1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
|
/* factor -- print prime factors of n.
Copyright (C) 1986, 1995-2005, 2007-2012 Free Software Foundation, Inc.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
/* Written by Paul Rubin <phr@ocf.berkeley.edu>.
Adapted for GNU, fixed to factor UINT_MAX by Jim Meyering.
Arbitrary-precision code adapted by James Youngman from Torbjörn
Granlund's factorize.c, from GNU MP version 4.2.2.
*/
#include <config.h>
#include <getopt.h>
#include <stdarg.h>
#include <stdio.h>
#include <sys/types.h>
#if HAVE_GMP
# include <gmp.h>
#endif
#include <assert.h>
#include "system.h"
#include "error.h"
#include "quote.h"
#include "readtokens.h"
#include "xstrtol.h"
/* The official name of this program (e.g., no `g' prefix). */
#define PROGRAM_NAME "factor"
#define AUTHORS proper_name ("Paul Rubin")
/* Token delimiters when reading from a file. */
#define DELIM "\n\t "
static bool verbose = false;
#if HAVE_GMP
static mpz_t *factor = NULL;
static size_t nfactors_found = 0;
static size_t nfactors_allocated = 0;
static void
debug (char const *fmt, ...)
{
if (verbose)
{
va_list ap;
va_start (ap, fmt);
vfprintf (stderr, fmt, ap);
va_end (ap);
}
}
static void
emit_factor (mpz_t n)
{
if (nfactors_found == nfactors_allocated)
factor = X2NREALLOC (factor, &nfactors_allocated);
mpz_init (factor[nfactors_found]);
mpz_set (factor[nfactors_found], n);
++nfactors_found;
}
static void
emit_ul_factor (unsigned long int i)
{
mpz_t t;
mpz_init (t);
mpz_set_ui (t, i);
emit_factor (t);
mpz_clear (t);
}
static void
factor_using_division (mpz_t t, unsigned int limit)
{
mpz_t q, r;
unsigned long int f;
int ai;
static unsigned int const add[] = {4, 2, 4, 2, 4, 6, 2, 6};
unsigned int const *addv = add;
unsigned int failures;
debug ("[trial division (%u)] ", limit);
mpz_init (q);
mpz_init (r);
f = mpz_scan1 (t, 0);
mpz_div_2exp (t, t, f);
while (f)
{
emit_ul_factor (2);
--f;
}
while (true)
{
mpz_tdiv_qr_ui (q, r, t, 3);
if (mpz_cmp_ui (r, 0) != 0)
break;
mpz_set (t, q);
emit_ul_factor (3);
}
while (true)
{
mpz_tdiv_qr_ui (q, r, t, 5);
if (mpz_cmp_ui (r, 0) != 0)
break;
mpz_set (t, q);
emit_ul_factor (5);
}
failures = 0;
f = 7;
ai = 0;
while (mpz_cmp_ui (t, 1) != 0)
{
mpz_tdiv_qr_ui (q, r, t, f);
if (mpz_cmp_ui (r, 0) != 0)
{
f += addv[ai];
if (mpz_cmp_ui (q, f) < 0)
break;
ai = (ai + 1) & 7;
failures++;
if (failures > limit)
break;
}
else
{
mpz_swap (t, q);
emit_ul_factor (f);
failures = 0;
}
}
mpz_clear (q);
mpz_clear (r);
}
static void
factor_using_pollard_rho (mpz_t n, int a_int)
{
mpz_t x, x1, y, P;
mpz_t a;
mpz_t g;
mpz_t t1, t2;
int k, l, c;
debug ("[pollard-rho (%d)] ", a_int);
mpz_init (g);
mpz_init (t1);
mpz_init (t2);
mpz_init_set_si (a, a_int);
mpz_init_set_si (y, 2);
mpz_init_set_si (x, 2);
mpz_init_set_si (x1, 2);
k = 1;
l = 1;
mpz_init_set_ui (P, 1);
c = 0;
while (mpz_cmp_ui (n, 1) != 0)
{
S2:
mpz_mul (x, x, x); mpz_add (x, x, a); mpz_mod (x, x, n);
mpz_sub (t1, x1, x); mpz_mul (t2, P, t1); mpz_mod (P, t2, n);
c++;
if (c == 20)
{
c = 0;
mpz_gcd (g, P, n);
if (mpz_cmp_ui (g, 1) != 0)
goto S4;
mpz_set (y, x);
}
k--;
if (k > 0)
goto S2;
mpz_gcd (g, P, n);
if (mpz_cmp_ui (g, 1) != 0)
goto S4;
mpz_set (x1, x);
k = l;
l = 2 * l;
unsigned int i;
for (i = 0; i < k; i++)
{
mpz_mul (x, x, x); mpz_add (x, x, a); mpz_mod (x, x, n);
}
mpz_set (y, x);
c = 0;
goto S2;
S4:
do
{
mpz_mul (y, y, y); mpz_add (y, y, a); mpz_mod (y, y, n);
mpz_sub (t1, x1, y); mpz_gcd (g, t1, n);
}
while (mpz_cmp_ui (g, 1) == 0);
mpz_div (n, n, g); /* divide by g, before g is overwritten */
if (!mpz_probab_prime_p (g, 3))
{
do
{
mp_limb_t a_limb;
mpn_random (&a_limb, (mp_size_t) 1);
a_int = (int) a_limb;
}
while (a_int == -2 || a_int == 0);
debug ("[composite factor--restarting pollard-rho] ");
factor_using_pollard_rho (g, a_int);
