* Although this processs is also known as "wiping", I prefer the longer
* name both because I think it is more evocative of what is happening and
* because a longer name conveys a more appropriate sense of deliberateness.
*
* For the theory behind this, see "Secure Deletion of Data from Magnetic
* and Solid-State Memory", on line at
* http://www.cs.auckland.ac.nz/~pgut001/pubs/secure_del.html
*
* Just for the record, reversing one or two passes of disk overwrite
* is not terribly difficult with hardware help. Hook up a good-quality
* digitizing oscilliscope to the output of the head preamplifier and copy
* the high-res diitized data to a computer for some off-line analysis.
* Read the "current" data and average all the pulses together to get an
* "average" pulse on the disk. Subtract this average pulse from all of
* the actual pulses and you can clearly see the "echo" of the previous
* data on the disk.
*
* Real hard drives have to balance the cost of the media, the head,
* and the read circuitry. They use better-quality media than absolutely
* necessary to limit the cost of the read circuitry. By throwing that
* assumption out, and the assumption that you want the data processed
* as fast as the hard drive can spin, you can do better.
*
* If asked to wipe a file, this also deletes it, renaming it to in a
* clever way to try to leave no trace of the original filename.
*
* Copyright 1997, 1998 Colin Plumb <colin@nyx.net>. This program may
* be freely distributed under the terms of the GNU GPL, the BSD license,
* or Larry Wall's "Artistic License" Even if you use the BSD license,
* which does not require it, I'd really like to get improvements back.
*
* The ISAAC code still bears some resemblance to the code written
* by Bob Jenkins, but he permits pretty unlimited use.
*
* This was inspired by a desire to improve on some code titled:
* Wipe V1.0-- Overwrite and delete files. S. 2/3/96
* but I've rewritten everything here so completely that no trace of
* the original remains.
*
* Things to think about:
* - Security: Is there any risk to the race
* between overwriting and unlinking a file? Will it do anything
* drastically bad if told to attack a named pipes or a sockets?
*
* - Portability: It's currently only tested on Linux. Do we need autoconf
* for anything? fdatasync()? fsync() is always a legal replacement.
* I'd prefer to do it in one source file if possible.
*/
#include <sys/stat.h> /* For struct stat */
#include <sys/time.h> /* For struct timeval */
#include <stdio.h>
#include <stdarg.h> /* Used by pferror */
#include <stdlib.h> /* For free() */
#include <unistd.h> /* for open(), close(), write(), fstat() */
#include <fcntl.h> /* for open(), close(), O_RDWR */
#include <string.h> /* For strlen(), memcpy(), memset(), etc. */
#include <limits.h> /* For UINT_MAX, etc. */
#include <errno.h> /* For errno */
static char const version_string[] =
"sterilize 1.02";
#define DEFAULT_PASSES 25 /* Default */
/* How often to update wiping display */
#define VERBOSE_UPDATE 100*1024
/*
* --------------------------------------------------------------------
* Bob Jenkins' cryptographic random number generator, ISAAC.
* Hacked by Colin Plumb.
*
* We need a source of random numbers for some of the overwrite data.
* Cryptographically secure is desirable, but it's not life-or-death
* so I can be a little bit experimental in the choice of RNGs here.
*
* This generator is based somewhat on RC4, but has analysis
* (http://ourworld.compuserve.com/homepages/bob_jenkins/randomnu.htm)
* pointing to it actually being better. I like because it's nice and
* fast, and because the author did good work analyzing it.
* --------------------------------------------------------------------
*/
#if ULONG_MAX == 0xffffffff
typedef unsigned long word32;
#elif UINT_MAX == 0xffffffff
typedef unsigned word32;
#elif USHRT_MAX == 0xffffffff
typedef unsigned short word32;
#elif UCHAR_MAX == 0xffffffff
typedef unsigned char word32;
#else
# error No 32-bit type available!
#endif
/* Size of the state tables to use. (You may change ISAAC_LOG) */
#define ISAAC_LOG 8
#define ISAAC_WORDS (1<<ISAAC_LOG)
#define ISAAC_BYTES (ISAAC_WORDS*sizeof(word32))
/* RNG state variables */
struct isaac_state {
word32 mm[ISAAC_WORDS]; /* Main state array */
word32 iv[8]; /* Seeding initial vector */
word32 a, b, c; /* Extra index variables */
};
/* This index operation is more efficient on many processors */
#define ind(mm,x) *(unsigned *)((char *)(mm) + ( (x) & (ISAAC_WORDS-1)<<2 ))
/*
* The central step. This uses two temporaries, x and y. mm is the
* whole state array, while m is a pointer to the current word. off is
* the offset from m to the word ISAAC_WORDS/2 words away in the mm array,
* i.e. +/- ISAAC_WORDS/2.
