/* tsort - topological sort. Copyright (C) 1998, 1999, 2000 Free Software Foundation, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Written by Mark Kettenis . */ /* The topological sort is done according to Algorithm T (Topological sort) in Donald E. Knuth, The Art of Computer Programming, Volume 1/Fundamental Algorithms, page 262. */ #ifdef HAVE_CONFIG_H # include #endif #include #include #include #include "system.h" #include "long-options.h" #include "error.h" #include "readtokens.h" /* The official name of this program (e.g., no `g' prefix). */ #define PROGRAM_NAME "tsort" #define AUTHORS "Mark Kettenis" /* Token delimiters when reading from a file. */ #define DELIM " \t\n" /* Members of the list of successors. */ struct successor { struct item *suc; struct successor *next; }; /* Each string is held in core as the head of a list of successors. */ struct item { const char *str; struct item *left, *right; int balance; int count; struct item *qlink; struct successor *top; }; /* The name this program was run with. */ char *program_name; /* Nonzero if any of the input files are the standard input. */ static int have_read_stdin; /* The error code to return to the system. */ static int exit_status; /* The head of the sorted list. */ static struct item *head = NULL; /* The tail of the list of `zeros', strings that have no predecessors. */ static struct item *zeros = NULL; /* Used for loop detection. */ static struct item *loop = NULL; /* The number of strings to sort. */ static int n_strings = 0; static struct option const long_options[] = { { NULL, 0, NULL, 0} }; void usage (int status) { if (status != 0) fprintf (stderr, _("Try `%s --help' for more information.\n"), program_name); else { printf (_("\ Usage: %s [OPTION] [FILE]\n\ Write totally ordered list consistent with the partial ordering in FILE.\n\ With no FILE, or when FILE is -, read standard input.\n\ \n\ --help display this help and exit\n\ --version output version information and exit\n"), program_name); puts (_("\nReport bugs to .")); } exit (status == 0 ? EXIT_SUCCESS : EXIT_FAILURE); } /* Create a new item/node for STR. */ static struct item * new_item (const char *str) { struct item *k = xmalloc (sizeof (struct item)); k->str = (str ? xstrdup (str): NULL); k->left = k->right = NULL; k->balance = 0; /* T1. Initialize (COUNT[k] <- 0 and TOP[k] <- ^). */ k->count = 0; k->qlink = NULL; k->top = NULL; return k; } /* Search binary tree rooted at *ROOT for STR. Allocate a new tree if *ROOT is NULL. Insert a node/item for STR if not found. Return the node/item found/created for STR. This is done according to Algorithm A (Balanced tree search and insertion) in Donald E. Knuth, The Art of Computer Programming, Volume 3/Searching and Sorting, pages 455--457. */ static struct item * search_item (struct item *root, const char *str) { struct item *p, *q, *r, *s, *t; int a; assert (root); /* Make sure the tree is not empty, since that is what the algorithm below expects. */ if (root->right == NULL) return (root->right = new_item (str)); /* A1. Initialize. */ t = root; s = p = root->right; for (;;) { /* A2. Compare. */ a = strcmp (str, p->str); if (a == 0) return p; /* A3 & A4. Move left & right. */ if (a < 0) q = p->left; else q = p->right; if (q == NULL) { /* A5. Insert. */ q = new_item (str); /* A3 & A4. (continued). */ if (a < 0) p->left = q; else p->right = q; /* A6. Adjust balance factors. */ assert (!STREQ (str, s->str)); if (strcmp (str, s->str) < 0) { r = p = s->left; a = -1; } else { r = p = s->right; a = 1; } while (p != q) { assert (!STREQ (str, p->str)); if (strcmp (str, p->str) < 0) { p->balance = -1; p = p->left; } else { p->balance = 1; p = p->right; } } /* A7. Balancing act. */ if (s->balance == 0 || s->balance == -a) { s->balance += a; return q; } if (r->balance == a) { /* A8. Single Rotation. */ p = r; if (a < 0) { s->left = r->right; r->right = s; } else { s->right = r->left; r->left = s; } s->balance = r->balance = 0; } else { /* A9. Double rotation. */ if (a < 0) { p = r->right; r->right = p->left; p->left = r; s->left = p->right; p->right = s; } else { p = r->left; r->left = p->right; p->right = r; s->right = p->left; p->left = s; } s->balance = 0; r->balance = 0; if (p->balance == a) s->balance = -a; else if (p->balance == -a) r->balance = a; p->balance = 0; } /* A10. Finishing touch. */ if (s == t->right) t->right = p; else t->left = p; return q; } /* A3 & A4. (continued). */ if (q->balance) { t = p; s = q; } p = q; } /* NOTREACHED */ } /* Record the fact that J precedes K. */ static void record_relation (struct item *j, struct item *k) { struct successor *p; if (!STREQ (j->str, k->str)) { k->count++; p = xmalloc (sizeof (struct successor)); p->suc = k; p->next = j->top; j->top = p; } } static int count_items (struct item *k) { n_strings++; return 0; } static int scan_zeros (struct item *k) { /* Ignore