}
else
{
emit_factor (g);
}
mpz_mod (x, x, n);
mpz_mod (x1, x1, n);
mpz_mod (y, y, n);
if (mpz_probab_prime_p (n, 3))
{
emit_factor (n);
break;
}
}
mpz_clear (g);
mpz_clear (P);
mpz_clear (t2);
mpz_clear (t1);
mpz_clear (a);
mpz_clear (x1);
mpz_clear (x);
mpz_clear (y);
}
#else
static void
debug (char const *fmt ATTRIBUTE_UNUSED, ...)
{
}
#endif
/* The maximum number of factors, including -1, for negative numbers. */
#define MAX_N_FACTORS (sizeof (uintmax_t) * CHAR_BIT)
/* The trial divisor increment wheel. Use it to skip over divisors that
are composites of 2, 3, 5, 7, or 11. The part from WHEEL_START up to
WHEEL_END is reused periodically, while the "lead in" is used to test
for those primes and to jump onto the wheel. For more information, see
http://www.utm.edu/research/primes/glossary/WheelFactorization.html */
#include "wheel-size.h" /* For the definition of WHEEL_SIZE. */
static const unsigned char wheel_tab[] =
{
#include "wheel.h"
};
#define WHEEL_START (wheel_tab + WHEEL_SIZE)
#define WHEEL_END (wheel_tab + ARRAY_CARDINALITY (wheel_tab))
/* FIXME: comment */
static size_t
factor_wheel (uintmax_t n0, size_t max_n_factors, uintmax_t *factors)
{
uintmax_t n = n0, d, q;
size_t n_factors = 0;
unsigned char const *w = wheel_tab;
if (n <= 1)
return n_factors;
/* The exit condition in the following loop is correct because
any time it is tested one of these 3 conditions holds:
(1) d divides n
(2) n is prime
(3) n is composite but has no factors less than d.
If (1) or (2) obviously the right thing happens.
If (3), then since n is composite it is >= d^2. */
d = 2;
do
{
q = n / d;
while (n == q * d)
{
assert (n_factors < max_n_factors);
factors[n_factors++] = d;
n = q;
q = n / d;
}
d += *(w++);
if (w == WHEEL_END)
w = WHEEL_START;
}
while (d <= q);
if (n != 1 || n0 == 1)
{
assert (n_factors < max_n_factors);
factors[n_factors++] = n;
}
return n_factors;
}
/* Single-precision factoring */
static void
print_factors_single (uintmax_t n)
{
uintmax_t factors[MAX_N_FACTORS];
size_t n_factors = factor_wheel (n, MAX_N_FACTORS, factors);
size_t i;
char buf[INT_BUFSIZE_BOUND (uintmax_t)];
printf ("%s:", umaxtostr (n, buf));
for (i = 0; i < n_factors; i++)
printf (" %s", umaxtostr (factors[i], buf));
putchar ('\n');
}
#if HAVE_GMP
static int
mpcompare (const void *av, const void *bv)
{
mpz_t *const *a = av;
mpz_t *const *b = bv;
return mpz_cmp (**a, **b);
}
static void
sort_and_print_factors (void)
{
mpz_t **faclist;
size_t i;
faclist = xcalloc (nfactors_found, sizeof *faclist);
for (i = 0; i < nfactors_found; ++i)
{
faclist[i] = &factor[i];
}
qsort (faclist, nfactors_found, sizeof *faclist, mpcompare);
for (i = 0; i < nfactors_found; ++i)
{
fputc (' ', stdout);
mpz_out_str (stdout, 10, *faclist[i]);
}
putchar ('\n');
free (faclist);
}
static void
free_factors (void)
{
size_t i;
for (i = 0; i < nfactors_found; ++i)
{
mpz_clear (factor[i]);
}
/* Don't actually free factor[] because in the case where we are
reading numbers from stdin, we may be about to use it again. */
nfactors_found = 0;
}
/* Arbitrary-precision factoring */
static void
print_factors_multi (mpz_t t)
{
mpz_out_str (stdout, 10, t);
putchar (':');
if (mpz_sgn (t) != 0)
{
/* Set the trial division limit according to the size of t. */
size_t n_bits = mpz_sizeinbase (t, 2);
unsigned int division_limit = MIN (n_bits, 1000);
division_limit *= division_limit;
factor_using_division (t, division_limit);
if (mpz_cmp_ui (t, 1) != 0)
{
debug ("[is number prime?] ");
if (mpz_probab_prime_p (t, 3))
emit_factor (t);
else
factor_using_pollard_rho (t, 1);
}
}
mpz_clear (t);
sort_and_print_factors ();
free_factors ();
}
#endif
/* Emit the factors of the indicated number. If we have the option of using
either algorithm, we select on the basis of the length of the number.
