/* sort - sort lines of text (with all kinds of options). Copyright (C) 88, 1991-1999 Free Software Foundation, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. Written December 1988 by Mike Haertel. The author may be reached (Email) at the address mike@gnu.ai.mit.edu, or (US mail) as Mike Haertel c/o Free Software Foundation. �rn E. Hansen added NLS support in 1997. */ #include <config.h> #include <sys/types.h> #include <signal.h> #include <stdio.h> #include <assert.h> #include "system.h" #include "long-options.h" #include "error.h" #include "xstrtod.h" #include "xalloc.h" #if defined ENABLE_NLS && HAVE_LANGINFO_H # include <langinfo.h> #endif #if HAVE_UNISTD_H && defined(_PC_PATH_MAX) && _POSIX_NAME_MAX == 12 # define PATH_MAX_IN_DIR(f) pathconf(f, _PC_PATH_MAX) #else # define PATH_MAX_IN_DIR(f) 255 #endif char *xstrdup (); /* Undefine, to avoid warning about redefinition on some systems. */ #undef min #define min(a, b) ((a) < (b) ? (a) : (b)) #undef max #define max(a, b) ((a) > (b) ? (a) : (b)) #define UCHAR_LIM (UCHAR_MAX + 1) #define UCHAR(c) ((unsigned char) (c)) #ifndef DEFAULT_TMPDIR # define DEFAULT_TMPDIR "/tmp" #endif /* Use this as exit status in case of error, not EXIT_FAILURE. This is necessary because EXIT_FAILURE is usually 1 and POSIX requires that sort exit with status 1 IFF invoked with -c and the input is not properly sorted. Any other irregular exit must exit with a status code greater than 1. */ #define SORT_FAILURE 2 #define FLOATING_POINT '.' #define FLOATING_COMMA ',' #define NEGATION_SIGN '-' #define NUMERIC_ZERO '0' #ifdef ENABLE_NLS # define NLS_MEMCMP(S1, S2, Len) strncoll (S1, S2, Len) # define NLS_STRNCMP(S1, S2, Len) strncoll_s2_readonly (S1, S2, Len) #else # define NLS_MEMCMP(S1, S2, Len) memcmp (S1, S2, Len) # define NLS_STRNCMP(S1, S2, Len) strncmp (S1, S2, Len) #endif #ifdef ENABLE_NLS static unsigned char decimal_point; static unsigned char th_sep; static char *nls_grouping; /* This is "C" locale, need another? */ static int need_locale = 0; /* Should we look for decimal point? */ static int nls_fraction_found = 1; /* Look for month notations in text? */ static int nls_month_found = 1; #else # define decimal_point FLOATING_POINT #endif /* If native language support is requested, make a 1-1 map to the locale character map, otherwise ensure normal behavior. */ #ifdef ENABLE_NLS /* 12 months in a year */ # define NLS_NUM_MONTHS 12 /* Maximum number of elements, to allocate per allocation unit */ # define NLS_MAX_GROUPS 8 /* A string with one character, to enforce char collation */ # define NLS_ONE_CHARACTER_STRING " " #endif /* The kind of blanks for '-b' to skip in various options. */ enum blanktype { bl_start, bl_end, bl_both }; /* The character marking end of line. Default to \n. */ int eolchar = '\n'; /* Lines are held in core as counted strings. */ struct line { char *text; /* Text of the line. */ int length; /* Length not including final newline. */ char *keybeg; /* Start of first key. */ char *keylim; /* Limit of first key. */ }; /* Arrays of lines. */ struct lines { struct line *lines; /* Dynamically allocated array of lines. */ int used; /* Number of slots used. */ int alloc; /* Number of slots allocated. */ int limit; /* Max number of slots to allocate. */ }; /* Input buffers. */ struct buffer { char *buf; /* Dynamically allocated buffer. */ int used; /* Number of bytes used. */ int alloc; /* Number of bytes allocated. */ int left; /* Number of bytes left after line parsing. */ }; struct keyfield { int sword; /* Zero-origin 'word' to start at. */ int schar; /* Additional characters to skip. */ int skipsblanks; /* Skip leading white space at start. */ int eword; /* Zero-origin first word after field. */ int echar; /* Additional characters in field. */ int skipeblanks; /* Skip trailing white space at finish. */ int *ignore; /* Boolean array of characters to ignore. */ char *translate; /* Translation applied to characters. */ int numeric; /* Flag for numeric comparison. Handle strings of digits with optional decimal point, but no exponential notation. */ int general_numeric; /* Flag for general, numeric comparison. Handle numbers in exponential notation. */ int month; /* Flag for comparison by month name. */ int reverse; /* Reverse the sense of comparison. */ struct keyfield *next; /* Next keyfield to try. */ }; struct month { char *name; int val; }; /* The name this program was run with. */ char *program_name; /* Table of white space. */ static int blanks[UCHAR_LIM]; /* Table of non-printing characters. */ static int nonprinting[UCHAR_LIM]; /* Table of non-dictionary characters (not letters, digits, or blanks). */ static int nondictionary[UCHAR_LIM]; /* Translation table folding lower case to upper. */ static char fold_toupper[UCHAR_LIM]; /* Table mapping 3-letter month names to integers. Alphabetic order allows binary search. */ static const struct month us_monthtab[] = { {"APR", 4}, {"AUG", 8}, {"DEC", 12}, {"FEB", 2}, {"JAN", 1}, {"JUL", 7}, {"JUN", 6}, {"MAR", 3}, {"MAY", 5}, {"NOV", 11}, {"OCT", 10}, {"SEP", 9} }; #ifdef ENABLE_NLS /* Locale may have a different idea of month names */ static struct month nls_monthtab[NLS_NUM_MONTHS]; static int nls_months_collide[NLS_NUM_MONTHS + 1]; /* Numeric keys, to search for numeric format */ struct nls_keyfield { struct keyfield *key; struct nls_keyfield *next; }; static struct nls_keyfield *nls_keyhead = NULL; #endif /* Which month table to use in the program, default C */ static const struct month *monthtab = us_monthtab; /* During the merge phase, the number of files to merge at once. */ #define NMERGE 16 /* Initial buffer size for in core sorting. Will not grow unless a line longer than this is seen. */ static int sortalloc = 512 * 1024; /* Initial buffer size for in core merge buffers. Bear in mind that up to NMERGE * mergealloc bytes may be allocated for merge buffers. */ static int mergealloc = 16 * 1024; /* Guess of average line length. */ static int linelength = 30; /* Maximum number of elements for the array(s) of struct line's, in bytes. */ #define LINEALLOC (256 * 1024) /* Prefix for temporary file names. */ static char *temp_file_prefix; /* Flag to reverse the order of all comparisons. */ static int reverse; /* Flag for stable sort. This turns off the last ditch bytewise comparison of lines, and instead leaves lines in the same order they were read if all keys compare equal. */ static int stable; /* Tab character separating fields. If NUL, then fields are separated by the empty string between a non-whitespace character and a whitespace character. */ static char tab; /* Flag to remove consecutive duplicate lines from the output. Only the last of a sequence of equal lines will be output. */ static int unique; /* Nonzero if any of the input files are the standard input. */ static int have_read_stdin; /* Lists of key field comparisons to be tried. */ static struct keyfield keyhead; void usage (int status) { if (status != 0) fprintf (stderr, _("Try `%s --help' for more information.\n"), program_name); else { printf (_("\ Usage: %s [OPTION]... [FILE]...\n\ "), program_name); printf (_("\ Write sorted concatenation of all FILE(s) to standard output.\n\ \n\ +POS1 [-POS2] start a key at POS1, end it before POS2\n\ -b ignore leading blanks in sort fields or keys\n\ -c check if given files already sorted, do not sort\n\ -d consider only [a-zA-Z0-9 ] characters in keys\n\ -f fold lower case to upper case characters in keys\n\ -g compare according to general numerical value, imply -b\n\ -i consider only [\\040-\\0176] characters in keys\n\ -k POS1[,POS2] same as +POS1 [-POS2], but all positions counted from 1\n\ -m merge already sorted files, do not sort\n\ -M compare (unknown) < `JAN' < ... < `DEC', imply -b\n\ -n compare according to string numerical value, imply -b\n\ -o FILE write result on FILE instead of standard output\n\ -r reverse the result of comparisons\n\ -s stabilize sort by disabling last resort comparison\n\ -t SEP use SEParator instead of non- to whitespace transition\n\ -T DIRECT use DIRECT for temporary files, not $TMPDIR or %s\n\ -u with -c, check for strict ordering;\n\ with -m, only output the first of an equal sequence\n\ -z end lines with 0 byte, not newline, for find -print0\n\ --help display this help and exit\n\ --version output version information and exit\n\ \n\ POS is F[.C][OPTS], where F is the field number and C the character\n\ position in the field, both counted from zero. OPTS is made up of one\n\ or more of Mbdfinr, this effectively disable global -Mbdfinr settings\n\ for that key. If no key given, use the entire line as key. With no\n\ FILE, or when FILE is -, read standard input.