/* TODO: - use consistent non-capitalization in error messages - add standard GNU copyleft comment - Add -r/-R/--recursive - Add -i/--interactive - Reserve -d - Add -L - Deal with the amazing variety of gettimeofday() implementation bugs. (Some systems use a one-arg form; still others insist that the timezone either be NULL or be non-NULL. Whee.) - Add an unlink-all option to emulate rm. */ /* * shred.c - by Colin Plumb. * * Do a securer overwrite of given files or devices, to make it harder * for even very expensive hardware probing to recover the data. * * Although this process is also known as "wiping", I prefer the longer * name both because I think it is more evocative of what is happening and * because a longer name conveys a more appropriate sense of deliberateness. * * For the theory behind this, see "Secure Deletion of Data from Magnetic * and Solid-State Memory", on line at * http://www.cs.auckland.ac.nz/~pgut001/pubs/secure_del.html * * Just for the record, reversing one or two passes of disk overwrite * is not terribly difficult with hardware help. Hook up a good-quality * digitizing oscilloscope to the output of the head preamplifier and copy * the high-res digitized data to a computer for some off-line analysis. * Read the "current" data and average all the pulses together to get an * "average" pulse on the disk. Subtract this average pulse from all of * the actual pulses and you can clearly see the "echo" of the previous * data on the disk. * * Real hard drives have to balance the cost of the media, the head, * and the read circuitry. They use better-quality media than absolutely * necessary to limit the cost of the read circuitry. By throwing that * assumption out, and the assumption that you want the data processed * as fast as the hard drive can spin, you can do better. * * If asked to wipe a file, this also unlinks it, renaming it to in a * clever way to try to leave no trace of the original filename. * * Copyright 1997, 1998, 1999 Colin Plumb . This program * may be freely distributed under the terms of the GNU GPL, the BSD license, * or Larry Wall's "Artistic License" Even if you use the BSD license, * which does not require it, I'd really like to get improvements back. * * The ISAAC code still bears some resemblance to the code written * by Bob Jenkins, but he permits pretty unlimited use. * * This was inspired by a desire to improve on some code titled: * Wipe V1.0-- Overwrite and delete files. S. 2/3/96 * but I've rewritten everything here so completely that no trace of * the original remains. * * Thanks to: * Bob Jenkins, for his good RNG work and patience with the FSF copyright * paperwork. * Jim Meyering, for his work merging this into the GNU fileutils while * still letting me feel a sense of ownership and pride. Getting me to * tolerate the GNU brace style was quite a feat of diplomacy. * Paul Eggert, for lots of useful discussion and code. I disagree with * an awful lot of his suggestions, but they're disagreements worth having. * * Things to think about: * - Security: Is there any risk to the race * between overwriting and unlinking a file? Will it do anything * drastically bad if told to attack a named pipe or socket? */ /* The official name of this program (e.g., no `g' prefix). */ #define PROGRAM_NAME "shred" #define AUTHORS "Colin Plumb" #if HAVE_CONFIG_H # include #endif #include #include #include #include #include #if HAVE_CONFIG_H /* Default fileutils build */ # include "system.h" # include "xstrtol.h" # include "closeout.h" # include "error.h" # include "human.h" # include "quotearg.h" /* For quotearg_colon */ # include "quote.h" /* For quotearg_colon */ # include "xalloc.h" char *xstrdup PARAMS ((char const *)); #else /* !HAVE_CONFIG_H */ /* * Standalone build - this file compiles by itself without autoconf and * the like. No i18n, and I still have to write a stub for getopt_long, * but it's a lot less intertwingled than the usual GNU utilities. */ # include /* For isprint */ # include /* For memcpy, strerror */ # include /* For ULONG_MAX etc. */ # include /* For strtoul, EXIT_FAILURE */ # include # include /* For O_RDONLY etc. */ # include /* For getpid, etc. */ # include /* For struct timeval */ # include /* For struct stat */ # define GNU_PACKAGE "standalone" # define VERSION "2.0" /* Kind of arbitrary... */ # if __GNUC__ < 2 || __GNUC__ == 2 && __GNUC_MINOR__ < 5 || __STRICT_ANSI__ # define attribute(x) # else # define attribute __attribute__ # if __GNUC__ == 2 && __GNUC_MINOR__ < 7 /* The __-protected forms were introduced in GCC 2.6.4 */ # define __format__ format # define __printf__ printf # endif # endif /* Reasonable default assumptions for time-getting */ # ifndef HAVE_GETTIMEOFDAY # define HAVE_GETTIMEOFDAY 1 /* Most systems have it these days */ # endif # ifdef CLOCK_REALTIME # ifndef HAVE_CLOCK_GETTIME # define HAVE_CLOCK_GETTIME 1 # endif # endif # ifndef STDOUT_FILENO # define STDOUT_FILENO 1 # endif # define RETSIGTYPE int # ifndef S_IWUSR # ifdef S_IWRITE # define S_IWUSR S_IWRITE # else # define S_IWUSR 0200 # endif # endif /* POSIX doesn't require st_blksize, and 65536 is a reasonable upper bound for existing filesystem practice. */ # define ST_BLKSIZE(Stat) 65536 # define uintmax_t unsigned long /* Variant human-readable function that ignores last two args */ # define human_readable(v, b, f, t) (sprintf (b, "%lu", (unsigned long) v), b) # define LONGEST_HUMAN_READABLE (sizeof (uintmax_t) * CHAR_BIT / 3) /* Variant convert-to-uintmax_t function that accepts metric