/* tsort - topological sort. Copyright (C) 1998-2005, 2007-2008 Free Software Foundation, Inc. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* Written by Mark Kettenis <kettenis@phys.uva.nl>. */ /* The topological sort is done according to Algorithm T (Topological sort) in Donald E. Knuth, The Art of Computer Programming, Volume 1/Fundamental Algorithms, page 262. */ #include <config.h> #include <stdio.h> #include <assert.h> #include <getopt.h> #include <sys/types.h> #include "system.h" #include "long-options.h" #include "error.h" #include "quote.h" #include "readtokens.h" /* The official name of this program (e.g., no `g' prefix). */ #define PROGRAM_NAME "tsort" #define AUTHORS proper_name ("Mark Kettenis") /* Token delimiters when reading from a file. */ #define DELIM " \t\n" /* Members of the list of successors. */ struct successor { struct item *suc; struct successor *next; }; /* Each string is held in core as the head of a list of successors. */ struct item { const char *str; struct item *left, *right; int balance; /* -1, 0, or +1 */ size_t count; struct item *qlink; struct successor *top; }; /* The head of the sorted list. */ static struct item *head = NULL; /* The tail of the list of `zeros', strings that have no predecessors. */ static struct item *zeros = NULL; /* Used for loop detection. */ static struct item *loop = NULL; /* The number of strings to sort. */ static size_t n_strings = 0; void usage (int status) { if (status != EXIT_SUCCESS) fprintf (stderr, _("Try `%s --help' for more information.\n"), program_name); else { printf (_("\ Usage: %s [OPTION] [FILE]\n\ Write totally ordered list consistent with the partial ordering in FILE.\n\ With no FILE, or when FILE is -, read standard input.\n\ \n\ "), program_name); fputs (HELP_OPTION_DESCRIPTION, stdout); fputs (VERSION_OPTION_DESCRIPTION, stdout); emit_bug_reporting_address (); } exit (status); } /* Create a new item/node for STR. */ static struct item * new_item (const char *str) { struct item *k = xmalloc (sizeof *k); k->str = (str ? xstrdup (str): NULL); k->left = k->right = NULL; k->balance = 0; /* T1. Initialize (COUNT[k] <- 0 and TOP[k] <- ^). */ k->count = 0; k->qlink = NULL; k->top = NULL; return k; } /* Search binary tree rooted at *ROOT for STR. Allocate a new tree if *ROOT is NULL. Insert a node/item for STR if not found. Return the node/item found/created for STR. This is done according to Algorithm A (Balanced tree search and insertion) in Donald E. Knuth, The Art of Computer Programming, Volume 3/Searching and Sorting, pages 455--457. */ static struct item * search_item (struct item *root, const char *str) { struct item *p, *q, *r, *s, *t; int a; assert (root); /* Make sure the tree is not empty, since that is what the algorithm below expects. */ if (root->right == NULL) return (root->right = new_item (str)); /* A1. Initialize. */ t = root; s = p = root->right; for (;;) { /* A2. Compare. */ a = strcmp (str, p->str); if (a == 0) return p; /* A3 & A4. Move left & right. */ if (a < 0) q = p->left; else q = p->right; if (q == NULL) { /* A5. Insert. */ q = new_item (str); /* A3 & A4. (continued). */ if (a < 0) p->left = q; else p->right = q; /* A6. Adjust balance factors. */ assert (!STREQ (str, s->str)); if (strcmp (str, s->str) < 0) { r = p = s->left; a = -1; } else { r = p = s->right; a = 1; } while (p != q) { assert (!STREQ (str, p->str)); if (strcmp (str, p->str) < 0) { p->balance = -1; p = p->left; } else { p->balance = 1; p = p->right; } } /* A7. Balancing act. */ if (s->balance == 0 || s->balance == -a) { s->balance += a; return q; } if (r->balance == a) { /* A8. Single Rotation. */ p = r; if (a < 0) { s->left = r->right; r->right = s; } else { s->right = r->left; r->left = s; } s->balance = r->balance = 0; } else { /* A9. Double rotation. */ if (a < 0) { p = r->right; r->right = p->left; p->left = r; s->left = p->right; p->right = s; } else { p = r->left; r->left = p->right; p->right = r; s->right = p->left; p->left = s; } s->balance = 0; r->balance = 0; if (p->balance == a) s->balance = -a; else if (p->balance == -a) r->balance = a; p->balance = 0; } /* A10. Finishing touch. */ if (s == t->right) t->right = p; else t->left = p; return q; } /* A3 & A4. (continued). */ if (q->balance) { t = p; s = q; } p = q; } /* NOTREACHED */ } /* Record the fact that J precedes K. */ static void record_relation (struct item *j, struct item *k) { struct successor *p; if (!STREQ (j->str, k->str)) { k->count++; p = xmalloc (sizeof *p); p->suc = k; p->next = j->top; j->top = p; } } static bool count_items (struct item *unused ATTRIBUTE_UNUSED) { n_strings++; return false; } static bool scan_zeros (struct item *k) { /* Ignore strings that have already been printed. */ if (k->count == 0 && k->str) { if (head == NULL) head = k; else zeros->qlink = k; zeros = k; } return false; } /* Try to detect the loop. If we