For longer numbers, we prefer the MP algorithm even if the native algorithm
has enough digits, because the algorithm is better. The turnover point
depends on the value. */
static bool
print_factors (char const *s)
{
uintmax_t n;
strtol_error err = xstrtoumax (s, NULL, 10, &n, "");
#if HAVE_GMP
enum { GMP_TURNOVER_POINT = 100000 };
if (err == LONGINT_OVERFLOW
|| (err == LONGINT_OK && GMP_TURNOVER_POINT <= n))
{
mpz_t t;
mpz_init (t);
if (gmp_sscanf (s, "%Zd", t) == 1)
{
debug ("[%s]", _("using arbitrary-precision arithmetic"));
print_factors_multi (t);
return true;
}
err = LONGINT_INVALID;
}
#endif
switch (err)
{
case LONGINT_OK:
debug ("[%s]", _("using single-precision arithmetic"));
print_factors_single (n);
return true;
case LONGINT_OVERFLOW:
error (0, 0, _("%s is too large"), quote (s));
return false;
default:
error (0, 0, _("%s is not a valid positive integer"), quote (s));
return false;
}
}
enum
{
VERBOSE_OPTION = CHAR_MAX + 1
};
static struct option const long_options[] =
{
{"verbose", no_argument, NULL, VERBOSE_OPTION},
{GETOPT_HELP_OPTION_DECL},
{GETOPT_VERSION_OPTION_DECL},
{NULL, 0, NULL, 0}
};
void
usage (int status)
{
if (status != EXIT_SUCCESS)
fprintf (stderr, _("Try `%s --help' for more information.\n"),
program_name);
else
{
printf (_("\
Usage: %s [NUMBER]...\n\
or: %s OPTION\n\
"),
program_name, program_name);
fputs (_("\
Print the prime factors of each specified integer NUMBER. If none\n\
are specified on the command line, read them from standard input.\n\
\n\
"), stdout);
fputs (HELP_OPTION_DESCRIPTION, stdout);
fputs (VERSION_OPTION_DESCRIPTION, stdout);
emit_ancillary_info ();
}
exit (status);
}
static bool
do_stdin (void)
{
bool ok = true;
token_buffer tokenbuffer;
init_tokenbuffer (&tokenbuffer);
while (true)
{
size_t token_length = readtoken (stdin, DELIM, sizeof (DELIM) - 1,
&tokenbuffer);
if (token_length == (size_t) -1)
break;
ok &= print_factors (tokenbuffer.buffer);
}
free (tokenbuffer.buffer);
return ok;
}
int
main (int argc, char **argv)
{
bool ok;
int c;
initialize_main (&argc, &argv);
set_program_name (argv[0]);
setlocale (LC_ALL, "");
bindtextdomain (PACKAGE, LOCALEDIR);
textdomain (PACKAGE);
atexit (close_stdout);
while ((c = getopt_long (argc, argv, "", long_options, NULL)) != -1)
{
switch (c)
{
case VERBOSE_OPTION:
verbose = true;
break;
case_GETOPT_HELP_CHAR;
case_GETOPT_VERSION_CHAR (PROGRAM_NAME, AUTHORS);
default:
usage (EXIT_FAILURE);
}
}
if (argc <= optind)
ok = do_stdin ();
else
{
int i;
ok = true;
for (i = optind; i < argc; i++)
if (! print_factors (argv[i]))
ok = false;
}
#if HAVE_GMP
free (factor);
#endif
exit (ok ? EXIT_SUCCESS : EXIT_FAILURE);
}
|