suffixes */ enum strtol_error { LONGINT_OK, LONGINT_INVALID, LONGINT_INVALID_SUFFIX_CHAR, LONGINT_OVERFLOW }; static uintmax_t xstrtoumax (char const *ptr, char const **end, int base, uintmax_t *res, char const *valid_suffixes) { char *end_ptr; char const *p; static char const metric_suffixes[] = "kMGTPEZY"; int decimal_flag; uintmax_t n; char c; errno = 0; *res = n = strtoul (ptr, &end_ptr, base); if (end) *end = end_ptr; if (errno) return LONGINT_OVERFLOW; if (ptr == end_ptr) return LONGINT_INVALID; c = *end_ptr; if (!c) return LONGINT_OK; /* Now deal with metric-style suffixes */ if (valid_suffixes && !strchr (valid_suffixes, c)) return LONGINT_INVALID_SUFFIX_CHAR; decimal_flag = 0; switch (c) { case 'b': if (n > ULONG_MAX/512) return LONGINT_OVERFLOW; n *= 512; break; case 'B': if (n > ULONG_MAX/102412) return LONGINT_OVERFLOW; n *= 1024; break; case 'c': break; case 'K': c = 'k'; goto def; case 'm': c = 'M'; /*FALLTHROUGH*/ def:default: p = strchr (metric_suffixes, c); if (!p) return LONGINT_INVALID_SUFFIX_CHAR; /* * If valid_suffixes contains '0', then xD (decimal) and xB (binary) * are allowed as "supersuffixes". Binary is the default. */ if (strchr (valid_suffixes, '0')) { if (end_ptr[1] == 'B') end_ptr++; else if (end_ptr[1] == 'D') { decimal_flag = 1; end_ptr++; } } /* Now do the scaling */ p++; if (decimal_flag) do { if (n > ULONG_MAX/1000) return LONGINT_OVERFLOW; n *= 1000; } while (--p > metric_suffixes); else do { if (n > ULONG_MAX/1024) return LONGINT_OVERFLOW; n *= 1024; } while (--p > metric_suffixes); } /* Final wrapup */ if (end) *end = end_ptr+1; /* Extra suffix is allowed if it's expected */ else if (end_ptr[1]) return LONGINT_INVALID_SUFFIX_CHAR; *res = n; return LONGINT_OK; } /* Dummy i18n stubs */ # define _(x) x # define N_(x) x # define setlocale(x,y) (void) 0 # define bindtextdomain(x,y) (void) 0 # define textdomain(x) (void) 0 /* * Print a message with `fprintf (stderr, FORMAT, ...)'; * if ERRNUM is nonzero, follow it with ": " and strerror (ERRNUM). * If STATUS is nonzero, terminate the program with `exit (STATUS)'. */ static void error (int status, int errnum, const char *format, ...) attribute ((__format__ (__printf__, 3, 4))); extern char const *program_name; static void error (int status, int errnum, const char *format, ...) { va_list ap; if (program_name) { fputs (program_name, stderr); fputs (": ", stderr); } va_start (ap, format); vfprintf (stderr, format, ap); va_end (ap); if (errnum) { fputs (": ", stderr); fputs (strerror (errnum), stderr); } putc ('\n', stderr); if (status) exit (status); } /* * GNU programs actually check for failure closing standard output. * This seems unnecessary, until your shell script starts hitting * ENOSPC and doing bizarre things with zero-length files. */ static void close_stdout (void) { if (ferror (stdout)) error (EXIT_FAILURE, 0, _("write error")); if (fclose (stdout) != 0) error (EXIT_FAILURE, errno, _("write error")); } /* * Quote the argument (including colon characters) into the buffer. * Return the buffer size used (including trailing null byte.) * If this is larger than the bufsize, it is an estimate of the space * needed. */ static size_t quotearg_colon_buf (char const *arg, char *buf, size_t bufsize) { /* Some systems don't have \a or \e, so this is ASCII-dependent */ static char const escaped[] = "\7\b\33\f\n\r\t\v"; static char const escapes[] = "abefnrtv"; int c; size_t pos = 0; char const *p; while ((c = (unsigned char) *arg++) != 0) { if (isprint (c)) { if (strchr ("\\:", c)) /* Anything else we should quote? */ if (pos++ < bufsize) *buf++ = '\\'; } else { if (pos++ < bufsize) *buf++ = '\\'; p = strchr (escaped, c); /* c is never 0, so this is okay */ if (p) { c = escapes[p-escaped]; } else { if ('0' <= *arg && *arg <= '9') c += 256; /* Force 3-digit form if followed by a digit */ if (c > 077) if (pos++ < bufsize) *buf++ = "0123"[c>>6 & 3]; if (c > 07) if (pos++ < bufsize) *buf++ = "01234567"[c>>3 & 7]; c = "01234567"[c & 7]; } } if (pos++ < bufsize) *buf++ = c; } if (pos++ < bufsize) *buf++ = 0; return pos; } /* Quote metacharacters in a filename */ char const * quotearg_colon (char const *arg) { static char *buf = 0; size_t bufsize = 0; size_t newsize; while ((newsize = quotearg_colon_buf (arg, buf, bufsize)) > bufsize) { buf = realloc (buf, newsize); if (!buf) error (EXIT_FAILURE, 0, _("virtual memory exhausted")); bufsize = newsize; } return buf; } void * xmalloc (size_t n) { void *p = malloc (n); if (!p) error (EXIT_FAILURE, 0, _("virtual memory exhausted")); return p; } char * xstrdup (char const *string) { return strcpy (xmalloc (strlen (string) + 1), string); } #endif /* ! HAVE_CONFIG_H */ #ifndef O_NOCTTY # define O_NOCTTY 0 /* This is a very optional frill */ #endif /* Some systems don't support some file types. */ #ifndef S_ISFIFO # define S_ISFIFO(mode) 0 #endif #ifndef S_ISLNK # define S_ISLNK(mode) 0 #endif #ifndef S_ISSOCK # define S_ISSOCK(mode) 0 #endif #define DEFAULT_PASSES 25 /* Default */ /* How often to update wiping display */ #define VERBOSE_UPDATE 150*1024 /* If positive, the units to use when printing sizes; if negative, the human-readable base. */ #define OUTPUT_BLOCK_SIZE (-1024) struct Options { int force; /* -f flag: chmod files if necessary */ size_t n_iterations; /* -n flag: Number of iterations */ off_t size; /* -s flag: size of file */ int remove_file; /* -u flag: remove file after shredding */ int verbose; /* -v flag: Print progress */ int exact; /* -x flag: Do not round up file size */ int zero_fill; /* -z flag: Add a final zero pass */ }; static struct option const long_opts[] = { {"exact", required_argument, NULL, 'x'}, {"force", no_argument, NULL, 'f'}, {"iterations", required_argument, NULL, 'n'}, {"size", required_argument, NULL, 's'}, {"remove", no_argument, NULL, 'u'}, {"verbose", no_argument, NULL, 'v'}, {"zero", required_argument, NULL, 'z'}, {GETOPT_HELP_OPTION_DECL}, {GETOPT_VERSION_OPTION_DECL}, {NULL, 0, NULL, 0} }; /* Global variable for error printing purposes */ char const *program_name; /* Initialized before any possible use */ void usage (int status) { if (status != 0) fprintf (stderr, _("Try `%s --help' for more information.