*/
#define isaac_step(mix,a,b,mm,m,off,r) \
( \
a = (a^(mix)) + (m)[off], \
x = *(m), \
*(m) = y = ind(mm,x) + a + b, \
*(r) = b = ind(mm,y>>ISAAC_LOG) + x \
)
/*
* Refill the entire r[] array
*/
static void
isaac_refill(struct isaac_state *s, word32 r[ISAAC_WORDS])
{
register word32 a, b; /* Caches of a and b */
register word32 x, y; /* Temps needed by isaac_step() macro */
register word32 *m = s->mm; /* Pointer into state array */
a = s->a;
b = s->b + (++s->c);
do {
isaac_step(a << 13, a, b, s->mm, m , ISAAC_WORDS/2, r );
isaac_step(a >> 6, a, b, s->mm, m+1, ISAAC_WORDS/2, r+1);
isaac_step(a << 2, a, b, s->mm, m+2, ISAAC_WORDS/2, r+2);
isaac_step(a >> 16, a, b, s->mm, m+3, ISAAC_WORDS/2, r+3);
r += 4;
} while ((m += 4) < s->mm+ISAAC_WORDS/2);
do {
isaac_step(a << 13, a, b, s->mm, m , -ISAAC_WORDS/2, r );
isaac_step(a >> 6, a, b, s->mm, m+1, -ISAAC_WORDS/2, r+1);
isaac_step(a << 2, a, b, s->mm, m+2, -ISAAC_WORDS/2, r+2);
isaac_step(a >> 16, a, b, s->mm, m+3, -ISAAC_WORDS/2, r+3);
r += 4;
} while ((m += 4) < s->mm+ISAAC_WORDS);
s->a = a;
s->b = b;
}
/*
* The basic seed-scrambling step for initialization, based on Bob
* Jenkins' 256-bit hash.
*/
#define mix(a,b,c,d,e,f,g,h) \
( a ^= b << 11, d += a, \
b += c, b ^= c >> 2, e += b, \
c += d, c ^= d << 8, f += c, \
d += e, d ^= e >> 16, g += d, \
e += f, e ^= f << 10, h += e, \
f += g, f ^= g >> 4, a += f, \
g += h, g ^= h << 8, b += g, \
h += a, h ^= a >> 9, c += h, \
a += b )
/* The basic ISAAC initialization pass. */
static void
isaac_mix(struct isaac_state *s, word32 const seed[ISAAC_WORDS])
{
int i;
word32 a = s->iv[0];
word32 b = s->iv[1];
word32 c = s->iv[2];
word32 d = s->iv[3];
word32 e = s->iv[4];
word32 f = s->iv[5];
word32 g = s->iv[6];
word32 h = s->iv[7];
for (i = 0; i < ISAAC_WORDS; i += 8) {
a += seed[i];
b += seed[i+1];
c += seed[i+2];
d += seed[i+3];
e += seed[i+4];
f += seed[i+5];
g += seed[i+6];
h += seed[i+7];
mix(a, b, c, d, e, f, g, h);
s->mm[i] = a;
s->mm[i+1] = b;
s->mm[i+2] = c;
s->mm[i+3] = d;
s->mm[i+4] = e;
s->mm[i+5] = f;
s->mm[i+6] = g;
s->mm[i+7] = h;
}
s->iv[0] = a;
s->iv[1] = b;
s->iv[2] = c;
s->iv[3] = d;
s->iv[4] = e;
s->iv[5] = f;
s->iv[6] = g;
s->iv[7] = h;
}
/*
* Initialize the ISAAC RNG with the given seed material.
* Its size MUST be a multiple of ISAAC_BYTES, and may be
* tored in the s->mm array.
*
* This is a generalization of the original ISAAC initialzation code
* to support larger seed sizes. For seed sizes of 0 and ISAAC_BYTES,
* it is identical.
*/
static void
isaac_init(struct isaac_state *s, word32 const *seed, size_t seedsize)
{
static word32 const iv[8] = {
0x1367df5a, 0x95d90059, 0xc3163e4b, 0x0f421ad8,
0xd92a4a78, 0xa51a3c49, 0xc4efea1b, 0x30609119 };
int i;
#if 0
/* The initialization of iv is a precomputed form of: */
for (i = 0; i < 7; i++)
iv[i] = 0x9e3779b9; /* the golden ratio */
for (i = 0; i < 4; ++i) /* scramble it */
mix(iv[0], iv[1], iv[2], iv[3], iv[4], iv[5], iv[6], iv[7]);
#endif
s->a = s->b = s->c = 0;
for (i = 0; i < 8; i++)
s->iv[i] = iv[i];
if (seedsize) {
/* First pass (as in reference ISAAC code) */
isaac_mix(s, seed);
/* Second and subsequent passes (extension to ISAAC) */
while (seedsize -= ISAAC_BYTES) {
seed += ISAAC_WORDS;
for (i = 0; i < ISAAC_WORDS; i++)
s->mm[i] += seed[i];
isaac_mix(s, s->mm);
}
} else {
/* The no seed case (as in reference ISAAC code) */
for (i = 0; i < ISAAC_WORDS; i++)
s->mm[i] = 0;
}
/* Final pass */
isaac_mix(s, s->mm);
}
/*
* Get seed material. 16 bytes (128 bits) is plenty, but if we have
* /dev/urandom, we get 32 bytes = 256 bits for complete overkill.
