1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
|
/* human.c -- print human readable file size
Copyright (C) 1996, 1997 Free Software Foundation, Inc.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
/* Originally contributed by lm@sgi.com;
--si and large file support added by eggert@twinsun.com. */
#include <config.h>
#if HAVE_INTTYPES_H
# include <inttypes.h>
#endif
#include <sys/types.h>
#include <stdio.h>
#if HAVE_LIMITS_H
# include <limits.h>
#endif
#ifndef CHAR_BIT
#define CHAR_BIT 8
#endif
#include "human.h"
static const char suffixes[] =
{
0, /* not used */
'k', /* kilo */
'M', /* Mega */
'G', /* Giga */
'T', /* Tera */
'P', /* Peta */
'E', /* Exa */
'Z', /* Zetta */
'Y' /* Yotta */
};
/* Convert N to a human readable format in BUF.
N is expressed in units of FROM_UNITS; use units of TO_UNITS in the
output number. FROM_UNITS and TO_UNITS must be positive, and one must
be a multiple of the other.
If BASE is nonzero, use a format like "127k" if possible,
using powers of BASE; otherwise, use ordinary decimal format.
Normally BASE is either 1000 or 1024; it must be at least 2.
Most people visually process strings of 3-4 digits effectively,
but longer strings of digits are more prone to misinterpretation.
Hence, converting to an abbreviated form usually improves readability.
Use a suffix indicating which power is being used.
For example, assuming BASE is 1024, 8500 would be converted to 8.3k,
133456345 to 127M, 56990456345 to 53G, and so on. Numbers smaller
than BASE aren't modified. */
char *
human_readable (n, buf, from_units, to_units, base)
uintmax_t n;
char *buf;
int from_units;
int to_units;
int base;
{
uintmax_t amt;
int tenths;
int power;
char *p;
/* 0 means adjusted N == AMT.TENTHS;
1 means AMT.TENTHS < adjusted N < AMT.TENTHS + 0.05;
2 means adjusted N == AMT.TENTHS + 0.05;
3 means AMT.TENTHS + 0.05 < adjusted N < AMT.TENTHS + 0.1. */
int rounding;
p = buf + LONGEST_HUMAN_READABLE;
*p = '\0';
/* Adjust AMT out of FROM_UNITS units and into TO_UNITS units. */
if (to_units <= from_units)
{
int multiplier = from_units / to_units;
amt = n * multiplier;
tenths = rounding = 0;
if (amt / multiplier != n)
{
/* Overflow occurred during multiplication. We should use
multiple precision arithmetic here, but we'll be lazy and
resort to floating point. This can yield answers that
are slightly off. In practice it is quite rare to
overflow uintmax_t, so this is good enough for now. */
double damt = n * (double) multiplier;
if (! base)
sprintf (buf, "%.0f", damt);
else
{
double e = 1;
power = 0;
do
{
e *= base;
power++;
}
while (e * base <= amt && power < sizeof suffixes - 1);
damt /= e;
sprintf (buf, "%.1f%c", damt, suffixes[power]);
if (4 < strlen (buf))
sprintf (buf, "%.0f%c", damt, suffixes[power]);
}
return buf;
}
}
else
{
int divisor = to_units / from_units;
int r10 = (n % divisor) * 10;
int r2 = (r10 % divisor) * 2;
amt = n / divisor;
tenths = r10 / divisor;
rounding = r2 < divisor ? 0 < r2 : 2 + (divisor < r2);
}
/* Use power of BASE notation if adjusted AMT is large enough. */
if (base && base <= amt)
{
power = 0;
do
{
int r10 = (amt % base) * 10 + tenths;
int r2 = (r10 % base) * 2 + (rounding >> 1);
amt /= base;
tenths = r10 / base;
rounding = (r2 < base
? 0 < r2 + rounding
: 2 + (base < r2 + rounding));
power++;
}
while (base <= amt && power < sizeof suffixes - 1);
*--p = suffixes[power];
if (amt < 10)
{
tenths += 2 < rounding + (tenths & 1);
if (tenths == 10)
{
amt++;
tenths = 0;
}
if (amt < 10)
{
*--p = '0' + tenths;
*--p = '.';
tenths = 0;
}
}
}
if (5 < tenths + (2 < rounding + (amt & 1)))
{
amt++;
if (amt == base && power < sizeof suffixes - 1)
{
*p = suffixes[power + 1];
*--p = '0';
*--p = '.';
amt = 1;
}
}
do
*--p = '0' + (int) (amt % 10);
while ((amt /= 10) != 0);
return p;
}
|