\n"), program_name); else { printf (_("Usage: %s [OPTIONS] FILE [...]\n"), program_name); printf (_("\ Overwrite the specified FILE(s) repeatedly, in order to make it harder\n\ for even very expensive hardware probing to recover the data.\n\ \n\ -f, --force change permissions to allow writing if necessary\n\ -n, --iterations=N Overwrite N times instead of the default (%d)\n\ -s, --size=N shred this many bytes (suffixes like k, M, G accepted)\n\ -u, --remove truncate and remove file after overwriting\n\ -v, --verbose show progress\n\ -x, --exact do not round file sizes up to the next full block\n\ -z, --zero add a final overwrite with zeros to hide shredding\n\ - shred standard output\n\ --help display this help and exit\n\ --version print version information and exit\n\ \n\ Delete FILE(s) if --remove (-u) is specified. The default is not to remove\n\ the files because it is common to operate on device files like /dev/hda,\n\ and those files usually should not be removed. When operating on regular\n\ files, most people use the --remove option.\n\ "), DEFAULT_PASSES); puts (_("\nReport bugs to .")); } exit (status); } #if ! HAVE_FDATASYNC # define fdatasync(fd) -1 #endif /* * -------------------------------------------------------------------- * Bob Jenkins' cryptographic random number generator, ISAAC. * Hacked by Colin Plumb. * * We need a source of random numbers for some of the overwrite data. * Cryptographically secure is desirable, but it's not life-or-death * so I can be a little bit experimental in the choice of RNGs here. * * This generator is based somewhat on RC4, but has analysis * (http://ourworld.compuserve.com/homepages/bob_jenkins/randomnu.htm) * pointing to it actually being better. I like it because it's nice * and fast, and because the author did good work analyzing it. * -------------------------------------------------------------------- */ #if ULONG_MAX == 0xffffffff typedef unsigned long word32; #else # if UINT_MAX == 0xffffffff typedef unsigned word32; # else # if USHRT_MAX == 0xffffffff typedef unsigned short word32; # else # if UCHAR_MAX == 0xffffffff typedef unsigned char word32; # else "No 32-bit type available!" # endif # endif # endif #endif /* Size of the state tables to use. (You may change ISAAC_LOG) */ #define ISAAC_LOG 8 #define ISAAC_WORDS (1 << ISAAC_LOG) #define ISAAC_BYTES (ISAAC_WORDS * sizeof (word32)) /* RNG state variables */ struct isaac_state { word32 mm[ISAAC_WORDS]; /* Main state array */ word32 iv[8]; /* Seeding initial vector */ word32 a, b, c; /* Extra index variables */ }; /* This index operation is more efficient on many processors */ #define ind(mm, x) \ (* (word32 *) ((char *) (mm) + ((x) & (ISAAC_WORDS - 1) * sizeof (word32)))) /* * The central step. This uses two temporaries, x and y. mm is the * whole state array, while m is a pointer to the current word. off is * the offset from m to the word ISAAC_WORDS/2 words away in the mm array, * i.e. +/- ISAAC_WORDS/2. */ #define isaac_step(mix, a, b, mm, m, off, r) \ ( \ a = ((a) ^ (mix)) + (m)[off], \ x = *(m), \ *(m) = y = ind (mm, x) + (a) + (b), \ *(r) = b = ind (mm, (y) >> ISAAC_LOG) + x \ ) /* * Refill the entire R array, and update S. */ static void isaac_refill (struct isaac_state *s, word32 r[/* ISAAC_WORDS */]) { register word32 a, b; /* Caches of a and b */ register word32 x, y; /* Temps needed by isaac_step macro */ register word32 *m = s->mm; /* Pointer into state array */ a = s->a; b = s->b + (++s->c); do { isaac_step (a << 13, a, b, s->mm, m, ISAAC_WORDS / 2, r); isaac_step (a >> 6, a, b, s->mm, m + 1, ISAAC_WORDS / 2, r + 1); isaac_step (a << 2, a, b, s->mm, m + 2, ISAAC_WORDS / 2, r + 2); isaac_step (a >> 16, a, b, s->mm, m + 3, ISAAC_WORDS / 2, r + 3); r += 4; } while ((m += 4) < s->mm + ISAAC_WORDS / 2); do { isaac_step (a << 13, a, b, s->mm, m, -ISAAC_WORDS / 2, r); isaac_step (a >> 6, a, b, s->mm, m + 1, -ISAAC_WORDS / 2, r + 1); isaac_step (a << 2, a, b, s->mm, m + 2, -ISAAC_WORDS / 2, r + 2); isaac_step (a >> 16, a, b, s->mm, m + 3, -ISAAC_WORDS / 2, r + 3); r += 4; } while ((m += 4) < s->mm + ISAAC_WORDS); s->a = a; s->b = b; } /* * The basic seed-scrambling step for initialization, based on Bob * Jenkins' 256-bit hash. */ #define mix(a,b,c,d,e,f,g,h) \ ( a ^= b << 11, d += a, \ b += c, b ^= c >> 2, e += b, \ c += d, c ^= d << 8, f += c, \ d += e, d ^= e >> 16, g += d, \ e += f, e ^= f << 10, h += e, \ f += g, f ^= g >> 4, a += f, \ g += h, g ^= h << 8, b += g, \ h += a, h ^= a >> 9, c += h, \ a += b ) /* The basic ISAAC initialization pass. */ static void isaac_mix (struct isaac_state *s, word32 const seed[/* ISAAC_WORDS */]) { int i; word32 a = s->iv[0]; word32 b = s->iv[1]; word32 c = s->iv[2]; word32 d = s->iv[3]; word32 e = s->iv[4]; word32 f = s->iv[5]; word32 g = s->iv[6]; word32 h = s->iv[7]; for (i = 0; i < ISAAC_WORDS; i += 8) { a += seed[i]; b += seed[i + 1]; c += seed[i + 2]; d += seed[i + 3]; e += seed[i + 4]; f += seed[i + 5]; g += seed[i + 6]; h += seed[i + 7]; mix (a, b, c, d, e, f, g, h); s->mm[i] = a; s->mm[i + 1] = b; s->mm[i + 2] = c; s->mm[i + 3] = d; s->mm[i + 4] = e; s->mm[i + 5] = f; s->mm[i + 6] = g; s->mm[i + 7] = h; } s->iv[0] = a; s->iv[1] = b; s->iv[2] = c; s->iv[3] = d; s->iv[4] = e; s->iv[5] = f; s->iv[6] = g; s->iv[7] = h; } #if 0 /* Provided for reference only; not used in this code */ /* * Initialize the ISAAC RNG with the given seed material. * Its size MUST be a multiple of ISAAC_BYTES, and may be * stored in the s->mm array. * * This is a generalization of the original ISAAC initialization code * to support larger seed sizes. For seed sizes of 0 and ISAAC_BYTES, * it is identical. */ static void isaac_init (struct isaac_state *s, word32 const *seed, size_t seedsize) { static word32 const iv[8] = { 0x1367df5a, 0x95d90059, 0xc3163e4b, 0x0f421ad8, 0xd92a4a78, 0xa51a3c49, 0xc4efea1b, 0x30609119}; int i; # if 0 /* The initialization of iv is a precomputed form of: */ for (i = 0; i < 7; i++) iv[i] = 0x9e3779b9; /* the golden ratio */ for (i = 0; i < 4; ++i) /* scramble it */ mix (iv[0], iv[1], iv[2], iv[3], iv[4], iv[5], iv[6], iv[7]); # endif s->a = s->b = s->c = 0; for (i = 0; i < 8; i++) s->iv[i] = iv[i]; if (seedsize) { /* First pass (as in reference ISAAC code) */ isaac_mix (s, seed); /* Second and subsequent passes (extension to ISAAC) */ while (seedsize -= ISAAC_BYTES) { seed += ISAAC_WORDS; for (i = 0; i < ISAAC_WORDS; i++) s->mm[i] += seed[i]; isaac_mix (s, s->mm); } } else { /* The no seed case (as in reference ISAAC code) */ for (i = 0; i < ISAAC_WORDS; i++) s->mm[i] = 0; } /* Final pass */ isaac_mix (s, s->mm); } #endif /* Start seeding an ISAAC structire */ static void isaac_seed_start (struct isaac_state *s) { static word32 const iv[8] = { 0x1367df5a, 0x95d90059, 0xc3163e4b, 0x0f421ad8, 0xd92a4a78, 0xa51a3c49, 0xc4efea1b, 0x30609119 }; int i; #if 0 /* The initialization of iv is a precomputed form of: */ for (i = 0; i < 7; i++) iv[i] = 0x9e3779b9; /* the golden ratio */ for (i = 0; i < 4; ++i) /* scramble it */ mix (iv[0], iv[1], iv[2], iv[3], iv[4], iv[5], iv[6], iv[7]); #endif for (i = 0; i < 8; i++) s->iv[i] = iv[i]; /* We could initialize s->mm to zero, but why bother? */ /* s->c gets used for a data pointer during the seeding phase */ s->a = s->b = s->c = 0; } /* Add a buffer of seed material */ static void isaac_seed_data (struct isaac_state *s, void const *buf, size_t size) { unsigned char *p; size_t avail; size_t i; avail = sizeof s->mm - (size_t) s->c; /* s->c is used as a write pointer */ /* Do any full buffers that are necessary */ while (size > avail) { p = (unsigned char *) s->mm + s->c; for (i = 0; i < avail; i++) p[i] ^= ((unsigned char const *) buf)[i]; buf = (char const *) buf + avail; size -= avail; isaac_mix (s, s->mm); s->c = 0; avail = sizeof s->mm; } /* And the final partial block */ p = (unsigned char *) s->mm + s->c; for (i = 0; i < size; i++) p[i] ^= ((unsigned char const *) buf)[i]; s->c = (word32) size; } /* End of seeding phase; get everything ready to produce output. */ static void isaac_seed_finish (struct isaac_state *s) { isaac_mix (s, s->mm); isaac_mix (s, s->mm); /* Now reinitialize c to start things off right */ s->c = 0; } #define ISAAC_SEED(s,x) isaac_seed_data (s, &(x), sizeof (x)) #if __GNUC__ >= 2 && (__i386__ || __alpha__ || _ARCH_PPC) /* * Many processors have very-high-resolution timer registers, * The timer registers can be made inaccessible, so we have to deal with the * possibility of SIGILL while we're working. */ static jmp_buf env; static RETSIGTYPE sigill_handler (int signum) { (void) signum; longjmp (env, 1); /* Trivial, just return an indication that it happened */ } static void isaac_seed_machdep (struct isaac_state *s) { RETSIGTYPE (*oldhandler) (int); /* This is how one does try/except in C */ oldhandler = signal (SIGILL, sigill_handler); if (setjmp (env)) /* ANSI: Must be entire controlling expression */ { (void) signal (SIGILL, oldhandler); } else { # if __i386__ word32 t[2]; __asm__ __volatile__ ("rdtsc" : "=a" (t[0]), "=d" (t[1])); # endif # if __alpha__ unsigned long t; __asm__ __volatile__ ("rpcc %0" : "=r" (t)); # endif # if _ARCH_PPC word32 t; __asm__ __volatile__ ("mfspr %0,22" : "=r" (t)); # endif # if __mips /* Code not used because this is not accessible from userland */ word32 t; __asm__ __volatile__ ("mfc0\t%0,$9" : "=r" (t)); # endif # if __sparc__ /* This doesn't compile on all platforms yet. How to fix? */ unsigned long t; __asm__ __volatile__ ("rd %%tick, %0" : "=r" (t)); # endif (void) signal (SIGILL, oldhandler); isaac_seed_data (s, &t, sizeof t); } } #else /* !(__i386__ || __alpha__ || _ARCH_PPC) */ /* Do-nothing stub */ # define isaac_seed_machdep(s) (void) 0 #endif /* !(__i386__ || __alpha__ || _ARCH_PPC) */ /* * Get seed material. 