*/
static void
isaac_seed(struct isaac_state *s)
{
s->mm[0] = getpid();
s->mm[1] = getppid();
{
#ifdef CLOCK_REALTIME /* POSIX ns-resolution */
struct timespec ts;
clock_gettime(CLOCK_REALTIME, &ts);
s->mm[2] = ts.tv_sec;
s->mm[3] = ts.tv_nsec;
#else
struct timeval tv;
gettimeofday(&tv, (struct timezone *)0);
s->mm[2] = tv.tv_sec;
s->mm[3] = tv.tv_usec;
#endif
}
{
int fd = open("/dev/urandom", O_RDONLY);
if (fd >= 0) {
read(fd, (char *)(s->mm+4), 32);
close(fd);
} else {
fd = open("/dev/random", O_RDONLY | O_NONBLOCK);
if (fd >= 0) {
/* /dev/random is more precious, so use less */
read(fd, (char *)(s->mm+4), 16);
close(fd);
}
}
}
isaac_init(s, s->mm, sizeof(s->mm));
}
/*
* Read up to "size" bytes from the given fd and use them as additional
* ISAAC seed material. Returns the number of bytes actually read.
*/
static off_t
isaac_seedfd(struct isaac_state *s, int fd, off_t size)
{
off_t sizeleft = size;
size_t lim, soff;
ssize_t ssize;
int i;
word32 seed[ISAAC_WORDS];
while (sizeleft) {
lim = sizeof(seed);
if ((off_t)lim > sizeleft)
lim = (size_t)sizeleft;
soff = 0;
do {
ssize = read(fd, (char *)seed+soff, lim-soff);
} while (ssize > 0 && (soff += (size_t)ssize) < lim);
/* Mix in what was read */
if (soff) {
/* Garbage after the sofff position is harmless */
for (i = 0; i < ISAAC_WORDS; i++)
s->mm[i] += seed[i];
isaac_mix(s, s->mm);
sizeleft -= soff;
}
if (ssize <= 0)
break;
}
/* Wipe the copy of the file in "seed" */
memset(seed, 0, sizeof(seed));
/* Final mix, as in isaac_init */
isaac_mix(s, s->mm);
return size - sizeleft;
}
/* Single-word RNG built on top of ISAAC */
struct irand_state {
word32 r[ISAAC_WORDS];
unsigned numleft;
struct isaac_state *s;
};
static void
irand_init(struct irand_state *r, struct isaac_state *s)
{
r->numleft = 0;
r->s = s;
}
/*
* We take from the end of the block deliberately, so if we need
* only a small number of values, we choose the final ones which are
* marginally better mixed than the initial ones.
*/
static word32
irand32(struct irand_state *r)
{
if (!r->numleft) {
isaac_refill(r->s, r->r);
r->numleft = ISAAC_WORDS;
}
return r->r[--r->numleft];
}
/*
* Return a uniformly distributed random number between 0 and n,
* inclusive. Thus, the result is modulo n+1.
*
* Theory of operation: as x steps through every possible 32-bit number,
* x % n takes each value at least 2^32 / n times (rounded down), but
* the values less than 2^32 % n are taken one additional time. Thus,
* x % n is not perfectly uniform. To fix this, the values of x less
* than 2^32 % n are disallowed, and if the RNG produces one, we ask
* for a new value.
*/
static word32
irand_mod(struct irand_state *r, word32 n)
{
word32 x;
word32 lim;
if (!++n)
return irand32(r);
lim = -n % n; /* == (2**32-n) % n == 2**32 % n */
do {
x = irand32(r);
} while (x < lim);
return x % n;
}
/* Global variable for error printing purposes */
static char const *argv0 = NULL;
/*
* Like perror() but fancier. (And fmt is not allowed to be NULL)
*/
#if __GNUC__ >= 2
static void pfstatus(char const *, ...) __attribute__((format(printf, 1, 2)));
static void pferror(char const *, ...) __attribute__((format(printf, 1, 2)));
#endif
/*
* Maintain a status line on stdout. This is done by using CR and
* overprinting a new line when it changes, padding with trailing blanks
* as needed to hide all of the previous line. (Assuming that the return
* value of printf is an accurate width.)
*/
static int status_visible = 0; /* Number of visible characters */
static int status_pos = 0; /* Current position, including padding */
/* Print a new status line, overwriting the previous one. */
static void
pfstatus(char const *fmt, ...)