\n\ ") , DEFAULT_TMPDIR); puts (_("\nReport bugs to <bug-textutils@gnu.org>.")); } /* Don't use EXIT_FAILURE here in case it is defined to be 1. POSIX requires that sort return 1 IFF invoked with -c and the input is not properly sorted. */ assert (status == 0 || status == SORT_FAILURE); exit (status); } /* The list of temporary files. */ static struct tempnode { char *name; struct tempnode *next; } temphead; /* Clean up any remaining temporary files. */ static void cleanup (void) { struct tempnode *node; for (node = temphead.next; node; node = node->next) unlink (node->name); } static FILE * xtmpfopen (const char *file) { FILE *fp; int fd; /* Open temporary file exclusively, to foil a common denial-of-service attack. */ fd = open (file, O_WRONLY | O_CREAT | O_TRUNC | O_EXCL, 0600); if (fd < 0 || (fp = fdopen (fd, "w")) == NULL) { error (0, errno, "%s", file); cleanup (); exit (SORT_FAILURE); } return fp; } static FILE * xfopen (const char *file, const char *how) { FILE *fp; if (STREQ (file, "-")) { fp = stdin; } else { if ((fp = fopen (file, how)) == NULL) { error (0, errno, "%s", file); cleanup (); exit (SORT_FAILURE); } } if (fp == stdin) have_read_stdin = 1; return fp; } static void xfclose (FILE *fp) { if (fp == stdin) { /* Allow reading stdin from tty more than once. */ if (feof (fp)) clearerr (fp); } else if (fp == stdout) { if (fflush (fp) != 0) { error (0, errno, _("flushing file")); cleanup (); exit (SORT_FAILURE); } } else { if (fclose (fp) != 0) { error (0, errno, _("error closing file")); cleanup (); exit (SORT_FAILURE); } } } static void write_bytes (const char *buf, size_t n_bytes, FILE *fp) { if (fwrite (buf, 1, n_bytes, fp) != n_bytes) { error (0, errno, _("write error")); cleanup (); exit (SORT_FAILURE); } } /* Return a name for a temporary file. */ static char * tempname (void) { static unsigned int seq; int len = strlen (temp_file_prefix); char *name = xmalloc (len + 1 + sizeof ("sort") - 1 + 5 + 5 + 1); int long_file_names = PATH_MAX_IN_DIR (temp_file_prefix) > 12; struct tempnode *node; node = (struct tempnode *) xmalloc (sizeof (struct tempnode)); /* If long filenames aren't supported, we cannot use filenames longer than 8+3 and still assume they are unique. */ if (long_file_names) sprintf (name, "%s%ssort%5.5d%5.5d", temp_file_prefix, (len && temp_file_prefix[len - 1] != '/') ? "/" : "", (unsigned int) getpid () & 0xffff, seq); else sprintf (name, "%s%ss%5.5d%2.2d.%3.3d", temp_file_prefix, (len && temp_file_prefix[len - 1] != '/') ? "/" : "", (unsigned int) getpid () & 0xffff, seq / 1000, seq % 1000); /* Make sure that SEQ's value fits in 5 digits. */ ++seq; if (seq >= 100000) seq = 0; node->name = name; node->next = temphead.next; temphead.next = node; return name; } /* Search through the list of temporary files for NAME; remove it if it is found on the list. */ static void zaptemp (const char *name) { struct tempnode *node, *temp; for (node = &temphead; node->next; node = node->next) if (STREQ (name, node->next->name)) break; if (node->next) { temp = node->next; unlink (temp->name); free (temp->name); node->next = temp->next; free ((char *) temp); } } #ifdef ENABLE_NLS /* Initialize the character class tables. */ static int nls_sort_month_comp (const void *m1, const void *m2) { return strcoll (((const struct month *) m1)->name, ((const struct month *) m2)->name); } /* Do collation on strings S1 and S2, but for at most L characters. we use the fact, that we KNOW that LEN is the min of the two lengths */ static int strncoll (char *s1, char *s2, int len) { register int diff; if (need_locale) { /* Emulate a strncoll function, by forcing strcoll to compare only the first LEN characters in each string. */ register unsigned char n1 = s1[len]; register unsigned char n2 = s2[len]; s1[len] = s2[len] = 0; diff = strcoll (s1, s2); s1[len] = n1; s2[len] = n2; } else { diff = memcmp (s1, s2, len); } return diff; } /* Do collation on strings S1 and S2, but for at most L characters. Use the fact, that we KNOW that S2 is the shorter string and has length LEN. */ static int strncoll_s2_readonly (char *s1, const char *s2, int len) { register int diff; assert (len == strlen (s2)); assert (len <= strlen (s1)); if (need_locale) { /* Emulate a strncoll function, by forcing strcoll to compare only the first LEN characters in each string. */ register unsigned char n1 = s1[len]; s1[len] = 0; diff = strcoll (s1, s2); s1[len] = n1; } else { diff = memcmp (s1, s2, len); } return diff; } #endif /* NLS */ static void inittables (void) { int i; for (i = 0; i < UCHAR_LIM; ++i) { if (ISBLANK (i)) blanks[i] = 1; if (!ISPRINT (i)) nonprinting[i] = 1; if (!ISALNUM (i) && !ISBLANK (i)) nondictionary[i] = 1; if (ISLOWER (i)) fold_toupper[i] = toupper (i); else fold_toupper[i] = i; } #if defined ENABLE_NLS && HAVE_NL_LANGINFO /* If We're not in the "C" locale, read in different names for months. */ if (need_locale) { nls_months_collide[0] = 1; /* if an error, look again */ for (i = 0; i < NLS_NUM_MONTHS; i++) { char *s; size_t s_len; int j; s = (char *) nl_langinfo (ABMON_1 + us_monthtab[i].val - 1); s_len = strlen (s); nls_monthtab[i].name = (char *) xmalloc (s_len + 1); nls_monthtab[i].val = us_monthtab[i].val; /* Be careful: abreviated month names may be longer than the usual 3 characters. */ for (j = 0; j < s_len; j++) nls_monthtab[i].name[j] = fold_toupper[UCHAR (s[j])]; nls_monthtab[i].name[j] = '\0'; nls_months_collide[nls_monthtab[i].val] = 0; for (j = 0; j < NLS_NUM_MONTHS; ++j) { if (STREQ (nls_monthtab[i].name, us_monthtab[i].name)) { /* There are indeed some month names in English which collide with the NLS name. */ nls_months_collide[nls_monthtab[i].val] = 1; break; } } } /* Now quicksort the month table (should be sorted already!). However, another locale doesn't rule out the possibility of a different order of month names. */ qsort ((void *) nls_monthtab, NLS_NUM_MONTHS, sizeof (struct month), nls_sort_month_comp); monthtab = nls_monthtab; } #endif /* NLS */ } /* Initialize BUF, allocating ALLOC bytes initially. */ static void initbuf (struct buffer *buf, int alloc) { buf->alloc = alloc; buf->buf = xmalloc (buf->alloc); buf->used = buf->left = 0; } /* Fill BUF reading from FP, moving buf->left bytes from the end of buf->buf to the beginning first. If EOF is reached and the file wasn't terminated by a newline, supply one. Return a count of bytes buffered. */ static int fillbuf (struct buffer *buf, FILE *fp) { int cc; memmove (buf->buf, buf->buf + buf->used - buf->left, buf->left); buf->used = buf->left; while (!feof (fp) && (buf->used == 0 || !memchr (buf->buf, eolchar, buf->used))) { if (buf->used == buf->alloc) { buf->alloc *= 2; buf->buf = xrealloc (buf->buf, buf->alloc); } cc = fread (buf->buf + buf->used, 1, buf->alloc - buf->used, fp); if (ferror (fp)) { error (0, errno, _("read error")); cleanup (); exit (SORT_FAILURE); } buf->used += cc; } if (feof (fp) && buf->used && buf->buf[buf->used - 1] != eolchar) { if (buf->used == buf->alloc) { buf->alloc *= 2; buf->buf = xrealloc (buf->buf, buf->alloc); } buf->buf[buf->used++] = eolchar; } return buf->used; } /* Initialize LINES, allocating space for ALLOC lines initially. LIMIT is the maximum possible number of lines to allocate space for, ever. */ static void initlines (struct lines *lines, int alloc, int limit) { lines->alloc = alloc; lines->lines = (struct line *) xmalloc (lines->alloc * sizeof (struct line)); lines->used = 0; lines->limit = limit; } /* Return a pointer to the first character of the field specified by KEY in LINE. */ static char * begfield (const struct line *line, const struct keyfield *key) { register char *ptr = line->text, *lim = ptr + line->length; register int sword = key->sword, schar = key->schar; if (tab) while (ptr < lim && sword--) { while (ptr < lim && *ptr != tab) ++ptr; if (ptr < lim) ++ptr; } else while (ptr < lim && sword--) { while (ptr < lim && blanks[UCHAR (*ptr)]) ++ptr; while (ptr < lim && !blanks[UCHAR (*ptr)]) ++ptr; } if (key->skipsblanks) while (ptr < lim && blanks[UCHAR (*ptr)]) ++ptr; if (ptr + schar <= lim) ptr += schar; else ptr = lim; return ptr; } /* Return the limit of (a pointer to the first character after) the field in LINE specified by KEY. */ static char * limfield (const struct line *line, const struct keyfield *key) { register char *ptr = line->text, *lim = ptr + line->length; register int eword = key->eword, echar = key->echar; /* Note: from the POSIX spec: The leading field separator itself is included in a field when -t is not used. FIXME: move this comment up... */ /* Move PTR past EWORD fields or to one past the last byte on LINE, whichever comes first. If there are more than EWORD fields, leave PTR pointing at the beginning of the field having zero-based index, EWORD. If a delimiter character was specified (via -t), then that `beginning' is the first character following the delimiting TAB. Otherwise, leave PTR pointing at the first `blank' character after the preceding field. */ if (tab) while (ptr < lim && eword--) { while (ptr < lim && *ptr != tab) ++ptr; if (ptr < lim && (eword || echar > 0)) ++ptr; } else while (ptr < lim && eword--) { while (ptr < lim && blanks[UCHAR (*ptr)]) ++ptr; while (ptr < lim && !blanks[UCHAR (*ptr)]) ++ptr; } #ifdef POSIX_UNSPECIFIED /* The following block of code makes GNU sort incompatible with standard Unix sort, so it's ifdef'd out for now. The POSIX spec isn't clear on how to interpret this. FIXME: request clarification. From: kwzh@gnu.ai.mit.edu (Karl Heuer) Date: Thu, 30 May 96 12:20:41 -0400 [...]I believe I've found another bug in `sort'. $ cat /tmp/sort.in a b c 2 d pq rs 1 t $ textutils-1.15/src/sort +0.6 -0.7 </tmp/sort.in a b c 2 d pq rs 1 t $ /bin/sort +0.6 -0.7 </tmp/sort.in pq rs 1 t a b c 2 d Unix sort produced the answer I expected: sort on the single character in column 6. GNU sort produced different results, because it disagrees on the interpretation of the key-end spec "-M.N". Unix sort reads this as "skip M fields, then N characters"; but GNU sort wants it to mean "skip M fields, then either N characters or the rest of the current field, whichever comes first". This extra clause applies only to key-ends, not key-starts. */ /* Make LIM point to the end of (one byte past) the current field. */ if (tab) { char *newlim; newlim = memchr (ptr, tab, lim - ptr); if (newlim) lim = newlim; } else { char *newlim; newlim = ptr; while (newlim < lim && blanks[UCHAR (*newlim)]) ++newlim; while (newlim < lim && !blanks[UCHAR (*newlim)]) ++newlim; lim = newlim; } #endif /* If we're skipping leading blanks, don't start counting characters until after skipping past any leading blanks. */ if (key->skipsblanks) while (ptr < lim && blanks[UCHAR (*ptr)]) ++ptr; /* Advance PTR by ECHAR (if possible), but no further than LIM. */ if (ptr + echar <= lim) ptr += echar; else ptr = lim; return ptr; } /* FIXME */ void trim_trailing_blanks (const char *a_start, char **a_end) { while (*a_end > a_start && blanks[UCHAR (*(*a_end - 1))]) --(*a_end); } /* Find the lines in BUF, storing pointers and lengths in LINES. Also replace newlines in BUF with NULs. */ static void findlines (struct buffer *buf, struct lines *lines) { register char *beg = buf->buf, *lim = buf->buf + buf->used, *ptr; struct keyfield *key = keyhead.next; lines->used = 0; while (beg < lim && (ptr = memchr (beg, eolchar, lim - beg)) && lines->used < lines->limit) { /* There are various places in the code that rely on a NUL being at the end of in-core lines; NULs inside the lines will not cause trouble, though. */ *ptr = '\0'; if (lines->used == lines->alloc) { lines->alloc *= 2; lines->lines = (struct line *) xrealloc ((char *) lines->lines, lines->alloc * sizeof (struct line)); } lines->lines[lines->used].text = beg; lines->lines[lines->used].length = ptr - beg; /* Precompute the position of the first key for efficiency. */ if (key) { if (key->eword >= 0) lines->lines[lines->used].keylim = limfield (&lines->lines[lines->used], key); else lines->lines[lines->used].keylim = ptr; if (key->sword >= 0) lines->lines[lines->used].keybeg = begfield (&lines->lines[lines->used], key); else { if (key->skipsblanks) while (blanks[UCHAR (*beg)]) ++beg; lines->lines[lines->used].keybeg = beg; } if (key->skipeblanks) { trim_trailing_blanks (lines->lines[lines->used].keybeg, &lines->lines[lines->used].keylim); } } else { lines->lines[lines->used].keybeg = 0; lines->lines[lines->used].keylim = 0; } ++lines->used; beg = ptr + 1; } buf->left = lim - beg; } /* Compare strings A and B containing decimal fractions < 1. Each string should begin with a decimal point followed immediately by the digits of the fraction. Strings not of this form are considered to be zero. */ /* The goal here, is to take two numbers a and b... compare these in parallel. Instead of converting each, and then comparing the outcome. Most likely stopping the comparison before the conversion is complete. The algorithm used, in the old sort: Algorithm: fraccompare Action : compare two decimal fractions accepts : char *a, char *b returns : -1 if a<b, 0 if a=b, 1 if a>b. implement: if *a == decimal_point AND *b == decimal_point find first character different in a and b. if both are digits, return the difference *a - *b. if *a is a digit skip past zeroes if digit return 1, else 0 if *b is a digit skip past zeroes if digit return -1, else 0 if *a is a decimal_point skip past decimal_point and zeroes if digit return 1, else 0 if *b is a decimal_point skip past decimal_point and zeroes if digit return -1, else 0 return 0 The above implementation duplicates code, and thus there is room for improvement: the difference in code of a and b, is solved by using a reference to s, assigned to either a or b. and using diff to denote return value. the difference in either that start being a digit or the decimal point, is solved by testing if either is a decimal point, or if the other is a digit... if *a or *b is a decimal_point skip all chars where *a == *b if *a and *b are digits return *a - *b if *a is a digit or *a is a decimal_point s is a diff is 1 else s is b diff is -1 skip decimal_point in s skip zeroes in s if *s is a digit return diff return 0 */ #define USE_NEW_FRAC_COMPARE #ifdef USE_NEW_FRAC_COMPARE static int fraccompare (register const char *a, register const char *b) { # ifdef ENABLE_NLS nls_fraction_found = 1; # endif if (*a == decimal_point || *b == decimal_point) { register const char *s; int diff; while (*a == *b) { ++a; ++b; if (!ISDIGIT (*a)) break; } if (ISDIGIT (*a) && ISDIGIT (*b)) return (*a) - (*b); if (*a == decimal_point || (ISDIGIT (*a) && *b != decimal_point)) { s = a; diff = 1; } else { s = b; diff = -1; } if (*s == decimal_point) ++s; while (*s == NUMERIC_ZERO) ++s; if (ISDIGIT (*s)) return diff; } return 0; } #else static int fraccompare (register const char *a, register const char *b) { register int tmpa = *a; register int tmpb = *b; if (tmpa == decimal_point && tmpb == decimal_point) { do tmpa = *++a, tmpb = *++b; while (tmpa == tmpb && ISDIGIT (tmpa)); if (ISDIGIT (tmpa) && ISDIGIT (tmpb)) return tmpa - tmpb; if (ISDIGIT (tmpa)) { while (tmpa == NUMERIC_ZERO) tmpa = *++a; if (ISDIGIT (tmpa)) return 1; return 0; } if (ISDIGIT (tmpb)) { while (tmpb == NUMERIC_ZERO) tmpb = *++b; if (ISDIGIT (tmpb)) return -1; return 0; } return 0; } else if (tmpa == decimal_point) { do tmpa = *++a; while (tmpa == NUMERIC_ZERO); if (ISDIGIT (tmpa)) return 1; return 0; } else if (tmpb == decimal_point) { do tmpb = *++b; while (tmpb == NUMERIC_ZERO); if (ISDIGIT (tmpb)) return -1; return 0; } return 0; } #endif /* Compare strings A and B as numbers without explicitly converting them to machine numbers. Comparatively slow for short strings, but asymptotically hideously fast. */ /* The code here, is like the above... continuous reoccurrance of the same code... improved 15-JAN-1997 in connection with native languages support */ #ifdef ENABLE_NLS /* Decide the kind of fraction the program will use */ static void nls_set_fraction (register unsigned char ch) { if (!nls_fraction_found && ch != decimal_point) { if (ch == FLOATING_POINT) { /* US style */ decimal_point = FLOATING_POINT; th_sep = FLOATING_COMMA; } else if (ch == FLOATING_COMMA) { /* EU style */ decimal_point = FLOATING_COMMA; th_sep = FLOATING_POINT; } else if (ch != decimal_point) { /* Alien */ decimal_point = ch; th_sep = '\0'; } } nls_fraction_found = 1; } /* Look for a fraction It isn't as simple as it looks... however, consider a number: 1.234,00 1,234.00 It's easy to tell which is a decimal point, and which isn't. We use the grouping information to find out how many digits are grouped together for thousand separator. The idea here, is to use the grouping information... but not to spend time with verifying the groups... not too much time, anyway. so, a number represented to us as: 1.234.567,89 will be taken and separated into different groups, separated by a separator character (Decimal point or thousands separator). {1,234,567} these are the groups of digits that lead to a separator character, and with the trailing group is added: {1,234,567,89} resulting in 4 groups of numbers. If the resulting number of groups, are none, or just 1... this is not enough to decide anything about the decimal point. We need at least two for that. With two groups we have at least one separator. That separator can be a decimal point, or a thousands separator... if it is a thousands separator the number of digits in the last group, will comply with the first rule in the grouping rule for numeric values. i.e. |{89}| = grouping[0] if so, and there are only two groups of numbers, the value cannot be determined. If there are three or more numbers, the separator separating the groups is checked. If these are the same, the character is determined to be a thousands separator. If they are not the same, the last separator is determined to be a decimal point. If checking the grouping rules, we find out that there are no grouping rules defined, either the grouping rules is NULL or the first grouping number is 0, then the locale format is used. We try to take an advantage of a special situation. If the trailing group, the one that normally should be the fractional part, turns out to have the same length as the thousands separator rule says, making a doubt on that it may be a decimal point, we look for the group before that, i.e. with a two group form: {1234,567} where the grouping rule is 3;3... we take a look at group 1, and find out that |{1234}| > larger of the two first grouping rules, then the separator has to be a decimal point... */ static void look_for_fraction (const char *s, const char *e) { register const char *p; register unsigned short n = 0; static unsigned short max_groups = 0; static unsigned short *groups = NULL; if (groups == NULL) { max_groups = NLS_MAX_GROUPS; groups = (unsigned short *) xmalloc (sizeof (*groups) * max_groups); } /* skip blanks and signs */ while (blanks[UCHAR (*s)] || *s == NEGATION_SIGN) s++; /* groups = {}, n = 0 */ for (p = s; p < e; p++) { /* groups[n]={number of digits leading to separator n} n = number of separators so far */ if (*p == decimal_point || *p == th_sep || *p == FLOATING_POINT) { if (++n >= max_groups) { /* BIG Number... enlarge table */ max_groups += NLS_MAX_GROUPS; groups = (unsigned short *) xrealloc ((char *) groups, (sizeof (*groups) * max_groups)); } groups[n] = (unsigned short) (p - s); s = p + 1; } else if (!ISDIGIT (*p)) break; /* mem[s..p]=digits only */ } /* n = number of separators in s..e */ groups[++n] = (short) (p - s); /* n = groups in the number */ if (n <= 1) return; /* Only one group of numbers... not enough */ p = nls_grouping; /* p = address of group rules s = address of next character after separator */ s = s - 1; /* s = address of last separator */ if (p && *p) { /* a legal trailing group, iff groups[n] == first rule */ if (groups[n] != (short) *p) nls_set_fraction (*s); else { if (n == 2) { /* Only two groups */ if (groups[n - 1] > max (p[0], p[1])) nls_set_fraction (*s); return; } /* if the separators are the same, it's a thousands */ if (*s != *(s - groups[n])) nls_set_fraction (*s); /* s[0] = thousands separator */ else if (*s == th_sep) nls_fraction_found = 1; } } else { /* no grouping allowed here, last separator IS decimal point */ nls_set_fraction (*s); } } static int numcompare (register const char *a, register const char *b) { int ret_code = 1; /* normal return status, see later in code */ int diff = 0; /* difference between two digits */ while (blanks[UCHAR (*a)]) ++a; while (blanks[UCHAR (*b)]) ++b; /* next character in a,b is non-blank */ if ((*a == NEGATION_SIGN || *b == NEGATION_SIGN) && *a != *b) { /* a < 0, or b < 0, but not both */ if (*a == NEGATION_SIGN) ret_code = -1, ++a; /* a looks < b */ else if (*b == NEGATION_SIGN) ret_code = 1, ++b; /* b looks < a */ /* bypass zeroes, decimal points, and thousand sep in a & b */ while (*a == NUMERIC_ZERO || (th_sep && *a == th_sep) || *a == decimal_point) ++a; while (*b == NUMERIC_ZERO || (th_sep && *b == th_sep) || *b == decimal_point) ++b; if (ISDIGIT (*a) || ISDIGIT (*b)) /* here, either a or b or both are digits if a and b are digits, the signed one is the lesser. if a is a digit, and not b.. it means b==0, and if b==0 than either is signed if b is signed then -0 < a or if a is signed then -a < 0. The ret_code is already set to mark that the signed number is the lesser, so we just return that number here. */ return ret_code; /* *a and *b are neither digits, they are equal -0 == +0 */ return 0; } else { /* either both numbers are signed, or both are not-signed */ if (*a == NEGATION_SIGN) { ++a; ++b; ret_code = -1; } /* if both are signed, then remember -100 < -10 (ret_code reversed!) */ /* Skip any leading zeroes */ while (*a == NUMERIC_ZERO) ++a; while (*b == NUMERIC_ZERO) ++b; continue_thousands: /* skip all equal digits */ while (ISDIGIT (*a) && ISDIGIT (*b) && *a == *b) a++, b++; /* Here, we have either different digits, or possible fractions or thousand separators. */ if (ISDIGIT (*a) && ISDIGIT (*b)) { if (diff == 0) diff = ((*a) - (*b)); /* simple, isn't it? not quite */ a++, b++; goto continue_thousands; } /* now, here either may be a fraction, or a thousand separator... or both. */ /* We've decided what are decimal_points, and what are thousands sep */ if ((th_sep != 0) && (*a == th_sep || *b == th_sep)) { if (*a == th_sep) ++a; if (*b == th_sep) ++b; goto continue_thousands; /* Ugly, but better than a while(1) */ } if (ISDIGIT (*a)) return ret_code; /* a has more digits than b */ if (ISDIGIT (*b)) return ret_code * -1; /* b has more digits than a */ /* now, we should have the fractions solved */ if ((diff == 0) && (*a == decimal_point || *b == decimal_point)) return ret_code * fraccompare (a, b); return diff; /* fall through here, and diff decides */ } } #else static int numcompare (register const char *a, register const char *b) { register int tmpa, tmpb, loga, logb, tmp; tmpa = UCHAR (*a); tmpb = UCHAR (*b); while (blanks[tmpa]) tmpa = UCHAR (*++a); while (blanks[tmpb]) tmpb = UCHAR (*++b); if (tmpa == NEGATION_SIGN) { do tmpa = UCHAR (*++a); while (tmpa == NUMERIC_ZERO); if (tmpb != NEGATION_SIGN) { if (tmpa == decimal_point) do tmpa = *++a; while (tmpa == NUMERIC_ZERO); if (ISDIGIT (tmpa)) return -1; while (tmpb == NUMERIC_ZERO) tmpb = UCHAR (*++b); if (tmpb == decimal_point) do tmpb = *++b; while (tmpb == NUMERIC_ZERO); if (ISDIGIT (tmpb)) return -1; return 0; } do tmpb = UCHAR (*++b); while (tmpb == NUMERIC_ZERO); while (tmpa == tmpb && ISDIGIT (tmpa)) tmpa = UCHAR (*++a), tmpb = UCHAR (*++b); if ((tmpa == decimal_point && !ISDIGIT (tmpb)) || (tmpb == decimal_point && !ISDIGIT (tmpa))) return -fraccompare (a, b); if (ISDIGIT (tmpa)) for (loga = 1; ISDIGIT (UCHAR (*++a)); ++loga) ; else loga = 0; if (ISDIGIT (tmpb)) for (logb = 1; ISDIGIT (UCHAR (*++b)); ++logb) ; else logb = 0; if ((tmp = logb - loga) != 0) return tmp; if (!loga) return 0; return tmpb - tmpa; } else if (tmpb == NEGATION_SIGN) { do tmpb = UCHAR (*++b); while (tmpb == NUMERIC_ZERO); if (tmpb == decimal_point) do tmpb = *++b; while (tmpb == NUMERIC_ZERO); if (ISDIGIT (tmpb)) return 1; while (tmpa == NUMERIC_ZERO) tmpa = UCHAR (*++a); if (tmpa == decimal_point) do tmpa = UCHAR (*++a); while (tmpa == NUMERIC_ZERO); if (ISDIGIT (tmpa)) return 1; return 0; } else { while (tmpa == NUMERIC_ZERO) tmpa = UCHAR (*++a); while (tmpb == NUMERIC_ZERO) tmpb = UCHAR (*++b); while (tmpa == tmpb && ISDIGIT (tmpa)) tmpa = UCHAR (*++a), tmpb = UCHAR (*++b); if ((tmpa == decimal_point && !ISDIGIT (tmpb)) || (tmpb == decimal_point && !ISDIGIT (tmpa))) return fraccompare (a, b); if (ISDIGIT (tmpa)) for (loga = 1; ISDIGIT (UCHAR (*++a)); ++loga) ; else loga = 0; if (ISDIGIT (tmpb)) for (logb = 1; ISDIGIT (UCHAR (*++b)); ++logb) ; else logb = 0; if ((tmp = loga - logb) != 0) return tmp; if (!loga) return 0; return tmpa - tmpb; } } #endif static int general_numcompare (const char *sa, const char *sb) { double a, b; /* FIXME: add option to warn about failed conversions. */ /* FIXME: maybe add option to try expensive FP conversion only if A and B can't be compared more cheaply/accurately. */ if (xstrtod (sa, NULL, &a)) { a = 0; } if (xstrtod (sb, NULL, &b)) { b = 0; } return a == b ? 