have detected that K is part of a loop, print the loop on standard error, remove a relation to break the loop, and return true. The loop detection strategy is as follows: Realise that what we're dealing with is essentially a directed graph. If we find an item that is part of a graph that contains a cycle we traverse the graph in backwards direction. In general there is no unique way to do this, but that is no problem. If we encounter an item that we have encountered before, we know that we've found a cycle. All we have to do now is retrace our steps, printing out the items until we encounter that item again. (This is not necessarily the item that we started from originally.) Since the order in which the items are stored in the tree is not related to the specified partial ordering, we may need to walk the tree several times before the loop has completely been constructed. If the loop was found, the global variable LOOP will be NULL. */ static bool detect_loop (struct item *k) { if (k->count > 0) { /* K does not have to be part of a cycle. It is however part of a graph that contains a cycle. */ if (loop == NULL) /* Start traversing the graph at K. */ loop = k; else { struct successor **p = &k->top; while (*p) { if ((*p)->suc == loop) { if (k->qlink) { /* We have found a loop. Retrace our steps. */ while (loop) { struct item *tmp = loop->qlink; fprintf (stderr, "%s: %s\n", program_name, loop->str); /* Until we encounter K again. */ if (loop == k) { /* Remove relation. */ (*p)->suc->count--; *p = (*p)->next; break; } /* Tidy things up since we might have to detect another loop. */ loop->qlink = NULL; loop = tmp; } while (loop) { struct item *tmp = loop->qlink; loop->qlink = NULL; loop = tmp; } /* Since we have found the loop, stop walking the tree. */ return true; } else { k->qlink = loop; loop = k; break; } } p = &(*p)->next; } } } return false; } /* Recurse (sub)tree rooted at ROOT, calling ACTION for each node. Stop when ACTION returns true. */ static bool recurse_tree (struct item *root, bool (*action) (struct item *)) { if (root->left == NULL && root->right == NULL) return (*action) (root); else { if (root->left != NULL) if (recurse_tree (root->left, action)) return true; if ((*action) (root)) return true; if (root->right != NULL) if (recurse_tree (root->right, action)) return true; } return false; } /* Walk the tree specified by the head ROOT, calling ACTION for each node. */ static void walk_tree (struct item *root, bool (*action) (struct item *)) { if (root->right) recurse_tree (root->right, action); } /* Do a topological sort on FILE. Return true if successful. */ static bool tsort (const char *file) { bool ok = true; struct item *root; struct item *j = NULL; struct item *k = NULL; token_buffer tokenbuffer; bool is_stdin = STREQ (file, "-"); /* Intialize the head of the tree will hold the strings we're sorting. */ root = new_item (NULL); if (!is_stdin && ! freopen (file, "r", stdin)) error (EXIT_FAILURE, errno, "%s", file); init_tokenbuffer (&tokenbuffer); while (1) { /* T2. Next Relation. */ size_t len = readtoken (stdin, DELIM, sizeof (DELIM) - 1, &tokenbuffer); if (len == (size_t) -1) break; assert (len != 0); k = search_item (root, tokenbuffer.buffer); if (j) { /* T3. Record the relation. */ record_relation (j, k); k = NULL; } j = k; } if (k != NULL) error (EXIT_FAILURE, 0, _("%s: input contains an odd number of tokens"), file); /* T1. Initialize (N <- n). */ walk_tree (root, count_items); while (n_strings > 0) { /* T4. Scan for zeros. */ walk_tree (root, scan_zeros); while (head) { struct successor *p = head->top; /* T5. Output front of queue. */ puts (head->str); head->str = NULL; /* Avoid printing the same string twice. */ n_strings--; /* T6. Erase relations. */ while (p) { p->suc->count--; if (p->suc->count == 0) { zeros->qlink = p->suc; zeros = p->suc; } p = p->next; } /* T7. Remove from queue. */ head = head->qlink; } /* T8. End of process. */ if (n_strings > 0) { /* The input contains a loop. */ error (0, 0, _("%s: input contains a loop:"), file); ok = false; /* Print the loop and remove a relation to break it. */ do walk_tree (root, detect_loop); while (loop); } } if (fclose (stdin) != 0) error (EXIT_FAILURE, errno, "%s", is_stdin ? _("standard input") : quote (file)); return ok; } int main (int argc, char **argv) { bool ok; initialize_main (&argc, &argv); set_program_name (argv[0]); setlocale (LC_ALL, ""); bindtextdomain (PACKAGE, LOCALEDIR); textdomain (PACKAGE); atexit (close_stdout); parse_long_options (argc, argv, PROGRAM_NAME, PACKAGE, Version, usage, AUTHORS, (char const *) NULL); if (getopt_long (argc, argv, "", NULL, NULL) != -1) usage (EXIT_FAILURE); if (1 < argc - optind) { error (0, 0, _("extra operand %s"), quote (argv[optind + 1])); usage (EXIT_FAILURE); } ok = tsort (optind == argc ? "-" : argv[optind]); exit (ok ? EXIT_SUCCESS : EXIT_FAILURE); }