{
int new; /* New status_visible value */
va_list ap;
/* If we weren't at beginning, go there. */
if (status_pos)
putchar('\r');
va_start(ap, fmt);
new = vprintf(fmt, ap);
va_end(ap);
if (new >= 0) {
status_pos = new;
while (status_pos < status_visible) {
putchar(' ');
status_pos++;
}
status_visible = new;
}
fflush(stdout);
}
/* Leave current status (if any) visible and go to the next free line. */
static void
flushstatus(void)
{
if (status_visible) {
putchar('\n'); /* Leave line visible */
fflush(stdout);
status_visible = status_pos = 0;
} else if (status_pos) {
putchar('\r'); /* Go back to beginning of line */
fflush(stdout);
status_pos = 0;
}
}
/* Print an error message on stderr, leaving any status message visible. */
static void
pferror(char const *fmt, ...)
{
va_list ap;
int e = errno;
flushstatus(); /* Make it look pretty */
if (argv0) {
fputs(argv0, stderr);
fputs(": ", stderr);
}
va_start(ap, fmt);
vfprintf(stderr, fmt, ap);
va_end(ap);
fputs(": ", stderr);
fputs(strerror(e), stderr);
putc('\n', stderr);
}
/*
* Get the size of a file that doesn't want to cooperate (such as a
* device) by doing a binary search for the last readable byte. The size
* of the file is the least offset at which it is not possible to read
* a byte.
*
* This is also a nice example of using loop invariants to correctly
* implement an algorithm that is potentially full of fencepost errors.
* We assume that if it is possible to read a byte at offset x, it is
* also possible at all offsets <= x.
*/
static off_t
sizefd(int fd)
{
off_t hi, lo, mid;
char c; /* One-byte buffer for dummy reads */
/* Binary doubling upwards to find the right range */
lo = 0;
hi = 0; /* Any number, preferably 2^x-1, is okay here. */
/*
* Loop invariant: we have verified that it is possible to read a
* byte at all offsets < lo. Probe at offset hi >= lo until it
* is not possible to read a byte at that offset, establishing
* the loop invariant for the following loop.
*/
for (;;) {
if (lseek(fd, hi, SEEK_SET) == (off_t)-1 ||
read(fd, &c, 1) < 1)
break;
lo = hi+1; /* This preserves the loop invariant. */
hi += lo; /* Exponential doubling. */
}
/*
* Binary search to find the exact endpoint.
* Loop invariant: it is not possible to read a byte at hi,
* but it is possible at all offsets < lo. Thus, the
* offset we seek is between lo and hi inclusive.
*/
while (hi > lo) {
mid = (hi+lo)/2; /* Rounded down, so lo <= mid < hi */
if (lseek(fd, mid, SEEK_SET) == (off_t)-1 ||
read(fd, &c, 1) < 1)
hi = mid; /* mid < hi, so this makes progress */
else
lo = mid+1; /* Because mid < hi, lo <= hi */
}
/* lo == hi, so we have an exact answer */
return hi;
}
/*
* Fill a buffer with a fixed pattern.
*
* The buffer must be at least 3 bytes long, even if
* size is less. Larger sizes are filled exactly.
*/
static void
fillpattern(int type, unsigned char *r, size_t size)
{
size_t i;
unsigned bits = type & 0xfff;
bits |= bits << 12;
((unsigned char *)r)[0] = (bits >> 4) & 255;
((unsigned char *)r)[1] = (bits >> 8) & 255;
((unsigned char *)r)[2] = bits & 255;
for (i = 3; i < size/2; i *= 2)
memcpy((char *)r+i, (char *)r, i);
if (i < size)
memcpy((char *)r+i, (char *)r, size-i);
/* Invert the first bit of every 512-byte sector. */
if (type & 0x1000)
for (i = 0; i < size; i += 512)
r[i] ^= 0x80;
}
/*
* Fill a buffer with random data.
* size is rounded UP to a multiple of ISAAC_BYTES.
*/
static void
fillrand(struct isaac_state *s, word32 *r, size_t size)
{
size = (size+ISAAC_BYTES-1)/ISAAC_BYTES;
while (size--) {
isaac_refill(s, r);
r += ISAAC_WORDS;
}
}
/* Generate a 6-character (+ nul) pass name string */
#define PASS_NAME_SIZE 7
static void
passname(unsigned char const *data, char name[PASS_NAME_SIZE])
{
if (data)
sprintf(name, "%02x%02x%02x", data[0], data[1], data[2]);
else
memcpy(name, "random", PASS_NAME_SIZE);
}
/*
* Do pass number k of n, writing "size" bytes of the given pattern "type"
* to the file descriptor fd. Name, k and n are passed in only for verbose
* progress message purposes. If n == 0, no progress messages are printed.