0 : a < b ? -1 : 1; } /* Return an integer in 1..12 of the month name S with length LEN. Return 0 if the name in S is not recognized. */ static int getmonth (const char *s, int len) { char *month; register int i, lo = 0, hi = 12, result; while (len > 0 && blanks[UCHAR (*s)]) { ++s; --len; } if (len == 0) return 0; month = (char *) alloca (len + 1); for (i = 0; i < len; ++i) month[i] = fold_toupper[UCHAR (s[i])]; while (blanks[UCHAR (month[i - 1])]) --i; month[i] = '\0'; do { int ix = (lo + hi) / 2; len = strlen (monthtab[ix].name); if (NLS_STRNCMP (month, monthtab[ix].name, len) < 0) hi = ix; else lo = ix; } while (hi - lo > 1); result = (!strncmp (month, monthtab[lo].name, len) ? monthtab[lo].val : 0); return result; } #ifdef ENABLE_NLS /* Look for the month in locale table, and if that fails try with us month name table */ static int nls_month_is_either_locale (const char *s, int len) { int ind; monthtab = nls_monthtab; ind = getmonth (s, len); if (ind == 0) { monthtab = us_monthtab; ind = getmonth (s, len); } return ind; } #endif /* Compare two lines A and B trying every key in sequence until there are no more keys or a difference is found. */ static int keycompare (const struct line *a, const struct line *b) { register char *texta, *textb, *lima, *limb; register unsigned char *translate; register int *ignore; struct keyfield *key; int diff = 0, iter = 0, lena, lenb; for (key = keyhead.next; key; key = key->next, ++iter) { int comparable_lengths = 1; ignore = key->ignore; translate = (unsigned char *) key->translate; /* Find the beginning and limit of each field. */ if (iter || a->keybeg == NULL || b->keybeg == NULL) { if (key->eword >= 0) lima = limfield (a, key), limb = limfield (b, key); else lima = a->text + a->length, limb = b->text + b->length; if (key->sword >= 0) texta = begfield (a, key), textb = begfield (b, key); else { texta = a->text, textb = b->text; if (key->skipsblanks) { while (texta < lima && blanks[UCHAR (*texta)]) ++texta; while (textb < limb && blanks[UCHAR (*textb)]) ++textb; } } } else { /* For the first iteration only, the key positions have been precomputed for us. */ texta = a->keybeg, lima = a->keylim; textb = b->keybeg, limb = b->keylim; } /* Find the lengths. */ lena = lima - texta, lenb = limb - textb; if (lena < 0) lena = 0; if (lenb < 0) lenb = 0; if (key->skipeblanks) { char *a_end = texta + lena; char *b_end = textb + lenb; trim_trailing_blanks (texta, &a_end); trim_trailing_blanks (textb, &b_end); lena = a_end - texta; lenb = b_end - textb; } /* Actually compare the fields. */ if (key->numeric) { if (*lima || *limb) { char savea = *lima, saveb = *limb; *lima = *limb = '\0'; diff = numcompare (texta, textb); *lima = savea, *limb = saveb; } else diff = numcompare (texta, textb); if (diff) return key->reverse ? -diff : diff; continue; } else if (key->general_numeric) { if (*lima || *limb) { char savea = *lima, saveb = *limb; *lima = *limb = '\0'; diff = general_numcompare (texta, textb); *lima = savea, *limb = saveb; } else diff = general_numcompare (texta, textb); if (diff) return key->reverse ? -diff : diff; continue; } else if (key->month) { #ifdef ENABLE_NLS /* if we haven't decided which locale to go with, we get the month name from either. If either month name is fully solved and the month name doesn't collide with the other locale... then use that table from there forward */ if (!nls_month_found) { int x; x = nls_month_is_either_locale (texta, lena); nls_month_found = !nls_months_collide[x]; if (nls_month_found) { diff = x - getmonth (textb, lenb); } else { diff = nls_month_is_either_locale (textb, lenb); nls_month_found = !nls_months_collide[diff]; diff = x - diff; } } else #endif diff = getmonth (texta, lena) - getmonth (textb, lenb); if (diff) return key->reverse ? -diff : diff; continue; } #ifdef ENABLE_NLS /* Sorting like this may become slow, so in a simple locale the user can select a faster sort that is similar to ascii sort */ else if (need_locale) { /* FIXME: consider making parameters non-const, then when both ignore and translate are NULL (which should be most of the time) we could temporarily NUL-terminate them in place and avoid the copy. */ char *copy_a = (char *) alloca (lena + 1); char *copy_b = (char *) alloca (lenb + 1); int new_len_a, new_len_b, i; /* We can't use strcoll directly on the two strings, but rather must extract the text for the key (to NUL-terminate for strcoll) and handle any 'ignore' and/or 'translate' before comparing. */ for (new_len_a = new_len_b = i = 0; i < max (lena, lenb); i++) { if (i < lena) { copy_a[new_len_a] = (translate ? translate[UCHAR (texta[i])] : texta[i]); if (!ignore || !ignore[UCHAR (texta[i])]) ++new_len_a; } if (i < lenb) { copy_b[new_len_b] = (translate ? translate[UCHAR (textb[i])] : textb [i]); if (!ignore || !ignore[UCHAR (textb[i])]) ++new_len_b; } } copy_a[new_len_a] = copy_b[new_len_b] = 0; diff = strcoll (copy_a, copy_b); /* Free copy_a and copy_b. */ alloca (0); if (diff) return key->reverse ? -diff : diff; continue; } #endif else if (ignore && translate) #define CMP_WITH_IGNORE(A, B) \ do \ { \ while (texta < lima && textb < limb) \ { \ while (texta < lima && ignore[UCHAR (*texta)]) \ ++texta; \ while (textb < limb && ignore[UCHAR (*textb)]) \ ++textb; \ if (texta < lima && textb < limb) \ { \ if ((A) != (B)) \ { \ diff = UCHAR (A) - UCHAR (B); \ break; \ } \ ++texta; \ ++textb; \ } \ \ if (texta == lima && textb < limb && !ignore[UCHAR (*textb)]) \ diff = -1; \ else if (texta < lima && textb == limb \ && !ignore[UCHAR (*texta)]) \ diff = 1; \ } \ \ if (diff == 0) \ { \ while (texta < lima && ignore[UCHAR (*texta)]) \ ++texta; \ while (textb < limb && ignore[UCHAR (*textb)]) \ ++textb; \ \ if (texta == lima && textb < limb) \ diff = -1; \ else if (texta < lima && textb == limb) \ diff = 1; \ } \ /* Relative lengths are meaningless if characters were ignored. \ Handling this case here avoids what might be an invalid length \ comparison below. */ \ if (diff == 0 && texta == lima && textb == limb) \ comparable_lengths = 0; \ } \ while (0) CMP_WITH_IGNORE (translate[UCHAR (*texta)], translate[UCHAR (*textb)]); else if (ignore) CMP_WITH_IGNORE (UCHAR (*texta), UCHAR (*textb)); else if (translate) while (texta < lima && textb < limb) { if (translate[UCHAR (*texta++)] != translate[UCHAR (*textb++)]) { diff = (UCHAR (translate[UCHAR (*--texta)]) - UCHAR (translate[UCHAR (*--textb)])); break; } } else { diff = NLS_MEMCMP (texta, textb, min (lena, lenb)); } if (diff) return key->reverse ? -diff : diff; if (comparable_lengths && (diff = lena - lenb) != 0) return key->reverse ? -diff : diff; } return 0; } /* Compare two lines A and B, returning negative, zero, or positive depending on whether A compares less than, equal to, or greater than B. */ static int compare (register const struct line *a, register const struct line *b) { int diff, tmpa, tmpb, mini; /* First try to compare on the specified keys (if any). The only two cases with no key at all are unadorned sort, and unadorned sort -r. */ if (keyhead.next) { diff = keycompare (a, b); if (diff != 0) return diff; if (unique || stable) return 0; } /* If the keys all compare equal (or no keys were specified) fall through to the default byte-by-byte comparison. */ tmpa = a->length, tmpb = b->length; mini = min (tmpa, tmpb); if (mini == 0) diff = tmpa - tmpb; else { char *ap = a->text, *bp = b->text; #ifdef ENABLE_NLS if (need_locale) /* want absolutely correct sorting */ { diff = strcoll (ap, bp); return reverse ? -diff : diff; } #endif diff = UCHAR (*ap) - UCHAR (*bp); if (diff == 0) { diff = NLS_MEMCMP (ap, bp, mini); if (diff == 0) diff = tmpa - tmpb; } } return reverse ? -diff : diff; } /* Check that the lines read from the given FP come in order. Print a diagnostic (FILE_NAME, line number, contents of line) to stderr and return the line number of the first out-of-order line (counting from 1) if they are not in order. Otherwise, print no diagnostic and return zero. */ static int checkfp (FILE *fp, const char *file_name) { struct buffer buf; /* Input buffer. */ struct lines lines; /* Lines scanned from the buffer. */ struct line temp; /* Copy of previous line. */ int cc; /* Character count. */ int alloc; int line_number = 1; struct line *disorder_line; int disorder_line_number = 0; #ifdef lint /* Suppress `used before initialized' warning. */ disorder_line = NULL; #endif initbuf (&buf, mergealloc); initlines (&lines, mergealloc / linelength + 1, LINEALLOC / ((NMERGE + NMERGE) * sizeof (struct line))); alloc = linelength; temp.text = xmalloc (alloc); cc = fillbuf (&buf, fp); if (cc == 0) goto finish; findlines (&buf, &lines); while (1) { struct line *prev_line; /* Pointer to previous line. */ int cmp; /* Result of calling compare. */ int i; /* Compare each line in the buffer with its successor. */ for (i = 0; i < lines.used - 1; ++i) { cmp = compare (&lines.lines[i], &lines.lines[i + 1]); if ((unique && cmp >= 0) || (cmp > 0)) { disorder_line = &lines.lines[i + 1]; disorder_line_number = line_number + i + 1; goto finish; } } line_number += lines.used; /* Save the last line of the buffer and refill the buffer. */ prev_line = lines.lines + (lines.used - 1); if (prev_line->length + 1 > alloc) { do { alloc *= 2; } while (alloc < prev_line->length + 1); temp.text = xrealloc (temp.text, alloc); } assert (prev_line->length + 1 <= alloc); memcpy (temp.text, prev_line->text, prev_line->length + 1); temp.length = prev_line->length; temp.keybeg = temp.text + (prev_line->keybeg - prev_line->text); temp.keylim = temp.text + (prev_line->keylim - prev_line->text); cc = fillbuf (&buf, fp); if (cc == 0) break; findlines (&buf, &lines); /* Make sure the line saved from the old buffer contents is less than or equal to the first line of the new buffer. */ cmp = compare (&temp, &lines.lines[0]); if ((unique && cmp >= 0) || (cmp > 0)) { disorder_line = &lines.lines[0]; disorder_line_number = line_number; break; } } finish: xfclose (fp); if (disorder_line_number) { fprintf (stderr, _("%s: %s:%d: disorder: "), program_name, file_name, disorder_line_number); write_bytes (disorder_line->text, disorder_line->length, stderr); putc (eolchar, stderr); } free (buf.buf); free ((char *) lines.lines); free (temp.text); return disorder_line_number; } /* Merge lines from FPS onto OFP. NFPS cannot be greater than NMERGE. Close FPS before returning. */ static void mergefps (FILE **fps, register int nfps, FILE *ofp) { struct buffer buffer[NMERGE]; /* Input buffers for each file. */ struct lines lines[NMERGE]; /* Line tables for each buffer. */ struct line saved; /* Saved line for unique check. */ int savedflag = 0; /* True if there is a saved line. */ int savealloc; /* Size allocated for the saved line. */ int cur[NMERGE]; /* Current line in each line table. */ int ord[NMERGE]; /* Table representing a permutation of fps, such that lines[ord[0]].lines[cur[ord[0]]] is the smallest line and will be next output. */ register int i, j, t; #ifdef lint /* Suppress `used before initialized' warning. */ savealloc = 0; #endif /* Allocate space for a saved line if necessary. */ if (unique) { savealloc = linelength; saved.text = xmalloc (savealloc); } /* Read initial lines from each input file. */ for (i = 0; i < nfps; ++i) { initbuf (&buffer[i], mergealloc); /* If a file is empty, eliminate it from future consideration. */ while (i < nfps && !fillbuf (&buffer[i], fps[i])) { xfclose (fps[i]); --nfps; for (j = i; j < nfps; ++j) fps[j] = fps[j + 1]; } if (i == nfps) free (buffer[i].buf); else { initlines (&lines[i], mergealloc / linelength + 1, LINEALLOC / ((NMERGE + NMERGE) * sizeof (struct line))); findlines (&buffer[i], &lines[i]); cur[i] = 0; } } /* Set up the ord table according to comparisons among input lines. Since this only reorders two items if one is strictly greater than the other, it is stable. */ for (i = 0; i < nfps; ++i) ord[i] = i; for (i = 1; i < nfps; ++i) if (compare (&lines[ord[i - 1]].lines[cur[ord[i - 1]]], &lines[ord[i]].lines[cur[ord[i]]]) > 0) t = ord[i - 1], ord[i - 1] = ord[i], ord[i] = t, i = 0; /* Repeatedly output the smallest line until no input remains. */ while (nfps) { /* If uniqified output is turned on, output only the first of an identical series of lines. */ if (unique) { if (savedflag && compare (&saved, &lines[ord[0]].lines[cur[ord[0]]])) { write_bytes (saved.text, saved.length, ofp); putc (eolchar, ofp); savedflag = 0; } if (!savedflag) { if (savealloc < lines[ord[0]].lines[cur[ord[0]]].length + 1) { while (savealloc < lines[ord[0]].lines[cur[ord[0]]].length + 1) savealloc *= 2; saved.text = xrealloc (saved.text, savealloc); } saved.length = lines[ord[0]].lines[cur[ord[0]]].length; memcpy (saved.text, lines[ord[0]].lines[cur[ord[0]]].text, saved.length + 1); if (lines[ord[0]].lines[cur[ord[0]]].keybeg != NULL) { saved.keybeg = saved.text + (lines[ord[0]].lines[cur[ord[0]]].keybeg - lines[ord[0]].lines[cur[ord[0]]].text); } if (lines[ord[0]].lines[cur[ord[0]]].keylim != NULL) { saved.keylim = saved.text + (lines[ord[0]].lines[cur[ord[0]]].keylim - lines[ord[0]].lines[cur[ord[0]]].text); } savedflag = 1; } } else { write_bytes (lines[ord[0]].lines[cur[ord[0]]].text, lines[ord[0]].lines[cur[ord[0]]].length, ofp); putc (eolchar, ofp); } /* Check if we need to read more lines into core. */ if (++cur[ord[0]] == lines[ord[0]].used) { if (fillbuf (&buffer[ord[0]], fps[ord[0]])) { findlines (&buffer[ord[0]], &lines[ord[0]]); cur[ord[0]] = 0; } else { /* We reached EOF on fps[ord[0]]. */ for (i = 1; i < nfps; ++i) if (ord[i] > ord[0]) --ord[i]; --nfps; xfclose (fps[ord[0]]); free (buffer[ord[0]].buf); free ((char *) lines[ord[0]].lines); for (i = ord[0]; i < nfps; ++i) { fps[i] = fps[i + 1]; buffer[i] = buffer[i + 1]; lines[i] = lines[i + 1]; cur[i] = cur[i + 1]; } for (i = 0; i < nfps; ++i) ord[i] = ord[i + 1]; continue; } } /* The new line just read in may be larger than other lines already in core; push it back in the queue until we encounter a line larger than it. */ for (i = 1; i < nfps; ++i) { t = compare (&lines[ord[0]].lines[cur[ord[0]]], &lines[ord[i]].lines[cur[ord[i]]]); if (!t) t = ord[0] - ord[i]; if (t < 0) break; } t = ord[0]; for (j = 1; j < i; ++j) ord[j - 1] = ord[j]; ord[i - 1] = t; } if (unique && savedflag) { write_bytes (saved.text, saved.length, ofp); putc (eolchar, ofp); free (saved.text); } } #ifdef ENABLE_NLS /* Find the numeric format that this file represents to us for sorting. */ static void nls_numeric_format (const struct line *line, int nlines) { struct nls_keyfield *n_key = nls_keyhead; /* line = first line, nlines = number of lines, nls_fraction_found = false */ for (; !nls_fraction_found && nlines > 0; line++, nlines--) { int iter; for (iter = 0; !nls_fraction_found; iter++) { char *text; char *lim; struct keyfield *key = n_key->key; /* text = {}, lim = {}, key = first key */ if (iter || line->keybeg == NULL) { /* Succeding keys, where the key field is specified */ if (key->eword >= 0) /* key->eword = length of key */ lim = limfield (line, key); else lim = line->text + line->length; /* lim = end of key field */ if (key->sword >= 0) /* key->sword = start of key */ text = begfield (line, key); else text = line->text; /* text = start of field */ } else { /* First key is always the whole line */ text = line->keybeg; lim = line->keylim; } /* text = start of text to sort lim = end of text to sort */ look_for_fraction (text, lim); /* nls_fraction_found = decimal_point found? */ if ((n_key = n_key->next) == nls_keyhead) break; /* No more keys for this