16 bytes (128 bits) is plenty, but if we have * /dev/urandom, we get 32 bytes = 256 bits for complete overkill. */ static void isaac_seed (struct isaac_state *s) { isaac_seed_start (s); { pid_t t = getpid (); ISAAC_SEED (s, t); } { pid_t t = getppid (); ISAAC_SEED (s, t); } { uid_t t = getuid (); ISAAC_SEED (s, t); } { gid_t t = getgid (); ISAAC_SEED (s, t); } { #if HAVE_GETHRTIME hrtime_t t = gethrtime (); ISAAC_SEED (s, t); #else # if HAVE_CLOCK_GETTIME /* POSIX ns-resolution */ struct timespec t; clock_gettime (CLOCK_REALTIME, &t); # else # if HAVE_GETTIMEOFDAY struct timeval t; gettimeofday (&t, (struct timezone *) 0); # else time_t t; t = time ((time_t *) 0); # endif # endif #endif ISAAC_SEED (s, t); } isaac_seed_machdep (s); { char buf[32]; int fd = open ("/dev/urandom", O_RDONLY | O_NOCTTY); if (fd >= 0) { read (fd, buf, 32); close (fd); isaac_seed_data (s, buf, 32); } else { fd = open ("/dev/random", O_RDONLY | O_NONBLOCK | O_NOCTTY); if (fd >= 0) { /* /dev/random is more precious, so use less */ read (fd, buf, 16); close (fd); isaac_seed_data (s, buf, 16); } } } isaac_seed_finish (s); } /* Single-word RNG built on top of ISAAC */ struct irand_state { word32 r[ISAAC_WORDS]; unsigned numleft; struct isaac_state *s; }; static void irand_init (struct irand_state *r, struct isaac_state *s) { r->numleft = 0; r->s = s; } /* * We take from the end of the block deliberately, so if we need * only a small number of values, we choose the final ones which are * marginally better mixed than the initial ones. */ static word32 irand32 (struct irand_state *r) { if (!r->numleft) { isaac_refill (r->s, r->r); r->numleft = ISAAC_WORDS; } return r->r[--r->numleft]; } /* * Return a uniformly distributed random number between 0 and n, * inclusive. Thus, the result is modulo n+1. * * Theory of operation: as x steps through every possible 32-bit number, * x % n takes each value at least 2^32 / n times (rounded down), but * the values less than 2^32 % n are taken one additional time. Thus, * x % n is not perfectly uniform. To fix this, the values of x less * than 2^32 % n are disallowed, and if the RNG produces one, we ask * for a new value. */ static word32 irand_mod (struct irand_state *r, word32 n) { word32 x; word32 lim; if (!++n) return irand32 (r); lim = -n % n; /* == (2**32-n) % n == 2**32 % n */ do { x = irand32 (r); } while (x < lim); return x % n; } /* * Fill a buffer with a fixed pattern. * * The buffer must be at least 3 bytes long, even if * size is less. Larger sizes are filled exactly. */ static void fillpattern (int type, unsigned char *r, size_t size) { size_t i; unsigned bits = type & 0xfff; bits |= bits << 12; ((unsigned char *) r)[0] = (bits >> 4) & 255; ((unsigned char *) r)[1] = (bits >> 8) & 255; ((unsigned char *) r)[2] = bits & 255; for (i = 3; i < size / 2; i *= 2) memcpy ((char *) r + i, (char *) r, i); if (i < size) memcpy ((char *) r + i, (char *) r, size - i); /* Invert the first bit of every 512-byte sector. */ if (type & 0x1000) for (i = 0; i < size; i += 512) r[i] ^= 0x80; } /* * Fill a buffer with random data. * size is rounded UP to a multiple of ISAAC_BYTES. */ static void fillrand (struct isaac_state *s, word32 *r, size_t size) { size = (size + ISAAC_BYTES - 1) / ISAAC_BYTES; while (size--) { isaac_refill (s, r); r += ISAAC_WORDS; } } /* * Generate a 6-character (+ nul) pass name string * FIXME: allow translation of "random". */ #define PASS_NAME_SIZE 7 static void passname (unsigned char const *data, char name[PASS_NAME_SIZE]) { if (data) sprintf (name, "%02x%02x%02x", data[0], data[1], data[2]); else memcpy (name, "random", PASS_NAME_SIZE); } /* * Do pass number k of n, writing "size" bytes of the given pattern "type" * to the file descriptor fd. Qname, k and n are passed in only for verbose * progress message purposes. If n == 0, no progress messages are printed. * * If *sizep == -1, the size is unknown, and it will be filled in as soon * as writing fails. */ static int dopass (int fd, char const *qname, off_t *sizep, int type, struct isaac_state *s, unsigned long k, unsigned long n) { off_t size = *sizep; off_t offset; /* Current file posiiton */ off_t thresh; /* Offset to print next status update */ size_t lim; /* Amount of data to try writing */ size_t soff; /* Offset into buffer for next write */ ssize_t ssize; /* Return value from write */ #if ISAAC_WORDS > 1024 word32 r[ISAAC_WORDS * 3]; /* Multiple of 4K and of pattern size */ #else word32 r[1024 * 3]; /* Multiple of 4K and of pattern size */ #endif char pass_string[PASS_NAME_SIZE]; /* Name of current pass */ if (lseek (fd, (off_t) 0, SEEK_SET) == -1) { error (0, errno, _("%s: cannot rewind"), qname); return -1; } /* Constant fill patterns need only be set up once. */ if (type >= 0) { lim = sizeof r; if ((off_t) lim > size && size != -1) { lim = (size_t) size; } fillpattern (type, (unsigned char *) r, lim); passname ((unsigned char *) r, pass_string); } else { passname (0, pass_string); } /* Set position if first status update */ thresh = 0; if (n) { error (0, 0, _("%s: pass %lu/%lu (%s)..."), qname, k, n, pass_string); thresh = VERBOSE_UPDATE; if (thresh > size && size != -1) thresh = size; } offset = 0; for (;;) { /* How much to write this time? */ lim = sizeof r; if ((off_t) lim > size - offset && size != -1) { lim = (size_t) (size - offset); if (!lim) break; } if (type < 0) fillrand (s, r, lim); /* Loop to retry partial writes. */ for (soff = 0; soff < lim; soff += ssize) { ssize = write (fd, (char *) r + soff, lim - soff); if (ssize <= 0) { if ((ssize == 0 || errno == ENOSPC) && size == -1) { /* Ah, we have found the end of the file */ *sizep = thresh = size = offset + soff; break; } else { int errnum = errno; char buf[LONGEST_HUMAN_READABLE + 1]; error (0, errnum, _("%s: error writing at offset %s"), qname, human_readable ((uintmax_t) (offset + soff), buf, 1, 1)); /* * I sometimes use shred on bad media, before throwing it * out. Thus, I don't want it to give up on bad blocks. * This code assumes 512-byte blocks and tries to skip * over them. It works because lim is always a multiple * of 512, except at the end. */ if (errnum == EIO && soff % 512 == 0 && lim >= soff + 512 && size != -1) { if (lseek (fd, (off_t) (offset + soff + 512), SEEK_SET) != -1) { soff += 512; continue; } error (0, errno, "%s: lseek", qname); } return -1; } } } /* Okay, we have written "lim" bytes. */ if (offset + lim < offset) { error (0, 0, _("%s: file too large"), qname); return -1; } offset += lim; /* Time to print progress? */ if (offset >= thresh && n) { char offset_buf[LONGEST_HUMAN_READABLE + 1]; char size_buf[LONGEST_HUMAN_READABLE + 1]; char const *human_offset = human_readable ((uintmax_t) offset, offset_buf, 1, OUTPUT_BLOCK_SIZE); if (size != -1) error (0, 0, _("%s: pass %lu/%lu (%s)...