*/
static int
dopass(int fd, char const *name, off_t size, int type,
struct isaac_state *s, unsigned long k, unsigned long n)
{
off_t cursize; /* Amount of file remaining to wipe (counts down) */
off_t thresh; /* cursize at which next status update is printed */
size_t lim; /* Amount of data to try writing */
size_t soff; /* Offset into buffer for next write */
ssize_t ssize; /* Return value from write() */
#if ISAAC_WORDS > 1024
word32 r[ISAAC_WORDS*3]; /* Multiple of 4K and of pattern size */
#else
word32 r[1024*3]; /* Multiple of 4K and of pattern size */
#endif
char pass_string[PASS_NAME_SIZE]; /* Name of current pass */
if (lseek(fd, 0, SEEK_SET) < 0) {
pferror("Error seeking \"%s\"", name);
return -1;
}
/* Constant fill patterns need only be set up once. */
if (type >= 0) {
lim = sizeof(r);
if ((off_t)lim > size) {
lim = (size_t)size;
}
fillpattern(type, (unsigned char *)r, lim);
passname((unsigned char *)r, pass_string);
} else {
passname(0, pass_string);
}
/* Set position if first status update */
thresh = 0;
if (n) {
pfstatus("%s: pass %lu/%lu (%s)...", name, k, n, pass_string);
if (size > VERBOSE_UPDATE)
thresh = size - VERBOSE_UPDATE;
}
for (cursize = size; cursize; ) {
/* How much to write this time? */
lim = sizeof(r);
if ((off_t)lim > cursize)
lim = (size_t)cursize;
if (type < 0)
fillrand(s, r, lim);
/* Loop to retry partial writes. */
for (soff = 0; soff < lim; soff += ssize) {
ssize = write(fd, (char *)r+soff, lim-soff);
if (ssize < 0) {
int e = errno;
pferror("Error writing \"%s\" at %lu",
name, size-cursize+soff);
/* This error confuses people. */
if (e == EBADF && fd == 0)
fputs(
"(Did you remember to open stdin read/write with \"<>file\"?)\n", stderr);
return -1;
}
}
/* Okay, we have written "lim" bytes. */
cursize -= lim;
/* Time to print progress? */
if (cursize <= thresh && n) {
pfstatus("%s: pass %lu/%lu (%s)...%lu/%lu K",
name, k, n, pass_string,
(size-cursize+1023)/1024, (size+1023)/1024);
if (thresh > VERBOSE_UPDATE)
thresh -= VERBOSE_UPDATE;
else
thresh = 0;
}
}
/* Force what we just wrote to hit the media. */
if (fdatasync(fd) < 0) {
pferror("Error syncing \"%s\"", name);
return -1;
}
return 0;
}
/*
* The passes start and end with a random pass, and the passes in between
* are done in random order. The idea is to deprive someone trying to
* reverse the process of knowledge of the overwrite patterns, so they
* have the additional step of figuring out what was done to the disk
* befire they can try to reverse or cancel it.
*
* First, all possible 1-bit patterns. There are two of them.
* Then, all possible 2-bit patterns. There are four, but the two
* which are also 1-bit patterns can be omitted.
* Then, all possible 3-bit patterns. Again, 8-2 = 6.
* Then, all possible 4-bit patterns. 16-4 = 12.
*
* The basic passes are:
* 1-bit: 0x000, 0xFFF
* 2-bit: 0x555, 0xAAA
* 3-bit: 0x249, 0x492, 0x924, 0x6DB, 0xB6D, 0xDB6 (+ 1-bit)
* 100100100100 110110110110
* 9 2 4 D B 6
* 4-bit: 0x111, 0x222, 0x333, 0x444, 0x666, 0x777,
* 0x888, 0x999, 0xBBB, 0xCCC, 0xDDD, 0xEEE (+ 1-bit, 2-bit)
* Adding three random passes at the beginning, middle and end
* produces the default 25-pass structure.
*
* The next extension would be to 5-bit and 6-bit patterns.
* There are 30 uncovered 5-bit patterns and 64-8-2 = 46 uncovered
* 6-bit patterns, so they would increase the time required
* significantly. 4-bit patterns are enough for most purposes.
*
* The main gotcha is that this would require a trickier encoding,
* since lcm(2,3,4) = 12 bits is easy to fit into an int, but
* lcm(2,3,4,5) = 60 bits is not.
*
* One extension that is included is to complement the first bit in each
* 512-byte block, to alter the phase of the encoded data in the more
* complex encodings. This doesn't apply to MFM, so the 1-bit patterns
* are considered part of the 3-bit ones and the 2-bit patterns are
* considered part of the 4-bit patterns.
*
*
* How does the generalization to variable numbers of passes work?
*
* Here's how...
* Have an ordered list of groups of passes. Each group is a set.
* Take as many groups as will fit, plus a random subset of the
* last partial group, and place them into the passes list.
* Then shuffle the passes list into random order and use that.
*
* One extra detail: if we can't include a large enough fraction of the
* last group to be interesting, then just substitute random passes.
*
* If you want more passes than the entire list of groups can
* provide, just start repeating from the beginning of the list.