strings that have already been printed. */ if (k->count == 0 && k->str) { if (head == NULL) head = k; else zeros->qlink = k; zeros = k; } return 0; } /* Try to detect the loop. If we have detected that K is part of a loop, print the loop on standard error, remove a relation to break the loop, and return non-zero. The loop detection strategy is as follows: Realise that what we're dealing with is essentially a directed graph. If we find an item that is part of a graph that contains a cycle we traverse the graph in backwards direction. In general there is no unique way to do this, but that is no problem. If we encounter an item that we have encountered before, we know that we've found a cycle. All we have to do now is retrace our steps, printing out the items until we encounter that item again. (This does not have to be the item that we started at in the first place.) Since the order */ static int detect_loop (struct item *k) { if (k->count > 0) { /* K does not have to be part of a cycle. It is however part of a graph that contains a cycle. */ if (loop == NULL) /* Start traversing the graph at K. */ loop = k; else { struct successor **p = &k->top; while (*p) { if ((*p)->suc == loop) { if (k->qlink) { /* We have found a loop. Retrace our steps. */ while (loop) { struct item *tmp = loop->qlink; fprintf (stderr, "%s: %s\n", program_name, loop->str); /* Until we encounter K again. */ if (loop == k) { /* Remove relation. */ (*p)->suc->count--; *p = (*p)->next; break; } /* Tidy things up since we might have to detect another loop. */ loop->qlink = NULL; loop = tmp; } while (loop) { struct item *tmp = loop->qlink; loop->qlink = NULL; loop = tmp; } /* Since we have found the loop, stop walking the tree. */ return 1; } else { k->qlink = loop; loop = k; break; } } p = &(*p)->next; } } } return 0; } /* Recurse (sub)tree rooted at ROOT, calling ACTION for each node. Stop when ACTION returns non-zero. */ static int recurse_tree (struct item *root, int (*action) (struct item *)) { if (root->left == NULL && root->right == NULL) return (*action) (root); else { if (root->left != NULL) if (recurse_tree (root->left, action)) return 1; if ((*action) (root)) return 1; if (root->right != NULL) if (recurse_tree (root->right, action)) return 1; } return 0; } /* Walk the tree specified by the head ROOT, calling ACTION for each node. */ static void walk_tree (struct item *root, int (*action) (struct item *)) { if (root->right) recurse_tree (root->right, action); } /* Do a topological sort on FILE. */ static void tsort (const char *file) { struct item *root; struct item *j = NULL; struct item *k = NULL; register FILE *fp; token_buffer tokenbuffer; /* Intialize the head of the tree will hold the strings we're sorting. */ root = new_item (NULL); if (STREQ (file, "-")) { fp = stdin; have_read_stdin = 1; } else { fp = fopen (file, "r"); if (fp == NULL) error (EXIT_FAILURE, errno, "%s", file); } init_tokenbuffer (&tokenbuffer); while (1) { long int len; /* T2. Next Relation. */ len = readtoken (fp, DELIM, sizeof (DELIM) - 1, &tokenbuffer); if (len < 0) break; assert (len != 0); k = search_item (root, tokenbuffer.buffer); if (j) { /* T3. Record the relation. */ record_relation (j, k); k = NULL; } j = k; } /* T1. Initialize (N <- n). */ walk_tree (root, count_items); while (n_strings > 0) { /* T4. Scan for zeros. */ walk_tree (root, scan_zeros); while (head) { struct successor *p = head->top; /* T5. Output front of queue. */ printf ("%s\n", head->str); head->str = NULL; /* Avoid printing the same string twice. */ n_strings--; /* T6. Erase relations. */ while (p) { p->suc->count--; if (p->suc->count == 0) { zeros->qlink = p->suc; zeros = p->suc; } p = p->next; } /* T7. Remove from queue. */ head = head->qlink; } /* T8. End of process. */ assert (n_strings >= 0); if (n_strings > 0) { /* The input contains a loop. */ error (0, 0, _("%s: input contains a loop:"), (have_read_stdin ? "-" : file)); exit_status = 1; /* Print the loop and remove a relation to break it. */ do walk_tree (root, detect_loop); while (loop); } } } int main (int argc, char **argv) { int opt; program_name = argv[0]; setlocale (LC_ALL, ""); bindtextdomain (PACKAGE, LOCALEDIR); textdomain (PACKAGE); exit_status = 0; parse_long_options (argc, argv, PROGRAM_NAME, GNU_PACKAGE, VERSION, AUTHORS, usage); while ((opt = getopt_long (argc, argv, "", long_options, NULL)) != -1) switch (opt) { case 0: /* long option */ break; default: usage (EXIT_FAILURE); } have_read_stdin = 0; if (optind + 1 < argc) { error (0, 0, _("only one argument may be specified")); usage (EXIT_FAILURE); } if (optind < argc) tsort (argv[optind]); else tsort ("-"); if (fclose (stdout) == EOF) error (EXIT_FAILURE, errno, _("write error")); if (have_read_stdin && fclose (stdin) == EOF) error (EXIT_FAILURE, errno, _("standard input")); exit (exit_status == 0 ? EXIT_SUCCESS : EXIT_FAILURE); }