%s/%s"), qname, k, n, pass_string, human_offset, human_readable ((uintmax_t) size, size_buf, 1, OUTPUT_BLOCK_SIZE)); else error (0, 0, _("%s: pass %lu/%lu (%s)...%s"), qname, k, n, pass_string, human_offset); thresh += VERBOSE_UPDATE; if (thresh > size && size != -1) thresh = size; /* * Force periodic syncs to keep displayed progress accurate * FIXME: Should these be present even if -v is not enabled, * to keep the buffer cache from filling with dirty pages? * It's a common problem with programs that do lots of writes, * like mkfs. */ if (fdatasync (fd) < 0 && fsync (fd) < 0) { error (0, errno, "%s: fsync", qname); return -1; } } } /* Force what we just wrote to hit the media. */ if (fdatasync (fd) < 0 && fsync (fd) < 0) { error (0, errno, "%s: fsync", qname); return -1; } return 0; } /* * The passes start and end with a random pass, and the passes in between * are done in random order. The idea is to deprive someone trying to * reverse the process of knowledge of the overwrite patterns, so they * have the additional step of figuring out what was done to the disk * before they can try to reverse or cancel it. * * First, all possible 1-bit patterns. There are two of them. * Then, all possible 2-bit patterns. There are four, but the two * which are also 1-bit patterns can be omitted. * Then, all possible 3-bit patterns. Likewise, 8-2 = 6. * Then, all possible 4-bit patterns. 16-4 = 12. * * The basic passes are: * 1-bit: 0x000, 0xFFF * 2-bit: 0x555, 0xAAA * 3-bit: 0x249, 0x492, 0x924, 0x6DB, 0xB6D, 0xDB6 (+ 1-bit) * 100100100100 110110110110 * 9 2 4 D B 6 * 4-bit: 0x111, 0x222, 0x333, 0x444, 0x666, 0x777, * 0x888, 0x999, 0xBBB, 0xCCC, 0xDDD, 0xEEE (+ 1-bit, 2-bit) * Adding three random passes at the beginning, middle and end * produces the default 25-pass structure. * * The next extension would be to 5-bit and 6-bit patterns. * There are 30 uncovered 5-bit patterns and 64-8-2 = 46 uncovered * 6-bit patterns, so they would increase the time required * significantly. 4-bit patterns are enough for most purposes. * * The main gotcha is that this would require a trickier encoding, * since lcm(2,3,4) = 12 bits is easy to fit into an int, but * lcm(2,3,4,5) = 60 bits is not. * * One extension that is included is to complement the first bit in each * 512-byte block, to alter the phase of the encoded data in the more * complex encodings. This doesn't apply to MFM, so the 1-bit patterns * are considered part of the 3-bit ones and the 2-bit patterns are * considered part of the 4-bit patterns. * * * How does the generalization to variable numbers of passes work? * * Here's how... * Have an ordered list of groups of passes. Each group is a set. * Take as many groups as will fit, plus a random subset of the * last partial group, and place them into the passes list. * Then shuffle the passes list into random order and use that. * * One extra detail: if we can't include a large enough fraction of the * last group to be interesting, then just substitute random passes. * * If you want more passes than the entire list of groups can * provide, just start repeating from the beginning of the list. */ static int const patterns[] = { -2, /* 2 random passes */ 2, 0x000, 0xFFF, /* 1-bit */ 2, 0x555, 0xAAA, /* 2-bit */ -1, /* 1 random pass */ 6, 0x249, 0x492, 0x6DB, 0x924, 0xB6D, 0xDB6, /* 3-bit */ 12, 0x111, 0x222, 0x333, 0x444, 0x666, 0x777, 0x888, 0x999, 0xBBB, 0xCCC, 0xDDD, 0xEEE, /* 4-bit */ -1, /* 1 random pass */ /* The following patterns have the frst bit per block flipped */ 8, 0x1000, 0x1249, 0x1492, 0x16DB, 0x1924, 0x1B6D, 0x1DB6, 0x1FFF, 14, 0x1111, 0x1222, 0x1333, 0x1444, 0x1555, 0x1666, 0x1777, 0x1888, 0x1999, 0x1AAA, 0x1BBB, 0x1CCC, 0x1DDD, 0x1EEE, -1, /* 1 random pass */ 0 /* End */ }; /* * Generate a random wiping pass pattern with num passes. * This is a two-stage process. First, the passes to include * are chosen, and then they are shuffled into the desired * order. */ static void genpattern (int *dest, size_t num, struct isaac_state *s) { struct irand_state r; size_t randpasses; int const *p; int *d; size_t n; size_t accum, top, swap; int k; if (!num) return; irand_init (&r, s); /* Stage 1: choose the passes to use */ p = patterns; randpasses = 0; d = dest; /* Destination for generated pass list */ n = num; /* Passes remaining to fill */ for (;;) { k = *p++; /* Block descriptor word */ if (!k) { /* Loop back to the beginning */ p = patterns; } else if (k < 0) { /* -k random passes */ k = -k; if ((size_t) k >= n) { randpasses += n; n = 0; break; } randpasses += k; n -= k; } else if ((size_t) k <= n) { /* Full block of patterns */ memcpy (d, p, k * sizeof (int)); p += k; d += k; n -= k; } else if (n < 2 || 3 * n < (size_t) k) { /* Finish with random */ randpasses += n; break; } else { /* Pad out with k of the n available */ do { if (n == (size_t) k-- || irand_mod (&r, k) < n) { *d++ = *p; n--; } p++; } while (n); break; } } top = num - randpasses; /* Top of initialized data */ /* assert (d == dest+top); */ /* * We now have fixed patterns in the dest buffer up to * "top", and we need to scramble them, with "randpasses" * random passes evenly spaced among them. * * We want one at the beginning, one at the end, and * evenly spaced in between. To do this, we basically * use Bresenham's line draw (a.k.a DDA) algorithm * to draw a line with slope (randpasses-1)/(num-1). * (We use a positive accumulator and count down to * do this.) * * So for each desired output value, we do the following: * - If it should be a random pass, copy the pass type * to top++, out of the way of the other passes, and * set the current pass to -1 (random). * - If it should be a normal pattern pass, choose an * entry at random between here and top-1 (inclusive) * and swap the current entry with that one. */ randpasses--; /* To speed up later math */ accum = randpasses; /* Bresenham DDA accumulator */ for (n = 0; n < num; n++) { if (accum <= randpasses) { accum += num - 1; dest[top++] = dest[n]; dest[n] = -1; } else { swap = n + irand_mod (&r, top - n - 1); k = dest[n]; dest[n] = dest[swap]; dest[swap] = k; } accum -= randpasses; } /* assert (top == num); */ memset (&r, 0, sizeof r); /* Wipe this on general principles */ } /* * The core routine to actually do the work. This overwrites the first * size bytes of the given fd. Returns -1 on error, 0 on success. */ static int do_wipefd (int fd, char const *qname, struct isaac_state *s, struct Options const *flags) { size_t i; struct stat st; off_t size; /* Size to write, size to read */ unsigned long n; /* Number of passes for printing purposes */ int *passarray; n = 0; /* dopass takes n -- 0 to mean "don't print progress" */ if (flags->verbose) n = flags->n_iterations + ((flags->zero_fill) != 0); if (fstat (fd, &st)) { error (0, errno, "%s: fstat", qname); return -1; } /* If we know that we can't possibly shred the file, give up now. Otherwise, we may go into a infinite loop writing data before we find that we can't rewind the device. */ if ((S_ISCHR (st.st_mode) && isatty (fd)) || S_ISFIFO (st.st_mode) || S_ISSOCK (st.st_mode)) { error (0, 0, _("%s: invalid file type"), qname); return -1; } /* Allocate pass array */ passarray = xmalloc (flags->n_iterations * sizeof (int)); size = flags->size; if (size == -1) { size = (S_ISREG (st.st_mode) ? st.st_size : lseek (fd, (off_t) 0, SEEK_END)); if (size < (S_ISREG (st.st_mode) ? 0 : -1)) { error (0, 0, _("%s: file has negative size"), qname); return -1; } if (0 <= size && !(flags->exact)) { size += ST_BLKSIZE (st) - 1 - (size - 1) % ST_BLKSIZE (st); if (size < 0) size = TYPE_MAXIMUM (off_t); } } /* Schedule the passes in random order. */ genpattern (passarray, flags->n_iterations, s); /* Do the work */ for (i = 0; i < flags->n_iterations; i++) { if (dopass (fd, qname, &size, passarray[i], s, i + 1, n) < 0) { memset (passarray, 0, flags->n_iterations * sizeof (int)); free (passarray); return -1; } } memset (passarray, 0, flags->n_iterations * sizeof (int)); free (passarray); if (flags->zero_fill) if (dopass (fd, qname, &size, 0, s, flags->n_iterations + 1, n) < 0) return -1; /* Okay, now deallocate the data. The effect of ftruncate on non-regular files is unspecified, so don't worry about any errors reported for them. */ if (flags->remove_file && ftruncate (fd, (off_t) 0) != 0 && S_ISREG (st.st_mode)) { error (0, errno, _("%s: error truncating"), qname); return -1; } return 0; } /* A wrapper with a little more checking for fds on the command line */ static int wipefd (int fd, char const *qname, struct isaac_state *s, struct Options const *flags) { int fd_flags = fcntl (fd, F_GETFL); if (fd_flags < 0) { error (0, errno, "%s: fcntl", qname); return -1; } if (fd_flags & O_APPEND) { error (0, 0, _("%s: cannot shred append-only file descriptor"), qname); return -1; } return do_wipefd (fd, qname, s, flags); } /* --- Name-wiping code --- */ /* Characters allowed in a file name - a safe universal set. */ static char const nameset[] = "0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ_+=%@#."; /* * This increments the name, considering it as a big-endian base-N number * with the digits taken from nameset. Characters not in the nameset * are considered to come before nameset[0]. * * It's not obvious, but this will explode if name[0..len-1] contains * any 0 bytes. * * This returns the carry (1 on overflow). */ static int incname (char *name, unsigned len) { char const *p; if (!len) return 1; p = strchr (nameset, name[--len]); /* If the character is not found, replace it with a 0 digit */ if (!p) { name[len] = nameset[0]; return 0; } /* If this character has a successor, use it */ if (p[1]) { name[len] = p[1]; return 0; } /* Otherwise, set this digit to 0 and increment the prefix */ name[len] = nameset[0]; return incname (name, len); } /* * Repeatedly rename a file with shorter and shorter names, * to obliterate all traces of the file name on any system that * adds a trailing delimiter to on-disk file names and reuses * the same directory slot. Finally, unlink it. * The passed-in filename is modified in place to the new filename. * (Which is unlinked if this function succeeds, but is still present if * it fails for some reason.) * * The main loop is written carefully to not get stuck if all possible * names of a given length are occupied. It counts down the length from * the original to 0. While the length is non-zero, it tries to find an * unused file name of the given length. It continues