*/
static int const
patterns[] = {
-2, /* 2 random passes */
2, 0x000, 0xFFF, /* 1-bit */
2, 0x555, 0xAAA, /* 2-bit */
-1, /* 1 random pass */
6, 0x249, 0x492, 0x6DB, 0x924, 0xB6D, 0xDB6, /* 3-bit */
12, 0x111, 0x222, 0x333, 0x444, 0x666, 0x777,
0x888, 0x999, 0xBBB, 0xCCC, 0xDDD, 0xEEE, /* 4-bit */
-1, /* 1 random pass */
/* The following patterns have the frst bit per block flipped */
8, 0x1000, 0x1249, 0x1492, 0x16DB, 0x1924, 0x1B6D, 0x1DB6, 0x1FFF,
14, 0x1111, 0x1222, 0x1333, 0x1444, 0x1555, 0x1666, 0x1777,
0x1888, 0x1999, 0x1AAA, 0x1BBB, 0x1CCC, 0x1DDD, 0x1EEE,
-1, /* 1 random pass */
0 /* End */
};
/*
* Generate a random wiping pass pattern with num passes.
* This is a two-stage process. First, the passes to include
* are chosen, and then they are shuffled into the desired
* order.
*/
static void
genpattern(int *dest, size_t num, struct isaac_state *s)
{
struct irand_state r;
size_t randpasses;
int const *p;
int *d;
size_t n;
size_t accum, top, swap;
int k;
if (!num)
return;
irand_init(&r, s);
/* Stage 1: choose the passes to use */
p = patterns;
randpasses = 0;
d = dest; /* Destination for generated pass list */
n = num; /* Passes remaining to fill */
for (;;) {
k = *p++; /* Block descriptor word */
if (!k) { /* Loop back to the beginning */
p = patterns;
} else if (k < 0) { /* -k random passes */
k = -k;
if ((size_t)k >= n) {
randpasses += n;
n = 0;
break;
}
randpasses += k;
n -= k;
} else if ((size_t)k <= n) { /* Full block of patterns */
memcpy(d, p, k*sizeof(int));
p += k;
d += k;
n -= k;
} else if (n < 2 || 3*n < (size_t)k) { /* Finish with random */
randpasses += n;
break;
} else { /* Pad out with k of the n available */
do {
if (n == (size_t)k-- || irand_mod(&r, k) < n) {
*d++ = *p;
n--;
}
p++;
} while (n);
break;
}
}
top = num - randpasses; /* Top of initialized data */
/* assert(d == dest+top); */
/*
* We now have fixed patterns in the dest buffer up to
* "top", and we need to scramble them, with "randpasses"
* random passes evenly spaced among them.
*
* We want one at the beginning, one at the end, and
* evenly spaced in between. To do this, we basically
* use Bresenham's line draw (a.k.a DDA) algorithm
* to draw a line with slope (randpasses-1)/(num-1).
* (We use a positive accumulator and count down to
* do this.)
*
* So for each desired output value, we do the following:
* - If it should be a random pass, copy the pass type
* to top++, out of the way of the other passes, and
* set the current pass to -1 (random).
* - If it should be a normal pattern pass, choose an
* entry at random between here and top-1 (inclusive)
* and swap the current entry with that one.
*/
randpasses--; /* To speed up later math */
accum = randpasses; /* Bresenham DDA accumulator */
for (n = 0; n < num; n++) {
if (accum <= randpasses) {
accum += num-1;
dest[top++] = dest[n];
dest[n] = -1;
} else {
swap = n + irand_mod(&r, top-n-1);
k = dest[n];
dest[n] = dest[swap];
dest[swap] = k;
}
accum -= randpasses;
}
/* assert(top == num); */
memset(&r, 0, sizeof(r)); /* Wipe this on general principles */
}
/* Flags definition. Bit numbers here correspond to flag letters below! */
#define FLAG_DEVICES 1
#define FLAG_FORCE 2
#define FLAG_PRESERVE 4
#define FLAG_VERBOSE 8
#define FLAG_EXACT 16
#define FLAG_ZERO 32
static char const simpleflags[] = "dfpvxz"; /* Same order as above */
#define FLAG_EXTRAVERBOSE 256 /* -vv specified */
/*
* The core routine to actually do the work. This overwrites the first
* size bytes of the given fd. Returns -1 on error, 0 on success with
* regular files, and 1 on success with non-regular files.