line */ } } nls_fraction_found = 1; /* decide on current decimal_point known */ } #endif /* Sort the array LINES with NLINES members, using TEMP for temporary space. */ static void sortlines (struct line *lines, int nlines, struct line *temp) { register struct line *lo, *hi, *t; register int nlo, nhi; if (nlines == 2) { if (compare (&lines[0], &lines[1]) > 0) { *temp = lines[0]; lines[0] = lines[1]; lines[1] = *temp; } return; } nlo = nlines / 2; lo = lines; nhi = nlines - nlo; hi = lines + nlo; if (nlo > 1) sortlines (lo, nlo, temp); if (nhi > 1) sortlines (hi, nhi, temp); t = temp; while (nlo && nhi) if (compare (lo, hi) <= 0) *t++ = *lo++, --nlo; else *t++ = *hi++, --nhi; while (nlo--) *t++ = *lo++; for (lo = lines, nlo = nlines - nhi, t = temp; nlo; --nlo) *lo++ = *t++; } /* Check that each of the NFILES FILES is ordered. Return a count of disordered files. */ static int check (char **files, int nfiles) { int i, disorders = 0; FILE *fp; for (i = 0; i < nfiles; ++i) { fp = xfopen (files[i], "r"); if (checkfp (fp, files[i])) { ++disorders; } } return disorders; } /* Merge NFILES FILES onto OFP. */ static void merge (char **files, int nfiles, FILE *ofp) { int i, j, t; char *temp; FILE *fps[NMERGE], *tfp; while (nfiles > NMERGE) { t = 0; for (i = 0; i < nfiles / NMERGE; ++i) { for (j = 0; j < NMERGE; ++j) fps[j] = xfopen (files[i * NMERGE + j], "r"); tfp = xtmpfopen (temp = tempname ()); mergefps (fps, NMERGE, tfp); xfclose (tfp); for (j = 0; j < NMERGE; ++j) zaptemp (files[i * NMERGE + j]); files[t++] = temp; } for (j = 0; j < nfiles % NMERGE; ++j) fps[j] = xfopen (files[i * NMERGE + j], "r"); tfp = xtmpfopen (temp = tempname ()); mergefps (fps, nfiles % NMERGE, tfp); xfclose (tfp); for (j = 0; j < nfiles % NMERGE; ++j) zaptemp (files[i * NMERGE + j]); files[t++] = temp; nfiles = t; } for (i = 0; i < nfiles; ++i) fps[i] = xfopen (files[i], "r"); mergefps (fps, i, ofp); for (i = 0; i < nfiles; ++i) zaptemp (files[i]); } /* Sort NFILES FILES onto OFP. */ static void sort (char **files, int nfiles, FILE *ofp) { struct buffer buf; struct lines lines; struct line *tmp; int i, ntmp; FILE *fp, *tfp; struct tempnode *node; int n_temp_files = 0; char **tempfiles; initbuf (&buf, sortalloc); initlines (&lines, sortalloc / linelength + 1, LINEALLOC / sizeof (struct line)); ntmp = lines.alloc; tmp = (struct line *) xmalloc (ntmp * sizeof (struct line)); while (nfiles--) { fp = xfopen (*files++, "r"); while (fillbuf (&buf, fp)) { findlines (&buf, &lines); if (lines.used > ntmp) { while (lines.used > ntmp) ntmp *= 2; tmp = (struct line *) xrealloc ((char *) tmp, ntmp * sizeof (struct line)); } #ifdef ENABLE_NLS if (nls_keyhead) nls_keyhead = nls_keyhead->next; if (!nls_fraction_found && nls_keyhead) nls_numeric_format (lines.lines, lines.used); #endif sortlines (lines.lines, lines.used, tmp); if (feof (fp) && !nfiles && !n_temp_files && !buf.left) { tfp = ofp; } else { ++n_temp_files; tfp = xtmpfopen (tempname ()); } for (i = 0; i < lines.used; ++i) if (!unique || i == 0 || compare (&lines.lines[i], &lines.lines[i - 1])) { write_bytes (lines.lines[i].text, lines.lines[i].length, tfp); putc (eolchar, tfp); } if (tfp != ofp) xfclose (tfp); } xfclose (fp); } free (buf.buf); free ((char *) lines.lines); free ((char *) tmp); if (n_temp_files) { tempfiles = (char **) xmalloc (n_temp_files * sizeof (char *)); i = n_temp_files; for (node = temphead.next; i > 0; node = node->next) tempfiles[--i] = node->name; merge (tempfiles, n_temp_files, ofp); free ((char *) tempfiles); } } /* Insert key KEY at the end of the list (`keyhead'). */ static void insertkey (struct keyfield *key) { struct keyfield *k = &keyhead; while (k->next) k = k->next; k->next = key; key->next = NULL; #ifdef ENABLE_NLS if (key->numeric || key->general_numeric) { struct nls_keyfield *nk; nk = (struct nls_keyfield *) xmalloc (sizeof (struct nls_keyfield)); nk->key = key; if (nls_keyhead) { nk->next = nls_keyhead->next; nls_keyhead->next = nk; } else nk->next = nk; nls_keyhead = nk; } #endif } static void badfieldspec (const char *s) { error (SORT_FAILURE, 0, _("invalid field specification `%s'"), s); } /* Handle interrupts and hangups. */ static void sighandler (int sig) { #ifdef SA_INTERRUPT struct sigaction sigact; sigact.sa_handler = SIG_DFL; sigemptyset (&sigact.sa_mask); sigact.sa_flags = 0; sigaction (sig, &sigact, NULL); #else /* !SA_INTERRUPT */ signal (sig, SIG_DFL); #endif /* SA_INTERRUPT */ cleanup (); kill (getpid (), sig); } /* Set the ordering options for KEY specified in S. Return the address of the first character in S that is not a valid ordering option. BLANKTYPE is the kind of blanks that 'b' should skip. */ static char * set_ordering (register const char *s, struct keyfield *key, enum blanktype blanktype) { while (*s) { switch (*s) { case 'b': if (blanktype == bl_start || blanktype == bl_both) key->skipsblanks = 1; if (blanktype == bl_end || blanktype == bl_both) key->skipeblanks = 1; break; case 'd': key->ignore = nondictionary; break; case 'f': key->translate = fold_toupper; break; case 'g': key->general_numeric = 1; break; case 'i': key->ignore = nonprinting; break; case 'M': key->month = 1; break; case 'n': key->numeric = 1; break; case 'r': key->reverse = 1; break; default: return (char *) s; } ++s; } return (char *) s; } static void key_init (struct keyfield *key) { memset (key, 0, sizeof (*key)); key->eword = -1; } /* strdup and return the result of setlocale, but guard against a NULL return value. If setlocale returns NULL, strdup FAIL_VAL instead. */ #if defined ENABLE_NLS && ( !defined __GLIBC__ || __GLIBC__ < 2 ) static inline char * my_setlocale (const char *locale, const char *fail_val) { char *s = setlocale (LC_ALL, locale); if (s == NULL) s = (char *) fail_val; return xstrdup (s); } #endif int main (int argc, char **argv) { struct keyfield *key = NULL, gkey; char *s; int i, t, t2; int checkonly = 0, mergeonly = 0, nfiles = 0; char *minus = "-", *outfile = minus, **files, *tmp; FILE *ofp; #ifdef SA_INTERRUPT struct sigaction oldact, newact; #endif /* SA_INTERRUPT */ program_name = argv[0]; #ifdef ENABLE_NLS /* Determine whether the current locale is C or POSIX. */ # if defined __GLIBC__ && __GLIBC__ >= 2 s = setlocale (LC_ALL, ""); if (s != NULL && !STREQ (s, "C") && !STREQ (s, "POSIX")) /* The current locale is neither C nor POSIX. We'll need to do more work. */ need_locale = 1; # else { char *c_locale_string = my_setlocale ("C", ""); char *posix_locale_string = my_setlocale ("POSIX", ""); char *current_locale_string = setlocale (LC_ALL, ""); if (current_locale_string != NULL && !STREQ (current_locale_string, c_locale_string) && !STREQ (current_locale_string, posix_locale_string)) /* The current locale is neither C nor POSIX. We'll need to do more work. */ need_locale = 1; free (c_locale_string); free (posix_locale_string); } # endif /* Let's get locale's representation of the decimal point */ { struct lconv *lconvp = localeconv (); decimal_point = *lconvp->decimal_point; th_sep = *lconvp->thousands_sep; nls_grouping = (char *) (lconvp->grouping); } /* if locale doesn't define a decimal point, we'll use the US notation. */ if (decimal_point == '\0') decimal_point = FLOATING_POINT; else nls_fraction_found = 0; /* Figure out which decimal point to use */ nls_month_found = 0; /* Figure out which month notation to use */ monthtab = nls_monthtab; #endif /* NLS */ bindtextdomain (PACKAGE, LOCALEDIR); textdomain (PACKAGE); parse_long_options (argc, argv, "sort", GNU_PACKAGE, VERSION, "Mike Haertel", usage); have_read_stdin = 0; inittables (); temp_file_prefix = getenv ("TMPDIR"); if (temp_file_prefix == NULL) temp_file_prefix = DEFAULT_TMPDIR; /* Change the way xmalloc and xrealloc fail. */ xalloc_exit_failure = SORT_FAILURE; xalloc_fail_func = cleanup; #ifdef SA_INTERRUPT newact.sa_handler = sighandler; sigemptyset (&newact.sa_mask); newact.sa_flags = 0; sigaction (SIGINT, NULL, &oldact); if (oldact.sa_handler != SIG_IGN) sigaction (SIGINT, &newact, NULL); sigaction (SIGHUP, NULL, &oldact); if (oldact.sa_handler != SIG_IGN) sigaction (SIGHUP, &newact, NULL); sigaction (SIGPIPE, NULL, &oldact); if (oldact.sa_handler != SIG_IGN) sigaction (SIGPIPE, &newact, NULL); sigaction (SIGTERM, NULL, &oldact); if (oldact.sa_handler != SIG_IGN) sigaction (SIGTERM, &newact, NULL); #else /* !SA_INTERRUPT */ if (signal (SIGINT, SIG_IGN) != SIG_IGN) signal (SIGINT, sighandler); if (signal (SIGHUP, SIG_IGN) != SIG_IGN) signal (SIGHUP, sighandler); if (signal (SIGPIPE, SIG_IGN) != SIG_IGN) signal (SIGPIPE, sighandler); if (signal (SIGTERM, SIG_IGN) != SIG_IGN) signal (SIGTERM, sighandler); #endif /* !SA_INTERRUPT */ gkey.sword = gkey.eword = -1; gkey.ignore = NULL; gkey.translate = NULL; gkey.numeric = gkey.general_numeric = gkey.month = gkey.reverse = 0; gkey.skipsblanks = gkey.skipeblanks = 0; files = (char **) xmalloc (sizeof (char *) * argc); for (i = 1; i < argc; ++i) { if (argv[i][0] == '+') { if (key) insertkey (key); key = (struct keyfield *) xmalloc (sizeof (struct keyfield)); key_init (key); s = argv[i] + 1; if (! (ISDIGIT (*s) || (*s == '.' && ISDIGIT (s[1])))) badfieldspec (argv[i]); for (t = 0; ISDIGIT (*s); ++s) t = 10 * t + *s - '0'; t2 = 0; if (*s == '.') for (++s; ISDIGIT (*s); ++s) t2 = 10 * t2 + *s - '0'; if (t2 || t) { key->sword = t; key->schar = t2; } else key->sword = -1; s = set_ordering (s, key, bl_start); if (*s) badfieldspec (argv[i]); } else if (argv[i][0] == '-' && argv[i][1]) { s = argv[i] + 1; if (ISDIGIT (*s) || (*s == '.' && ISDIGIT (s[1]))) { if (!key) { /* Provoke with `sort -9'. */ error (0, 0, _("when using the old-style +POS and -POS \ key specifiers,\nthe +POS specifier must come first")); usage (SORT_FAILURE); } for (t = 0; ISDIGIT (*s); ++s) t = t * 10 + *s - '0'; t2 = 0; if (*s == '.') for (++s; ISDIGIT (*s); ++s) t2 = t2 * 10 + *s - '0'; key->eword = t; key->echar = t2; s = set_ordering (s, key, bl_end); if (*s) badfieldspec (argv[i]); insertkey (key); key = NULL; } else while (*s) { s = set_ordering (s, &gkey, bl_both); switch (*s) { case '\0': break; case 'c': checkonly = 1; break; case 'k': if (s[1]) ++s; else { if (i == argc - 1) error (SORT_FAILURE, 0, _("option `-k' requires an argument")); else s = argv[++i]; } if (key) insertkey (key); key = (struct keyfield *) xmalloc (sizeof (struct keyfield)); key_init (key); /* Get POS1. */ if (!ISDIGIT (*s)) badfieldspec (argv[i]); for (t = 0; ISDIGIT (*s); ++s) t = 10 * t + *s - '0'; if (t == 0) { /* Provoke with `sort -k0' */ error (0, 0, _("the starting field number argument \ to the `-k' option must be positive")); badfieldspec (argv[i]); } --t; t2 = 0; if (*s == '.') { if (!ISDIGIT (s[1])) { /* Provoke with `sort -k1.' */ error (0, 0, _("starting field spec has `.' but \ lacks following character offset")); badfieldspec (argv[i]); } for (++s; ISDIGIT (*s); ++s) t2 = 10 * t2 + *s - '0'; if (t2 == 0) { /* Provoke with `sort -k1.0' */ error (0, 0, _("starting field character offset \ argument to the `-k' option\nmust be positive")); badfieldspec (argv[i]); } --t2; } if (t2 || t) { key->sword = t; key->schar = t2; } else key->sword = -1; s = set_ordering (s, key, bl_start); if (*s == 0) { key->eword = -1; key->echar = 0; } else if (*s != ',') badfieldspec (argv[i]); else if (*s == ',') { /* Skip over comma. */ ++s; if (*s == 0) { /* Provoke with `sort -k1,' */ error (0, 0, _("field specification has `,' but \ lacks following field spec")); badfieldspec (argv[i]); } /* Get POS2. */ for (t = 0; ISDIGIT (*s); ++s) t = t * 10 + *s - '0'; if (t == 0) { /* Provoke with `sort -k1,0' */ error (0, 0, _("ending field number argument \ to the `-k' option must be positive")); badfieldspec (argv[i]); } --t; t2 = 0; if (*s == '.') { if (!ISDIGIT (s[1])) { /* Provoke with `sort -k1,1.' */ error (0, 0, _("ending field spec has `.' \ but lacks following character offset")); badfieldspec (argv[i]); } for (++s; ISDIGIT (*s); ++s) t2 = t2 * 10 + *s - '0'; } else { /* `-k 2,3' is equivalent to `+1 -3'. */ ++t; } key->eword = t; key->echar = t2; s = set_ordering (s, key, bl_end); if (*s) badfieldspec (argv[i]); } insertkey (key); key = NULL; goto outer; case 'm': mergeonly = 1; break; case 'o': if (s[1]) outfile = s + 1; else { if (i == argc - 1) error (SORT_FAILURE, 0, _("option `-o' requires an argument")); else outfile = argv[++i]; } goto outer; case 's': stable = 1; break; case 't': if (s[1]) tab = *++s; else if (i < argc - 1) { tab = *argv[++i]; goto outer; } else error (SORT_FAILURE, 0, _("option `-t' requires an argument")); break; case 'T': if (s[1]) temp_file_prefix = ++s; else { if (i < argc - 1) temp_file_prefix = argv[++i]; else error (SORT_FAILURE, 0, _("option `-T' requires an argument")); } goto outer; /* break; */ case 'u': unique = 1; break; case 'z': eolchar = 0; break; case 'y': /* Accept and ignore e.g. -y0 for compatibility with Solaris 2. */ goto outer; default: fprintf (stderr, _("%s: unrecognized option `-%c'\n"), argv[0], *s); usage (SORT_FAILURE); } if (*s) ++s; } } else /* Not an option. */ { files[nfiles++] = argv[i]; } outer:; } if (key) insertkey (key); /* Inheritance of global options to individual keys. */ for (key = keyhead.next; key; key = key->next) if (!key->ignore && !key->translate && !key->skipsblanks && !key->reverse && !key->skipeblanks && !key->month && !key->numeric && !key->general_numeric) { key->ignore = gkey.ignore; key->translate = gkey.translate; key->skipsblanks = gkey.skipsblanks; key->skipeblanks = gkey.skipeblanks; key->month = gkey.month; key->numeric = gkey.numeric; key->general_numeric = gkey.general_numeric; key->reverse = gkey.reverse; } if (!keyhead.next && (gkey.ignore || gkey.translate || gkey.skipsblanks || gkey.skipeblanks || gkey.month || gkey.numeric || gkey.general_numeric)) insertkey (&gkey); reverse = gkey.reverse; if (nfiles == 0) { nfiles = 1; files = − } if (checkonly) { /* POSIX requires that sort return 1 IFF invoked with -c and the input is not properly sorted. */ exit (check (files, nfiles) == 0 ? 0 : 1); } if (!STREQ (outfile, "-")) { struct stat outstat; if (stat (outfile, &outstat) == 0) { /* The following code prevents a race condition when people use the brain dead shell programming idiom: cat file | sort -o file This feature is provided for historical compatibility, but we strongly discourage ever relying on this in new shell programs. */ /* Temporarily copy each input file that might be another name for the output file. When in doubt (e.g. a pipe), copy. */ for (i = 0; i < nfiles; ++i) { char buf[8192]; FILE *in_fp; FILE *out_fp; int cc; if (S_ISREG (outstat.st_mode) && !STREQ (outfile, files[i])) { struct stat instat; if ((STREQ (files[i], "-") ? fstat (STDIN_FILENO, &instat) : stat (files[i], &instat)) != 0) { error (0, errno, "%s", files[i]); cleanup (); exit (SORT_FAILURE); } if (S_ISREG (instat.st_mode) && !SAME_INODE (instat, outstat)) { /* We know the files are distinct. */ continue; } } in_fp = xfopen (files[i], "r"); tmp = tempname (); out_fp = xtmpfopen (tmp); /* FIXME: maybe use copy.c(copy) here. */ while ((cc = fread (buf, 1, sizeof buf, in_fp)) > 0) write_bytes (buf, cc, out_fp); if (ferror (in_fp)) { error (0, errno, "%s", files[i]); cleanup (); exit (SORT_FAILURE); } xfclose (out_fp); xfclose (in_fp); files[i] = tmp; } ofp = xfopen (outfile, "w"); } else { /* A non-`-' outfile was specified, but the file doesn't yet exist. Before opening it for writing (thus creating it), make sure all of the input files exist. Otherwise, creating the output file could create an otherwise missing input file, making sort succeed when it should fail. */ for (i = 0; i < nfiles; ++i) { struct stat sb; if (STREQ (files[i], "-")) continue; if (stat (files[i], &sb)) { error (0, errno, "%s", files[i]); cleanup (); exit (SORT_FAILURE); } } ofp = xfopen (outfile, "w"); } } else { ofp = stdout; } if (mergeonly) merge (files, nfiles, ofp); else sort (files, nfiles, ofp); cleanup (); /* If we wait for the implicit flush on exit, and the parent process has closed stdout (e.g., exec >&- in a shell), then the output file winds up empty. I don't understand why. This is under SunOS, Solaris, Ultrix, and Irix. This premature fflush makes the output reappear. --karl@cs.umb.edu */ if (fflush (ofp) < 0) error (SORT_FAILURE, errno, _("%s: write error"), outfile); if (have_read_stdin && fclose (stdin) == EOF) error (SORT_FAILURE, errno, "%s", outfile); if (ferror (stdout) || fclose (stdout) == EOF) error (SORT_FAILURE, errno, _("%s: write error"), outfile); exit (EXIT_SUCCESS); }