until either the * name is available and the rename succeeds, or it runs out of names * to try (incname wraps and returns 1). Finally, it unlinks the file. * * The unlink is Unix-specific, as ANSI-standard remove has more * portability problems with C libraries making it "safe". rename * is ANSI-standard. * * To force the directory data out, we try to open the directory and * invoke fdatasync on it. This is rather non-standard, so we don't * insist that it works, just fall back to a global sync in that case. * This is fairly significantly Unix-specific. Of course, on any * filesystem with synchronous metadata updates, this is unnecessary. */ static int wipename (char *oldname, char const *qoldname, struct Options const *flags) { char *newname, *base; /* Base points to filename part of newname */ unsigned len; int err; int dir_fd; /* Try to open directory to sync *it* */ newname = xstrdup (oldname); if (flags->verbose) error (0, 0, _("%s: removing"), qoldname); /* Find the file name portion */ base = strrchr (newname, '/'); /* Temporary hackery to get a directory fd */ if (base) { *base = '\0'; dir_fd = open (newname, O_RDONLY | O_NOCTTY); *base = '/'; } else { dir_fd = open (".", O_RDONLY | O_NOCTTY); } base = base ? base + 1 : newname; len = strlen (base); while (len) { memset (base, nameset[0], len); base[len] = 0; do { struct stat st; if (lstat (newname, &st) < 0) { if (rename (oldname, newname) == 0) { if (dir_fd < 0 || (fdatasync (dir_fd) < 0 && fsync (dir_fd) < 0)) sync (); /* Force directory out */ if (flags->verbose) { /* * People seem to understand this better than talking * about renaming oldname. newname doesn't need * quoting because we picked it. */ error (0, 0, _("%s: renamed to %s"), qoldname, quote (newname)); } memcpy (oldname + (base - newname), base, len + 1); break; } else { /* The rename failed: give up on this length. */ break; } } else { /* newname exists, so increment BASE so we use another */ } } while (!incname (base, len)); len--; } free (newname); err = unlink (oldname); if (dir_fd < 0 || (fdatasync (dir_fd) < 0 && fsync (dir_fd) < 0)) sync (); close (dir_fd); if (!err && flags->verbose) error (0, 0, _("%s: removed"), qoldname); return err; } /* * Finally, the function that actually takes a filename and grinds * it into hamburger. * * FIXME * Detail to note: since we do not restore errno to EACCES after * a failed chmod, we end up printing the error code from the chmod. * This is actually the error that stopped us from proceeding, so * it's arguably the right one, and in practice it'll be either EACCES * again or EPERM, which both give similar error messages. * Does anyone disagree? */ static int wipefile (char *name, char const *qname, struct isaac_state *s, struct Options const *flags) { int err, fd; fd = open (name, O_WRONLY | O_NOCTTY); if (fd < 0) { if (errno == EACCES && flags->force) { if (chmod (name, S_IWUSR) >= 0) /* 0200, user-write-only */ fd = open (name, O_WRONLY | O_NOCTTY); } else if ((errno == ENOENT || errno == ENOTDIR) && strncmp (name, "/dev/fd/", 8) == 0) { /* We accept /dev/fd/# even if the OS doesn't support it */ int errnum = errno; unsigned long num; char *p; errno = 0; num = strtoul (name + 8, &p, 10); /* If it's completely decimal with no leading zeros... */ if (errno == 0 && !*p && num <= INT_MAX && (('1' <= name[8] && name[8] <= '9') || (name[8] == '0' && !name[9]))) { return wipefd ((int) num, qname, s, flags); } errno = errnum; } } if (fd < 0) { error (0, errno, "%s", qname); return -1; } err = do_wipefd (fd, qname, s, flags); if (close (fd) != 0) { error (0, 0, "%s: close", qname); err = -1; } if (err == 0 && flags->remove_file) { err = wipename (name, qname, flags); if (err < 0) error (0, 0, _("%s: cannot remove"), qname); } return err; } int main (int argc, char **argv) { struct isaac_state s; int err = 0; struct Options flags; char **file; int n_files; int c; int i; program_name = argv[0]; setlocale (LC_ALL, ""); bindtextdomain (PACKAGE, LOCALEDIR); textdomain (PACKAGE); atexit (close_stdout); isaac_seed (&s); memset (&flags, 0, sizeof flags); flags.n_iterations = DEFAULT_PASSES; flags.size = -1; while ((c = getopt_long (argc, argv, "fn:s:uvxz", long_opts, NULL)) != -1) { switch (c) { case 0: break; case 'f': flags.force = 1; break; case 'n': { uintmax_t tmp; if (xstrtoumax (optarg, NULL, 10, &tmp, NULL) != LONGINT_OK || (word32) tmp != tmp || ((size_t) (tmp * sizeof (int)) / sizeof (int) != tmp)) { error (1, 0, _("%s: invalid number of passes"), quotearg_colon (optarg)); } flags.n_iterations = (size_t) tmp; } break; case 'u': flags.remove_file = 1; break; case 's': { uintmax_t tmp; if (xstrtoumax (optarg, NULL, 0, &tmp, "cbBkMGTPEZY0") != LONGINT_OK) { error (1, 0, _("%s: invalid file size"), quotearg_colon (optarg)); } flags.size = tmp; } break; case 'v': flags.verbose = 1; break; case 'x': flags.exact = 1; break; case 'z': flags.zero_fill = 1; break; case_GETOPT_HELP_CHAR; case_GETOPT_VERSION_CHAR (PROGRAM_NAME, AUTHORS); default: usage (1); } } file = argv + optind; n_files = argc - optind; if (n_files == 0) { error (0, 0, _("missing file argument")); usage (1); } for (i = 0; i < n_files; i++) { char const *qname = quotearg_colon (file[i]); if (strcmp (file[i], "-") == 0) { if (wipefd (STDOUT_FILENO, qname, &s, &flags) < 0) err = 1; } else { /* Plain filename - Note that this overwrites *argv! */ if (wipefile (file[i], qname, &s, &flags) < 0) err = 1; } } /* Just on general principles, wipe s. */ memset (&s, 0, sizeof s); exit (err); } /* * vim:sw=2:sts=2: */