*/
static int
wipefd(int fd, char const *name, struct isaac_state *s,
size_t passes, unsigned flags)
{
size_t i;
struct stat st;
off_t size, seedsize; /* Size to write, size to read */
unsigned long n; /* Number of passes for printing purposes */
int *passarray;
if (!passes)
passes = DEFAULT_PASSES;
n = 0; /* dopass takes n -- 0 to mean "don't print progress" */
if (flags & FLAG_VERBOSE)
n = passes + ((flags & FLAG_ZERO) != 0);
if (fstat(fd, &st)) {
pferror("Can't fstat file \"%s\"", name);
return -1;
}
/* Check for devices */
if (!S_ISREG(st.st_mode) && !(flags & FLAG_DEVICES)) {
fprintf(stderr,
"\"%s\" is not a regular file: use -d to enable operations on devices\n",
name);
return -1;
}
/* Allocate pass array */
passarray = malloc(passes * sizeof(int));
if (!passarray) {
pferror("Can't alllocate array for %lu passes",
(unsigned long)passes);
return -1;
}
seedsize = size = st.st_size;
if (!size) {
/* Reluctant to talk? Apply thumbscrews. */
seedsize = size = sizefd(fd);
} else if (st.st_blksize && !(flags & FLAG_EXACT)) {
/* Round up to the next st_blksize to include "slack" */
size += st.st_blksize - 1 - (size-1) % st.st_blksize;
}
/*
* Use the file itself as seed material. Avoid wasting "lots"
* of time (>10% of the write time) reading "large" (>16K)
* files for seed material if there aren't many passes.
*
* Note that "seedsize*passes/10" risks overflow, while
* "seedsize/10*passes is slightly inaccurate. The hack
* here manages perfection with no overflow.
*/
if (passes < 10 && seedsize > 16384) {
seedsize -= 16384;
seedsize = seedsize/10*passes + seedsize%10*passes/10;
seedsize += 16384;
}
(void)isaac_seedfd(s, fd, seedsize);
/* Schedule the passes in random order. */
genpattern(passarray, passes, s);
/* Do the work */
for (i = 0; i < passes; i++) {
if (dopass(fd, name, size, passarray[i], s, i+1, n) < 0) {
memset(passarray, 0, passes*sizeof(int));
free(passarray);
return -1;
}
if (flags & FLAG_EXTRAVERBOSE)
flushstatus();
}
memset(passarray, 0, passes*sizeof(int));
free(passarray);
if (flags & FLAG_ZERO)
if (dopass(fd, name, size, 0, s, passes+1, n) < 0)
return -1;
return !S_ISREG(st.st_mode);
}
/* Characters allowed in a file name - a safe universal set. */
static char const nameset[] =
"0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ_+=%@#.";
/*
* This increments the name, considering it as a big-endian base-N number
* with the digits taken from nameset. Characters not in the nameset
* are considered to come before nameset[0].
*
* It's not obvious, but this will explode if name[0..len-1] contains
* any 0 bytes.
*
* This returns the carry (1 on overflow).
*/
static int
incname(char *name, unsigned len)
{
char const *p;
if (!len)
return -1;
p = strchr(nameset, name[--len]);
/* If the character is not found, replace it with a 0 digit */
if (!p) {
name[len] = nameset[0];
return 0;
}
/* If this character has a successor, use it */
if (p[1]) {
name[len] = p[1];
return 0;
}
/* Otherwise, set this digit to 0 and increment the prefix */
name[len] = nameset[0];
return incname(name, len);
}
/*
* Repeatedly rename a file with shorter and shorter names,
* to obliterate all traces of the file name on any system that
* adds a trailing delimiter to on-disk file names and reuses
* the same directory slot. Finally, delete it.
* The passed-in filename is modified in place to the new filename.
* (Which is deleted if this function succeeds, but is still present if
* it fails for some reason.)
*
* The main loop is written carefully to not get stuck if all possible
* names of a given length are occupied. It counts down the length from
* the original to 0. While the length is non-zero, it tries to find an
* unused file name of the given length. It continues until either the
* name is available and the rename succeeds, or it runs out of names
* to try (incname() wraps and returns 1). Finally, it deletes the file.
*
* Note that rename() and remove() are both in the ANSI C standard,
* so that part, at least, is NOT Unix-specific.
*
* To force the directory data out, we try to open() the directory and
* invoke fdatasync() on it. This is rather non-standard, so we don't
* insist that it works, just fall back to a global sync() in thet case.
* Unfortunately, this code is Unix-specific.
*/
int
wipename(char *oldname, unsigned flags)
{
char *newname, *origname = 0;
char *base; /* Pointer to filename component, after directories. */
unsigned len;
int err;
int dirfd; /* Try to open directory to sync *it* */
pfstatus("%s: deleting", oldname);
newname = strdup(oldname); /* This is a malloc */
if (!newname) {
pferror("malloc failed");
return -1;
}
if (flags & FLAG_VERBOSE) {
origname = strdup(oldname);
if (!origname) {
pferror("malloc failed");
free(newname);
return -1;
}
}
/* Find the file name portion */
base = strrchr(newname, '/');
/* Temporary hackery to get a directory fd */
if (base) {
*base = '\0';
dirfd = open(newname, O_RDONLY);
*base = '/';
} else {
dirfd = open(".", O_RDONLY);
}
base = base ? base+1 : newname;
len = strlen(base);
while (len) {
memset(base, nameset[0], len);
base[len] = 0;
do {
if (access(newname, F_OK) < 0
&& !rename(oldname, newname)) {
if (dirfd < 0 || fdatasync(dirfd) < 0)
sync(); /* Force directory out */
if (origname) {
pfstatus("%s: renamed to \"%s\"",
origname, newname);
if (flags & FLAG_EXTRAVERBOSE)
flushstatus();
}
memcpy(oldname+(base-newname), newname, len+1);
break;
}
} while (!incname(base, len));
len--;
}
free(newname);
err = remove(oldname);
if (dirfd < 0 || fdatasync(dirfd) < 0)
sync();
close(dirfd);
if (origname) {
if (!err)
pfstatus("%s: deleted", origname);
free(origname);
}
return err;
}
/*
* Finally, the function that actually takes a filename and grinds
* it into hamburger. Returns 1 if it was not a regular file.
*
* Detail to note: since we do not restore errno to EACCES after
* a failed chmod, we end up printing the error code from the chmod.
* This is probably either EACCES again or EPERM, which both give
* reasonable error messages. But it might be better to change that.
*/
static int
wipefile(char *name, struct isaac_state *s, size_t passes, unsigned flags)
{
int err, fd;
fd = open(name, O_RDWR);
if (fd < 0 && errno == EACCES && flags & FLAG_FORCE) {
if (chmod(name, 0600) >= 0)
fd = open(name, O_RDWR);
}
if (fd < 0) {
pferror("Unable to open \"%s\"", name);
return -1;
}
err = wipefd(fd, name, s, passes, flags);
close(fd);
/*
* Wipe the name and unlink - regular files only, no devices!
* (wipefd returns 1 for non-regular files.)
*/
if (err == 0 && !(flags & FLAG_PRESERVE)) {
err = wipename(name, flags);
if (err < 0)
pferror("Unable to delete file \"%s\"", name);
}
return err;
}
/* Command-line parsing. I hate global variables, ergo I hate getopt. */
int
main(int argc, char **argv)
{
struct isaac_state s;
int err = 0;
int no_more_opts = 0;
unsigned flags = 0;
char const *p;
char *p2; /* Actually a const ptr, but kludged... */
unsigned long passes = 0;
unsigned wipes = 0; /* How many files have we actually wiped? */
argv0 = argv[0]; /* Ick! A global variable! */
isaac_seed(&s);
while (--argc && !err) {
p = *++argv;
if (no_more_opts || *p != '-') {
/* Plain filename - Note that this overwrites *argv! */
if (wipefile(*argv, &s, (size_t)passes, flags) < 0)
err = 1;
flushstatus();
wipes++;
continue;
}
/* Parse option */
if (p[1] == '\0') { /* "-": stdin */
if (wipefd(0, *argv, &s, (size_t)passes, flags) < 0)
err = 1;
flushstatus();
wipes++;
continue;
}
if (p[1] == '-') { /* "--long_option" */
if (p[2] == '\0') {
no_more_opts = 1;
} else if (strcmp(p+2, "help") == 0) {
puts(
"Usage: sterilize [OPTIONS] FILE [...]\n"
"Delete a file securely, first overwriting it to hide its contents.\n"
"\n"
" - Sterilize standard input (but don't delete it)\n"
" This will error unless you use <>file, a safety feature\n"
" -NUM Overwrite NUM times instead of the default (25)\n"
" -d Allow operation on devices (devices are never deleted)\n"
" -f Force, change permissions to allow writing if necessary\n"
" -p Preserve, do not delete file after overwriting\n"
" -v Verbose, print progress (-vv to leave progress on screen)\n"
" -x Exact, do not round file sizes up to the next full block\n"
" -z Add a final overwrite with zeros to hide sterilization\n"
" -- End of options; following filenames may begin with -\n"
" --help Display this help and exit\n"
" --version Print version information and exit");
return 0; /* Immediate quit */
} else if (strcmp(p+2, "version") == 0) {
puts(version_string);
return 0; /* Immediate quit */
} else {
fprintf(stderr, "%s: Unknown option %s\n",
argv0, p);
err = 1;
break;
}
continue;
}
/* Short options - letter options or digits */
while (*++p) {
p2 = strchr(simpleflags, *p);
if (p2) {
unsigned flag = 1u << (p2-simpleflags);
if (flag & flags & FLAG_VERBOSE)
flags |= FLAG_EXTRAVERBOSE;
flags |= flag;
continue;
}
if (*p >= '0' && *p <= '9') {
passes = strtoul(p, &p2, 0);
if ((word32)passes != passes ||
(size_t)(passes*sizeof(int))/sizeof(int)
!= passes)
{
fprintf(stderr,
"%s: Too many passes: -%s\n",
argv0, p);
err = 1;
break;
}
p = p2-1;
continue;
}
fprintf(stderr, "%s: Unknown option -%s\n",
argv0, p);
err = 1;
break;
}
}
/* Just on general principles, wipe s. */
memset(&s, 0, sizeof(s));
if (!wipes && !err) {
fprintf(stderr, "%s: no filename specified\n"
"Try \"%s --help\" for more information.\n",
argv0, argv0);
err = 1;
}
return err;
}
|